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The change in holographic entanglement entropy (HEE) for small fluctuations about pure anti-de Sitter
(AdS) is obtained by a perturbative expansion of the area functional in terms of the change in the bulk
metric and the embedded extremal surface. However it is known that change in the embedding appears at
second order or higher. It was shown that these changes in the embedding can be calculated in the 2þ 1

dimensional case by solving a “generalized geodesic deviation equation.” We generalize this result to
arbitrary dimensions by deriving an inhomogeneous form of the Jacobi equation for minimal surfaces. The
solutions of this equation map a minimal surface in a given space time to a minimal surface in a space time
which is a perturbation over the initial space time. Using this we perturbatively calculate the changes in
HEE up to second order for boosted black brane like perturbations over AdS4.
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I. INTRODUCTION

The anti-de Sitter (AdS)/conformal field theory (CFT)
correspondence [1–3] asserts that certain quantities like
correlation functions of fields of a CFT living on the
conformal boundary of AdS can be obtained by calculating
purely geometrical quantities in the higher dimensional
bulk spacetime, which is a solution of a classical theory of
gravity. One such quantity of interest is the entanglement
entropy of a subregion A in the boundary CFT. Following a
proposal by Ryu and Takayanagi (RT) [4,5] and later by
Hubeny, Rangamani and Takayanagi (HRT) [6], this
quantity can be holographically obtained by calculating
the area of a spacelike co-dimension two “extremal sur-
face” ðγAÞ in the bulk spacetime,

SA ¼ AreaðγAÞ
4GN

; ð1Þ

(where GN is the Newton’s constant) and is dubbed as the
holographic entanglement entropy (HEE). By extremal
surface one refers to the following notion. For asymptoti-
cally AdS spacetimes in dþ 1 dimensions the surface γA is

(d − 1) dimensional and is obtained by extremizing the area
functional,

Area ¼
Z

dd−1τ
ffiffiffi
h

p
; ð2Þ

where τ’s are the intrinsic coordinates and hab is the
induced metric.
If this were also a minimum of the area functional, which

is the case that arises in static geometries, then, according to
the holographic entanglement entropy literature, it would
be called a minimal surface. For static geometries the
timelike Killing vector (∂t say) is hypersurface orthogonal
in the bulk geometry. It can then be shown that the extremal
surface must lie on t ¼ constant slice and can be shown to
be minimal. Hence the proposal reduces to finding a
minimal surface on a constant time slice. The proposal,
initially put forward by RTwas precisely this. However for
nonstatic cases, where the timelike killing vector is not
hypersurface orthogonal, or for dynamical geometries,
where there is no time like Killing vector, γA is no more
minimal, and therefore RT proposal fails and one has to
resort to the more general HRT proposal. (In terms of
nomenclature, in the mathematics literature, a minimal
surface refers to just the critical point of the area functional
and may not correspond to the minimum of the functional
[7]. This is particularly the case in manifolds endowed with
a semi-Riemannian metric. We will stick to the latter
nomenclature and use extremal and minimal interchange-
ably. Hencewhenwe sayminimal surfaces we actuallymean
extremal surfaces of HRT) The equation obtained by
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extremizing the functional turns out to be nothing but the
condition that the trace of the extrinsic curvature of the
surface vanishes. The condition however yields nonlinear
equations ofmotion for the embedding functions. It therefore
becomes difficult to solve these equations unless the back
ground geometry is highly symmetric. Consequently, though
these equations for the embedding function can be solved
exactly for AdS it becomes difficult to solve them exactly
even for backgrounds like the boosted black brane or the
Kerr-AdS. One therefore considers doing a perturbation by
treating these backgrounds as perturbation over AdS, near
the asymptotic boundary. This imminently yields linear
equations as the procedure involves a linearization of the
minimal surface equation.
The change in HEE between AdS and excitations over it

can then be calculated by considering variation of the area
functional which incorporates the changes due to the
change in the extremal surface γA and the perturbation
of the bulk metric. At first order contributions only come
from metric perturbations alone, while the change of the
embedding of the extremal surface does not [8–10].
However at second order both first order change in the
embeddings and second order metric perturbations con-
tribute [11–15]. In a previous work [16] the authors
proposed a way to calculate the contributions to second
order variations coming from the changes in the embed-
ding, in 2þ 1 dimensions. This was achieved by studying
geodesic deviations between geodesics in rotating BTZ
black hole (seen as perturbation over pure AdS) and pure
AdS3. These deviations were obtained as solutions of a
“generalized geodesic deviation equation.” In this paper we
shall generalize this to arbitrary dimensions. In order to do
so one has to reproduce the above notion, but now for
minimal surfaces. Simplified cases for this deformation
problem can be found in [17].
Study of minimal surfaces in Riemannian geometries has

been extensively carried out in the mathematics literature
[7,18]. In the entanglement entropy literature the plateau
problem for minimal surfaces has been studied in [19]. It is
known that for surfaces embedded in a a given Riemannian
space the area functional of the embedded surface is
stationary, that is it’s first variation vanishes, when the
embedded surface is minimal. Likewise when the second
variation is equated to zero it gives rise to the Jacobi
equation for minimal surfaces [20]. The interpretation of
the solutions of the Jacobi equation is the following. The
solutions of this equation gives the deviation between a
minimal surface and a neighboring minimal surface. In the
physics literature the Jacobi equation has been studied in
the context of relativistic membranes [21] and spiky strings
on a flat background [22]. However this equation is relevant
only when the metric of the ambient space is fixed.
In the context of the present work one needs to modify

this notion. Note that in our case one needs to study
deviations between two surfaces which are minimal in two
different spacetimes. The spacetimes are however related

by a perturbation and not completely arbitrary. To begin
with one has to ensure that all of the results obtained are
manifestly gauge invariant and therefore has to be careful
and precise in defining perturbations in the spirit of a
covariant perturbation theory. We therefore adopt the
notion introduced in [23] in the context of gravity.
A priori, taking cue from the results obtained for geodesics
one then expects the Jacobi equation to be modified by
appearance of an inhomogeneous term. This indeed turns
out to be case, as will be shown later. We also obtain an
expression for the change in the area functional, in arbitrary
dimensions, up to second order.
Having obtained an equation that properly mimics the

situation at hand, one needs to demonstrate that the equations
can indeed be solved, for the prescription to be of any
relevance. We therefore solve this equation in the 3þ 1
dimensional case for two choices of the boundary subsystem
(1) spherical subsystem and (2) thin strip subsystem. We do
this for boosted black brane like perturbations over AdS4.
Using the solutions of the inhomogeneous Jacobi equation
we obtain the change in HEE between AdS4 and boosted
black brane like perturbations over it.

II. NOTATIONS AND CONVENTIONS

Consider a dþ 1 dimensional space time ðM; gÞ and
another dþ 1 dimensional space time ðM0; g0Þ which is
diffeomorphic to M. That is there is a differentiable map
Φ∶ M → M0 which is however not isometric. We will call

ðM0; g0Þ to be a perturbation over ðM; gÞ if P
ð1Þ

¼ Φ�g0 − g
is a small perturbation over g. Consider a surface S
isometrically embedded in M and given by the function
f∶ S → M. It is implied that the restriction of f to the
image of S is continuous and differentiable. In a local
coordinate chart xμ on M and τa on S the embedding can
be represented by the embedding functions xμ∘f∘ðτaÞ−1.
This can be simply written as xμðτaÞ. The induced metric on
S is the pull back of the metric g under the map f, given by
h ¼ f�g. Again, in the local coordinates this can be written
as hab ¼ gð∂a; ∂bÞ ¼ ∂xμ

∂τa
∂xν
∂τb gð∂μ; ∂νÞ. The quantity ∂xμ

∂τa ∂μ

is the push forward of the purely tangential vector field ∂a
to M. ‘hab’ is the first fundamental form on S. To define
the second fundamental form one needs a connection or the
covariant derivative on M. The covariant derivative is a
map ∇∶ TM ⊗ TM → TM. For two vector fields
W;Z ∈ TM it is denoted as ∇WZ and is an element of
TM. Now suppose x ∈ S. One can decompose the tangent
space at the point x into the tangent space of S and the
space of normal vectors as TxM ¼ TxS ⊕ T⊥

x S. Then one
defines the tangent bundle and normal bundle on S as
⋃xTxS and ⋃xT

⊥
x S respectively. One can similarly define

a covariant derivative on S. Let it be denoted by
D∶ TS ⊗ TS → TS. Let X; Y ∈ TS. Then the Gauss
decomposition allows us to write,
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∇XY ¼ DXY þ KðX; YÞ; ð3Þ

where DXY is purely tangential and KðX; YÞ is a vector
in the normal bundle and is the extrinsic curvature
or the second fundamental form. The metric compatibility
of ∇ in this notation is written as ∇WgðV;UÞ ¼
gð∇WU; VÞ þ gðU;∇WVÞ. The metric compatibility of ∇
with g will imply metric compatibility of D with h, by
virtue of the above equation. One defines a connection
∇⊥

XN
⊥ in the normal bundle as ∇⊥∶ TS ⊗ T⊥S → T⊥S,

where X ∈ TS and N⊥ ∈ T⊥S. Then the shape operator
WN⊥ðXÞ is defined as,

∇XN⊥ ¼ ∇⊥
XN

⊥ −WN⊥ðXÞ: ð4Þ
The shape operator and the extrinsic curvatures are related
by the Weingarten equation,

gðWN⊥ðXÞ; YÞ ¼ gðN⊥; KðX; YÞÞ; ð5Þ
where X; Y ∈ TS and N⊥ ∈ T⊥S. The Riemann tensor is a
map R∶ TM ⊗ TM ⊗ TM → TM and is defined as,

RðW;UÞV ≡ ½∇W;∇U�V −∇½W;U�V ð6Þ
Similarly one can define an intrinsic Riemann tensor by,

RðX; YÞZ≡ ½DX;DY �Z −D½X;Y�Z ð7Þ
We write down the equations of Gauss and Codazzi, in this
notation. Let X; Y; Z;W ∈ TS and N⊥ ∈ T⊥S. Then the
Gauss equation is given as,

gðRðX;YÞZ;WÞ¼ gðRðX;YÞZ;WÞ−gðKðX;ZÞ;KðY;WÞÞ
þgðKðX;WÞ;KðY;ZÞÞ; ð8Þ

and the Codazzi equation as,

gðRðX; YÞN⊥; ZÞ ¼ gðð∇YKÞðX; ZÞ; N⊥Þ
− gðð∇XKÞðY; ZÞ; N⊥Þ ð9Þ

Now, we go over to notations involving perturbations. In the
presence of perturbations a variation will be assumed to have
two contributions, one which is a flow along a vector
N ∈ TM, obtained by taking a covariant derivative ∇N
along N and another variation δg which is purely due to
metric perturbations. Since we will be doing all the calcu-
lations in a coordinate chart in the unperturbed space time, let
us try to define certain quantities on M arising due to the
perturbations, i.e. due to the difference in the two metrics g
and Φ�g0. The metric perturbation will be given by,

ðδggÞð∂μ; ∂νÞ≡ ½Φ�g0 − g�ð∂μ; ∂νÞ ¼ P
ð1Þ
ð∂μ; ∂νÞ; ð10Þ

where P
ð1Þ

is a symmetric bilinear form on M. Note that δg
only acts on the metric and does not change the vector fields

∂μ. Now suppose there is a covariant derivative ∇0 in M0

compatible with g0, then for X; Y ∈ TM,

CðX; YÞ≡ δgð∇XYÞ ¼ ∇̃XY −∇XY; ð11Þ
where ∇̃ ¼ ϕ�∇0 is the pullback connection onM. Note that
CðX; YÞ is a vector field inM.Whenwritten in coordinates it

has exactly the same form as C
ð1Þμ

νρ used in [16]. Sincewewill
not be dealing with perturbations of further higher order, we
have dropped the superscript ð1Þ.
We are now in a position to derive the inhomogeneous

Jacobi equation for minimal surfaces. For the display of
some semblance with [16], a rederivation of the inhomo-
geneous Jacobi equation for geodesics, in this notation, is
given in Appendix A.

III. DERIVATION OF THE INHOMOGENEOUS
JACOBI EQUATION FOR SURFACES

In the previous section we considered ðM0; g0Þ to be a
perturbation over ðM; gÞ. Let us consider a one parameter
family of such perturbed spacetimes ðMλ; gλÞ and a one
parameter family of diffeomorphism, which are not neces-
sarily isometric, Φλ∶ M → Mλ such that M0 corresponds
to the unperturbed spacetime andΦ0 is the identity map. Let
Sλ be a family of codimension two minimal surfaces in
ðMλ; gλÞ i.e. the trace of their extrinsic curvatures vanishes.
The surfaces can be parametrized by the embedding func-
tions fμλðτaÞ, which allows one to write the tracelessness
condition as habλ KðλÞð∂a; ∂bÞ ¼ 0. Note that onewould think
that the coordinates τa may be different for different Sλ. But
one can always adjust the functions fμλ such that the surfaces
can be coordinatized by the same intrinsic coordinates. Let us
construct a family of immersed submanifolds S̃λ in M0,
given by the embedding functionsFμ

λ such thatΦλ∘Fμ
λ ¼ fμλ .

Let us denote the deviation vector between Fμ
0 and the

neighboring surface be denoted byN. Note thatN can always
be taken to be normal to S̃0, as any tangent deviationwill only
result in a reparametrization of the intrinsic coordinates τa

and won’t change the area of the surface. This statement is
however not obvious in our case where we have metric
perturbations. In this regard we take a cue from the
calculation done in the case of geodesic [16]. Since we have
already removed the freedom of intrinsic coordinate repar-
ametrization, by adjusting the fλ’s, it is quite legitimate to
take normal variations only. Moreover since we will ulti-
mately be interested in area change it is sufficient for us to
take normal variations only. FurtherN can always be chosen
such that it commutes with the vectors ∂a tangent to the
submanifold i.e. ½N; ∂a� ¼ 0 ∀ a.
The condition that Sλ’s are minimal in ðMλ; gλÞ then

reduces to a condition on N in M0. At each order of the
variation, the conditions are essentially inhomogeneous
linear differential equations thatNmust satisfy. The equation
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that one obtains at linear order is the onewewill be interested
in, since the solutions of this will provide us with the linear
deformation of theminimal surface that we are seeking. As is
evident, the equation can be derived by equating the more
general variation δN ¼ ∇N þ δg, discussed in Sec. II, of the
trace of the extrinsic curvature to zero i.e.

δNHλ ¼ habλ ðδNð∇ðλÞ∂a∂bÞ⊥Þ þ ðδNhabλ ÞKλð∂a; ∂bÞ ¼ 0:

ð12Þ
We will drop the λ subscript from here on, as the above
variations will be calculated around the unperturbed surface
i.e. at λ ¼ 0. While dropping the λ’s surely will make the
expressions look cleaner, one has to make sure that the
minimal surface equation be used only after the derivatives
have been computed. Let us first compute the first term of the
above expression which involves the normal component of
the covariant derivative.

habδNð∇∂a∂bÞ⊥ ¼ habð∇Nð∇∂a∂bÞ þ δgð∇∂a∂bÞ
−∇Nð∇∂a∂bÞT − δgð∇∂a∂bÞTÞ

¼ habð∇∂a∇∂bN þ RðN; ∂aÞ∂b

þ Cð∂a; ∂bÞ −∇Nð∇∂a∂bÞT
− δgð∇∂a∂bÞTÞ ð13Þ

The action of the variation δN on any quantity Q on M0 is
taken to be of the form δNðQÞ ¼ ∇NðQÞ þ δgðQÞ. This
notation for variation has been adopted for convenience of
calculation. That this reproduces the correct result, can be seen
from the derivation of the inhomogeneous Jacobi equation, for
geodesics, obtained by adopting this notation (Appendix (A1).
The action of δg is precisely on the space of sections on a tensor
bundle in Mλ. If we represent a flow on M0 and δg by two
parameters then a priori these two parameters are completely
independent of eachother, but for the perturbations toworkone
needs them to be equal. How the parameter of the flow∇N can
be related to the parameter of the variation δg is a mathematical
issue the resolution of which we will leave for some future
work. Adopting the above, one obtains,

ðδNhabÞKð∂a; ∂bÞ ¼ 2habKð∂a;WNð∂bÞÞ

− hachbdKð∂a; ∂bÞP
ð1Þ
ð∂c; ∂dÞ ð14Þ

Substituting (13), (14) in (12) we get

δNH ¼ habð∇∂a∇∂b
N þ RðN; ∂aÞ∂b þ Cð∂a; ∂bÞ

−∇Nð∇∂a∂bÞT − δPð∇∂a
∂bÞTÞ

þ 2habKð∂a;WNð∂bÞÞ

− hachbdKð∂a; ∂bÞP
ð1Þ
ð∂c; ∂dÞ: ð15Þ

A similar exercise with the term habδNð∇∂a∂bÞT yield the
following expression,

hab½ð∇ð∇∂a∂bÞTNÞ⊥ þ ð∇∂a
∇∂bN þ RðN; ∂aÞ∂b

þ Cð∂a; ∂bÞÞT þ hcd P
ð1Þ
ðKð∂a; ∂bÞ; ∂cÞ∂d�: ð16Þ

Substituting (16) in (15), we get a complete expression for
δNH,

δNH ¼ habðð∇∂a∇∂bN þ RðN; ∂aÞ∂b þ Cð∂a; ∂bÞÞ⊥

− ð∇ð∇∂a∂bÞTNÞ⊥Þ − hcd P
ð1Þ
ðH; ∂cÞ∂d

þ 2habKð∂a;WNð∂bÞÞ

− hachbdKð∂a; ∂bÞP
ð1Þ
ð∂c; ∂dÞ ð17Þ

Noting that ð∇∂a∇∂bNÞ⊥ ¼ −Kð∂a;WNð∂bÞÞ þ∇⊥∂a
∇⊥∂bN,

the above equation, along with the minimality condition
H ¼ 0, can be recast in the following form, which is closer
in form to the expressions known in the literature of
minimal surfaces.

δNH ¼ Δ⊥N þ RicðNÞ þ AðNÞ þ C⊥ − H̃; ð18Þ

where we have defined Δ⊥N to be the Laplacian on the
normal bundle, given by habð∇⊥∂a∇⊥∂bN −∇⊥

ð∇∂a∂bÞTNÞ,
gðRðN; ∂aÞ∂b; NÞ has been denoted by RicðNÞ. AðNÞ ¼
habKð∂a;WNð∂bÞÞ is the Simon’s operator whereas C⊥ is

defined as C⊥ ¼ habCð∂a; ∂bÞ⊥ and H̃ ¼ P
ð1Þab

Kð∂a; ∂bÞ.
Thus identifying the Jacobi/stability operator ðLÞ for
minimal surfaces as

LN ¼ Δ⊥N þ RicðNÞ þ AðNÞ; ð19Þ

we can rewrite (18) as

LN ¼ −C⊥ þ H̃: ð20Þ

This is the inhomogeneous Jacobi equation. The solutions
of this equation will provide us with the deformation of a
minimal surface under a perturbation of the ambient
spacetime. The inhomogeneous terms in the above equa-
tion, involves perturbation of the metric and is the only term
in the above equation that involves the perturbation. If there
were no perturbations the equation would have corre-
sponded to the one describing a deviation of a minimal
surface to another minimal surface in the same spacetime
ðM0; g0Þ. We will solve for solutions of this equation for
specific cases and substitute the result in an area variation
formula which we derive in the next section.

IV. VARIATION OF THE AREA FUNCTIONAL

According to Hubeny, Rangamani, Takayanagi (HRT)
proposal the area of a codimension two spacelike extremal
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surfaceðγAÞ in AdSdþ1 whose boundary coincides with the
boundary of subsystem A gives the entanglement entropy
for this subsystem. Our goal therefore would be to obtain
the change in area of a minimal surface up to second order
with the extra constraint that the boundary of the surface
remain unaltered i.e. the deviations vanish at the boundary.
At second order we will encounter terms which involve the
deviation of the embedding functions itself. It is here that
we have to use the solutions of the inhomogeneous Jacobi
equation. The first variation of area of the minimal surface
is given by,

δNA ¼
Z

dnτ

ffiffiffi
h

p

2
habδNhab

¼ −
Z

dnτ
ffiffiffi
h

p
gðN;HÞ þ 1

2

Z
dnτ

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞ

þ Surface terms: ð21Þ

If the perturbations are set to zero then we get back the
known expression for first variation of area. In the presence
of perturbations the on-shell expression can be obtained by
setting (H ¼ 0).

δNA ¼ 1

2

Z
dnτ

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞ: ð22Þ

The second variation of area is given by

δð2ÞN A ¼ −
Z

dnτδNð
ffiffiffi
h

p
gðN;HÞÞ

þ 1

2

Z
dnτδNð

ffiffiffi
h

p
habP

ð1Þ
ð∂a; ∂bÞÞ

þ Surface terms: ð23Þ

Note that since ½N; ∂a� ¼ 0 for all a, the variation of the
surface term is again a surface term. From the results of the
previous Sec. III, the first term in the above expression can
be written in terms of the stability operator. Simplifying
the second term requires a bit of algebra. Note that

δNð
ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞÞ has the following expression,

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞð−gðN;HÞ þ 1

2
hcd P

ð1Þ
ð∂c; ∂dÞÞ

þ 2
ffiffiffi
h

p
hachbdgðN;Kð∂c; ∂dÞÞP

ð1Þ
ð∂a; ∂bÞ

−
ffiffiffi
h

p
hachbd P

ð1Þ
ð∂c; ∂dÞP

ð1Þ
ð∂a; ∂bÞ

þ
ffiffiffi
h

p
hab½2P

ð1Þ
ð∇∂aN; ∂bÞ þ 2gðCð∂a; NÞ; ∂bÞ

þ P
ð2Þ
ð∂a; ∂bÞ� ð24Þ

substituting the expression in (24) in (23) and using
the conditions H ¼ 0; δNH ¼ 0, one arrives at the follow-
ing final expression for the second variation of the area
functional,1

δð2ÞN A ¼ 1

4

Z
dnτ

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞhcdP

ð1Þ
ð∂c; ∂dÞ

þ
Z

dnτ
ffiffiffi
h

p
hachbdgðN;Kð∂c; ∂dÞÞP

ð1Þ
ð∂a; ∂bÞ

−
1

2

Z
dnτ

ffiffiffi
h

p
hachbd P

ð1Þ
ð∂c; ∂dÞP

ð1Þ
ð∂a; ∂bÞ

þ
Z

dnτ
ffiffiffi
h

p
hab

1

2
P
ð2Þ
ð∂a; ∂bÞ

−
Z

dnτ
ffiffiffi
h

p
habgðCð∂a; ∂bÞ; NÞ þ Surface terms;

ð25Þ

The appearance of surface terms in the above expression
is not very crucial, at least in the context of our current
work. Since the boundary subsystem is kept fixed, while
the bulk metric is being perturbed, the boundary conditions
on the deviation vector would imply that it vanishes at the
boundary. Thus change in area will have no contribution
from the boundary terms. If we started with a more general
deviation vector which also had components tangent to the
immersed surface, then the only modification of the above
expression would have been through the appearance of
more boundary terms. The bulk contribution still would
have arisen from normal variations only. This will be shown
in full rigor in a later work.2 where we will primarily use
these boundary terms to find the change of entanglement
entropy due to deformations of the subsystem itself.

V. BRIEF OUTLINE OF STEPS INVOLVED
IN OBTAINING AREA VARIATION

UP TO SECOND ORDER

Our goal is to provide a formalism to calculate a change in
the area of an extremal surface under changes of embedding
and perturbation of metric. For the sake of brevity, all our
calculationswill be done in3þ 1 dimensions.But this can be
easily generalized to higher dimensions. In this section, we
provide a brief outline of this formalism
(1) Our first task is to take an asymptotically AdS metric

(to be considered as a perturbation over AdS) and

1where we have used the following two expressions,

ð∇∂aPÞðN; ∂bÞ ¼ gðCð∂a; ∂bÞ; NÞ þ gðCð∂a; NÞ; ∂bÞ
∇∂a ½

ffiffiffi
h

p
habPðN; ∂aÞ� ¼

ffiffiffi
h

p
hab∇∂a ½PðN; ∂bÞ�

−
ffiffiffi
h

p
habPðN; ð∇∂a

∂bÞTÞ:
2A. Ghosh and R. Mishra, work in progress.
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identify the first and second order metric perturba-
tions. In our case, this is achieved by writing the
boosted AdS black brane metric in the Fefferman
Graham coordinates, keeping up to second order
(Appendix B). From the first order metric perturba-

tions P
ð1Þ

μν one can calculate the (1,2) tensor.

Cμ
νρ ¼ 1

2
gμσð∂νP

ð1Þ
ρσ þ ∂ρP

ð1Þ
νσ − ∂σP

ð1Þ
νρÞ

−
1

2
P
ð1Þμσ

ð∂νgρσ þ ∂ρgνσ − ∂σgνρÞ; ð26Þ

where gμν is the unperturbed AdS4 metric. The
tensor defined is nothing but CðX; YÞ written in a
coordinate system, i.e. Cð∂ν; ∂ρÞ ¼ Cμ

νρ∂μ.
(2) Next we choose a free boundary extremal surface in

AdS4 [24]. We will consider two cases (A) half
sphere in AdS4 which is the corresponding minimal
surface for a circular disc like subsystem and
(B) minimal surface corresponding to a thin strip
boundary subsystem. With these choices and the

choice of the perturbation P
ð1Þμν

, we can now solve the
inhomogeneous Jacobi equation (20) and obtain the
deviation vector (N).

(3) First and second order change in the area can be
obtained by substituting the values of the deviation

vector (N), first order metric perturbation ðP
ð1Þ

μνÞ,
second order metric perturbation P

ð2Þ
μν and Cμ

νρ in the
expression (25), (21) and then integrating. From here
the total change in area upto second order can be
obtained as,

ΔA ¼ Δð1ÞAþ 1

2
Δð2ÞA ð27Þ

In the topic of the present paper we have selected
asymptotically AdS spacetime. But this formalism
can be easily applied to asymptotically flat case
also. Here we have considered first order devia-
tions of the extremal surface and second order
metric perturbation to calculate the change in area
up to second order. To calculate the change in
area up to third order one need to consider second
order deviation of the extremal surface and third
order metric perturbations. Second order deviation
can be obtained by extending the inhomogeneous
Jacobi equation up to second order. The form of
second order inhomogeneous Jacobi equation
for geodesics can be found in [16]. Third order
metric perturbation can be obtained by keeping
third order terms in the asymptotic (Fefferman
Graham) metric.

VI. SOLUTIONS OF THE INHOMOGENEOUS
JACOBI EQUATIONS AND CHANGE IN AREA

Our choice of the asymptotic metric to be considered as a
perturbation over AdS4 is the boosted AdS black brane
metric written in the Fefferman Graham coordinates up to
second order. The CFT state dual to this bulk geometry is a
thermal plasma which is uniformly boosted along a certain
direction and is characterized by a temperature and boost β.
This choice of a stationary spacetime is made to elucidate
that our formalism can be easily applied to both static
and non static spacetimes and yields expected results for
the nonstatic case. The metric for AdS4 in Poincaré coor-
dinates reads as

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2

z2
ð28Þ

for simplicity we have set the radius of AdS to one. Now we
will solve the inhomogeneous Jacobi equation and obtain an
expression for the change in area for the case of twoboundary
subsystems namely.

A. Circular disk subsystem

In the case where the boundary subsystem is a circular
disk of radiusR, it is known that the minimal surface in the
AdSdþ1 is a d − 1 dimensional hypersphere. The embed-
ding of such a surface in AdS4 is given by the following
embedding functions [24,25],

x ¼ R sin θ cosϕþ X;

y ¼ R sin θ sinϕþ Y;

z ¼ R cos θ; t ¼ constant: ð29Þ

The coordinates θ;ϕ are the coordinates intrinsic to the
surface and have ranges, 0 ≤ θ ≤ π

2
and 0 ≤ ϕ < 2π. As is

evident from the above expressions in Eq. (29), the surface
of intersection of the half sphere with the AdS4 boundary
is at θ ¼ π

2
. The intrinsic metric can be calculated via a

pullback of the metric on the full space time and is given as,

ds2induced ¼ habdxadxb ¼
dθ2 þ sin2θdϕ2

cos2θ
: ð30Þ

To facilitate our calculation we will construct a local basis
adapted to this surface. To start with, we first construct a
local tangent basis. As is apparent from the expression for
the induced metric, the tangent bases are,

e2 ¼ cos θ∂θ; e3 ¼ cot θ∂ϕ: ð31Þ

Since the surface is purely spacelike, this set provides the
spacelike bases for the full spacetime. The set of basis
vectors spanning the normal bundle will provide us with the
other two basis vectors. To obtain them we first lift the
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tangent vectors to the space time, by using the embedding
functions and then use the orthogonality relations. As a
matter of convention we mark the timelike normal as e0 and
the spacelike normal as e1.

e0 ¼ z∂t; e1 ¼
zðx − XÞ

l
∂x þ

zðy − YÞ
l

∂y þ
z2

l
∂z:

ð32Þ

To completely specify the embedding one also needs to find
the extrinsic curvatures and the intrinsic connection. To do
so we need to find the covariant derivatives between the
tangent vectors. They turn out to be,

∇e2e2¼ 0; ∇e3e3¼−cosecθe2; ∇e3e2 ¼ cosecθe3

ð33Þ

which gives the following for the intrinsic connection and
the extrinsic curvature.

De2e2 ¼ 0; De3e3 ¼ −cosecθe2; De2e3 ¼ 0;

De2e2 ¼ cosecθe3; De2e2 ¼ cosecθe3

Kðe2; e2Þ ¼ 0; Kðe3; e3Þ ¼ 0;

Kðe2; e3Þ ¼ 0; Kðe3; e2Þ ¼ 0: ð34Þ

The vanishing of the extrinsic curvature implies that the
surface is totally geodesic i.e. any curve that is a geodesic
on the surface is also a geodesic of the full spacetime.
Recall that the Jacobi equation involves the connection in
the Normal bundle ∇⊥, which can be found by calculating
the covariant derivative of a normal vector along a tangent
vector.

∇e2e0¼ 0; ∇e3e0¼ 0; ∇e2e1¼ 0; ∇e3e1¼ 0 ð35Þ

From this one can read off the normal connection∇⊥, using
the Weingarten map. The procedure involves expanding the
normal connection as ∇⊥

eaeA ¼ βBAðeaÞeB (A, B denotes an
index for basis vectors in the normal bundle) and yields,

∇⊥
e2e0 ¼ β00ðe2Þe0 þ β10ðe2Þe1 ¼ 0;

∇⊥
e3e0 ¼ β00ðe3Þe0 þ β10ðe3Þe1 ¼ 0

∇⊥
e2e1 ¼ β01ðe2Þe0 þ β11ðe2Þe1 ¼ 0;

∇⊥
e3e1 ¼ β01ðe3Þe0 þ β11ðe3Þe1 ¼ 0: ð36Þ

The vanishing of the β0s is equivalent to saying that the
normal bundle is flat. Using the above results, calculating
the left hand side of the Jacobi equation is just a matter of
algebra. We expand the deviation vector in the normal basis
as αAeA and find the following equations for the αA.

cos2 θ∂2
θα

A þ cos2 θ cot θ∂θα
A þ cot2 θ∂2

ϕα
A − 2αA ¼ FA;

ð37Þ

where FA has been defined for compactness of the above
expression and is given as in FA ¼ eAμ ðC⊥μ þ H̃μÞ. Note
that in this case the both the normal projections yield the
one and the same equation. The source of this symmetry
can be traced back as due to the symmetry of the
embedding surface itself. Before proceeding to find sol-
utions of the above equation, we need to analyze the
homogeneous equations. In other words we will impose
the boundary condition that the deviation vector is zero at
the boundary and check if this implies that the only solution
of the “homogeneous” piece of the above equation is the
trivial solution. As we will see, this knowledge would be
helpful in our effort to obtain solutions of the “inhomo-
geneous” equations. The homogeneous equation can be
solved by the method of separation of variables
αAðθ;ϕÞ ¼ ΘAðθÞΦAðϕÞ. The equations then become ordi-
nary differential equations.

d2ΘA

dθ2
þ cotθ

dΘA

dθ
− ð2 sec2 θþm2cosec2θÞΘA¼ 0 ð38Þ

and the ϕ equation is,

d2ΦA

dϕ2
þm2ΦA ¼ 0 ð39Þ

For the ϕ equation the boundary condition is of course the
periodic one ΦAðϕþ 2πÞ ¼ ΦAðϕÞ, which restricts the
values of m to integers only. The most general solution
of this equation is given in terms of the hypergeometric
functions 2F1

Θ¼C1cos2θðsinθÞm2F1

�
1þm

2
;
3

2
þm

2
;mþ1;sin2θ

�

þC2cos2θðsinθÞ−m2F1

�
1−

m
2
;
3

2
−
m
2
;−mþ1;sin2θ

�
.

ð40Þ

Assuming the boundary condition Θ ¼ 0 at θ ¼ π
2
and

demanding that the solution be regular at θ ¼ 0, one
concludes that C1 ¼ C2 ¼ 0. To check this assume m to
be positive (Similar arguments would hold for m negative).
Note that at θ ¼ 0 the second solution diverges since

2F1ð1 − m
2
; 3
2
− m

2
;−mþ 1; 0Þ ¼ 1, while the sin−mðθÞ term

diverges. This implies C2 must be set to zero. At θ ¼ π
2

the first solution diverges. This can be argued in the

following way. Note that limz→1−
2
F1ða;b;c;zÞ
ð1−zÞc−a−b ¼ ΓðcÞΓðaþb−cÞ

ΓðaÞΓðbÞ
for ℜðc − a − bÞ < 0. Writing the first solution as,
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z
m
2

ð1 − zÞ12
2F1ð1þ m

2
; 3
2
þ m

2
;mþ 1; zÞ

ð1 − zÞ−3
2

; ð41Þ

one can realize that the solution is divergent at θ ¼ π
2
. Hence

C1 has to be set to zero. As expected for homogeneous
spaces the only solution is the trivial one.
Now we will solve the inhomogeneous equation. By

substituting C≡ ð1
3
þ β2γ2Þ 1

z3
0

, D≡ ð1
3
Þ 1
z3
0

, B≡ βγ2 1
z3
0

, and
writing R3 ≡ R3

z3
0

, the inhomogeneous equation for e1 turns

out to be,

cos2θ∂2
θα

1 þ cos2θ cot θ∂θα
1 þ cot2θ∂2

ϕα
1 − 2α1

¼ R3cos4θ

�
2

3
þ β2γ2

�
þ 5R3sin2θcos4θ

6

þ 5R3β2γ2sin2θcos4θ
4

þ 5R3β2γ2sin2θcos4θ cos 2ϕ
4

;

ð42Þ
and that for e0 reads,

cos2 θ∂2
θα

0 þ cos2 θ cot θ∂θα
0 þ cot2 θ∂2

ϕα
0 − 2α0

¼ 3βγ2R3 cos4 θ sin θ cosϕ ð43Þ
Let us consider the e1 equations first. Note that since the
equation is linear one can find the solutions for individual
terms in the inhomogeneous piece separately. Let us
therefore consider the terms containing no function of ϕ.

∂2
θα

1 þ cot θ∂θα
1 þ cosec2θ∂2

ϕα
1 − 2 sec2θα1

¼ R3cos4θ

�
2

3
þ β2γ2

�
þ 5R3sin2θcos4θ

6

þ 5R3sin2θcos4θβ2γ2

4
ð44Þ

Owing to the fact that the right-hand side of this
equation contains no function of ϕ the only nontrivial
solution to this equation will come fromm ¼ 0. This can be
understood by taking a trial solution of the formP

mðgmðθÞeimϕ þ g−mðθÞe−imϕÞ. If one now lists the equa-
tions for individual m0s, then only the m ¼ 0 equation will
have an inhomogeneous term on the right-hand side, while
the other equations will be all homogeneous. But we have
already shown that the solutions of the homogeneous
equations are trivial. Therefore we only need to solve
the m ¼ 0 equation, which reads,

d2Θ1

dθ2
þ cot θ

dΘ1

dθ
− 2 sec2θΘ1

¼ R3cos2θ

�
2

3
þ β2γ2

�
þ 5R3sin2θcos2θ

6

þ 5R3sin2θcos4θβ2γ2

4
: ð45Þ

The solution to this equation with the conditions that it is
zero at θ ¼ π

2
and regular at θ ¼ 0 is given by,

Θ1 ¼ 1

288
R3 cos2 θð3β2γ2 þ 2Þð3 cos 2θ − 23Þ: ð46Þ

The other equation containing a cos 2ϕ is equivalent to
solving the θ equation for m ¼ 2.

∂2
θΘ1 þ cot θ∂θΘ1 − 4cosec2θΘ1 − 2 sec2 θΘ1

¼ 5R3β2γ2 sin2 θ cos2 θ
4

: ð47Þ

The solution to this equation with conditions as above
yields,

Θ1 ¼ −
1

64
R3β2γ2ðsin 2θÞ2: ð48Þ

The full solution is then,

α1 ¼ 1

288
R3 cos2 θð3β2γ2 þ 2Þð3 cos 2θ − 23Þ

−
1

64
R3β2γ2ðsin 2θÞ2 cos 2ϕ: ð49Þ

Now, we go over to the e0 equation. By similar arguments,
one concludes that the only contribution to the solution will
come from m ¼ 1 term. Therefore, the equation becomes,

∂2
θα

0 þ cot θ∂θα
0 − cosec2θα0 − 2 sec2 θα0

¼ 3βγ2R3 cos2 θ sin θ: ð50Þ

Along with the usual boundary conditions, the solution to
this equation is,

α0 ¼ −
1

4
βγ2R3 sin θ cos2 θ cosϕ: ð51Þ

The very fact that the solution of the above e0 equation is
nontrivial proves the fact that the perturbed minimal surface
ceases to be on a constant t slice as was initially the case
with the unperturbed minimal surface in AdS4 background.
One can also check that setting β ¼ 0, which gives the
static case of an AdS Black Brane, makes α0 vanish.
We are now in a position to calculate the change in area.

We first calculate the first order change in the area. As is
known, at this order there is no contribution from devia-
tions of the minimal surface itself, and therefore at this
order the change must match with that obtained in [26]. The
first order change in HEE(S) for the spherical entangling
surface can be extracted from Eq. (21) and is given by,

Δð1ÞS ¼ 1

4GN
Δð1ÞA ¼ 1

8GN

Z
dd−1τ

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞ

¼ 1

32GN
πR3ð3β2γ2 þ 2Þ 1

z30
: ð52Þ
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The second order variation has contributions from various
terms. The full expression is given by Eq. (25),

Δð2ÞA ¼
Z

dd−1τ
ffiffiffi
h

p
ðhabhcd P

ð1Þ
ð∂b; ∂dÞgðN⊥; Kð∂a; ∂cÞÞ

− habgðCð∂a; ∂bÞ; N⊥ÞÞ

þ
Z

dd−1τ
ffiffiffi
h

p �
hab

2
P
ð2Þ
ð∂a; ∂bÞ

−
1

2
hachbd P

ð1Þ
ð∂a; ∂bÞP

ð1Þ
ð∂c; ∂dÞ

þ 1

4
habhcd P

ð1Þ
ð∂c; ∂dÞP

ð1Þ
ð∂a; ∂bÞ

�
: ð53Þ

Let us analyze the above equation. The last three terms in
the above equation Eq. (49) are the terms coming purely
from the bulk metric perturbations. The first and the second
term arise from changes due change in the embedding
function itself. The N⊥ in the above equation therefore has
to be substituted with the solutions of the Jacobi equation
obtained before and then the integrals calculated. We
therefore enumerate the results one by one. Consider the
last three terms in the above expression which do not
involve the deviation vector.

Z
dd−1τ

ffiffiffi
h

p hab

2
P
ð2Þ
ð∂a;∂bÞ¼−

1

105
πR6ð6β2γ2−1Þ: ð54Þ

The next term is a product of two metric perturbations
gives,

Z
dd−1τ

ffiffiffi
h

p 1

2
hachbd P

ð1Þ
ð∂a; ∂bÞP

ð1Þ
ð∂c; ∂dÞ

¼ 2πR6ð216β4γ4 þ 147β2γ2 þ 49Þ
2835

: ð55Þ

Finally the other term containing a product of two pertur-
bations evaluates to,

Z
dd−1τ

ffiffiffi
h

p 1

4
habhcd P

ð1Þ
ð∂c; ∂dÞP

ð1Þ
ð∂a; ∂bÞ

¼ 2πR6ð108β4γ4 þ 141β2γ2 þ 47Þ
2835

: ð56Þ

Note that the contribution from the first term is zero owing
to the fact that the extrinsic curvature Kð∂a; ∂bÞ is zero in
this case of a spherical boundary subsystem. As we will see
later this term does give nonzero contributions for the case
of a strip subsystem. While calculating the second term, the
N⊥ contained in the term has to be substituted with the
solutions of the inhomogeneous stability equation. After
substitution one obtains,

Z
dd−1τ

ffiffiffi
h

p
habgðCð∂a; ∂bÞ; N⊥Þ

¼ πR6ð459β4γ4 þ β2ð81γ4 þ 597γ2Þ þ 199Þ
1890

: ð57Þ

The total second order change in HEE is then given by,

Δð2ÞS¼ 1

4GN
Δð2ÞA

¼−
πR6

4GN

ð1809β4γ4þ3β2ð81γ2þ713Þγ2þ551Þ
5670

1

z60
:

ð58Þ

This expression gives the second order change of HEE.
Positivity of relative entropy between two states in the CFT
demands that

ΔH ≥ ΔS;

where H is the modular Hamiltonian for the spherical
entangling surface, given in terms of the boundary stress
tensor. One can now check that the equality is satisfied at
the first order [26]. As the modular Hamiltonian remains
unchanged at second order, positivity of relative entropy
demands thatΔð2ÞS ≤ 0 at second order. Our result Eq. (58)
is therefore in agreement with this observation. The full
expression for change of HEE is then given by

ΔS ¼ Δð1ÞSþ 1

2
Δð2ÞS

¼ 1

32GN
πR3ð3β2γ2 þ 2Þ 1

z30

−
πR6

8GN

ð1809β4γ4 þ 3β2ð81γ2 þ 713Þγ2 þ 551Þ
5670

1

z60
ð59Þ

the above expression gives the net change in HEE for
spherical entangling surface, up to second order, for
perturbations over the pure AdS (ground state) value.

B. Thin strip subsystem

We now consider a two dimensional strip like subsystem
on the AdS4 boundary. The subsystem is given by the
region ½−L;L� × ½− l

2
; l
2
� of the x − y plane, where L ≫ l.

The minimal surface corresponding to such a subsystem
[24] is characterized by the following embedding functions,

x¼ λ; yðθÞ¼−z�E
�ðπ−2θÞ

4

����2
�
; zðθÞ¼ z�

ffiffiffiffiffiffiffiffiffi
sinθ

p
;

ð60Þ
where z� is the turning point of the minimal surface in AdS4
and Eðα; βÞ is the incomplete elliptic integral of the second
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kind. Note that due to the condition L ≫ l the effects of the
sides of the minimal surface can be neglected. The
embedding function clearly reflects this approximation.
In intrinsic coordinates the metric takes the form

ds2induced ¼
z�2dθ2 þ 4 sin θdλ2

4z2� sin θ2
; ð61Þ

the range of the coordinates being 0 ≤ θ ≤ π and
−L ≤ λ ≤ L. Further the turning point z� can be written

in terms of the width l of the subsystem as z� ¼ Γð1
4
Þl

2
ffiffi
π

p
Γð3

4
Þ.

We also need to calculate the extrinsic curvature
and the connection in the normal bundle. We again
use a local tetrad adapted to the surface. The two
spacelike bases are chosen such that they are tangent
to the embedded surface. In intrinsic coordinate, they
have the form,

e2 ¼ 2 sin θ∂θ; e3 ¼ z�
ffiffiffiffiffiffiffiffiffi
sin θ

p ∂λ ð62Þ

These are lifted to the full spacetime coordinates and then
by using orthogonality relations one can construct the
bases which span the normal bundle.

e1 ¼ zðsin θ∂z − cos θ∂yÞ; e0 ¼ z∂t: ð63Þ

The covariant derivatives of the normal vectors are
given by,

∇e2e1 ¼ sin θe2; ∇e3e1 ¼ − sin θe3;

∇e2e0 ¼ 0; ∇e3e0 ¼ 0: ð64Þ

From these one can read of the Weingarten maps and
therefore the extrinsic curvatures,

We1ðe2Þ¼−sinθe2; We1ðe3Þ¼ sinθe3;

We0ðe2Þ¼ 0; We0ðe3Þ¼ 0: ð65Þ

We are now in a position to calculate the left-hand hand
side of the Jacobi equation. We expand the deviation
vector as αAeA and then by using the above expressions
we get,

4sin2θ∂2
θα

1 þ 2 sin θ cos θ∂θα
1 þ z�2 sin θ∂2

λα
1

− 2cos2θα1 ¼ F1

4sin2θ∂2
θα

0 þ 2 sin θ cos θ∂θα
0 þ z�2 sin θ∂2

λα
0

− 2α0 ¼ F0: ð66Þ

As before, we first analyze the homogeneous equations
by solving them using separation of variables.

d2Θ1

dθ2
þ 1

2
cot θ

dΘ1

dθ
−
�
1

2
cot2θ þ k2

4 sin θ

�
Θ1 ¼ 0

d2Θ0

dθ2
þ 1

2
cot θ

dΘ0

dθ
−
�
1

2
cosec2θ þ k2

4 sin θ

�
Θ0 ¼ 0

d2Φð0;1Þ

dλ2
þ
�
k
z�

�
2

Φð0;1Þ ¼ 0 ð67Þ

The solution to the θ part is given in terms of the
generalized Heun’s function, and can be shown to yield
trivial solutions under the boundary conditions assumed.
We will now solve the inhomogeneous Jacobi equation
for the strip subsystem for two separate cases,
(1) Strip along “x” boost along “x”: In this case we

consider the width of the strip to be along the y
direction and length along the x direction in boun-
dary of AdS4. The inhomogeneous term for the
Jacobi equation in this case is calculated for
the asymptotic boosted AdS blackbrane geometry
(Appendix B) where the boost is along the x
direction.

(2) Strip along “x” boost along “y”: In this case the
direction of the strip remains unchanged but the
inhomogeneous term is now calculated for the same
geometry but with the boost being along y direction.

Changing the boost direction results in different defor-
mations of the minimal surface. In the first case the surface
remains on the same constant time (t) slice while in the
second case there is a deviation of the surface along the
time direction.

1. Strip along “x” boost along “x”

In this case the e0 equation turns out to be trivial i.e. the
inhomogeneous term is zero in the e0 equation. Hence the
surface remains on the same time slice. The e1 equation is
however nontrivial. Note that since the right-hand side is
not a function of λ, only the k ¼ 0 solution will be
nontrivial, which can be recast into,

d2Θ1

dθ2
þ 1

2
cot θ

dΘ1

dθ
−
�
1

2
cot2θ

�
Θ1

¼ 1

4

�
3Dþ 3C

2

�
z3�ðsin θÞ12 −

7

8
Dz3�ðsin θÞ52; ð68Þ

where expressions for C, D can be found in Appendix B.
The homogeneous solutions for this is,

Θ1
cðθÞ ¼

C1 cos θffiffiffiffiffiffiffiffiffi
sin θ

p þ C2 sin θ2F1

�
1

4
; 1;

1

2
; cos2θ

�
; ð69Þ

and the Wronskian isWðθÞ ¼ e−
1
2

R
cotðθÞdθ ¼ 1ffiffiffiffiffiffiffi

sin θ
p . The full

solution is then Θ1
c þ Θ1

p, where,
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Θ1
p ¼ −

cosðθÞffiffiffiffiffiffiffiffiffiffiffiffi
sinðθÞp

Z
θ
�
1

4

�
3Dþ 3C

2

�
z3�ðsin θÞ12

−
7

8
Dz3�ðsin θÞ52

�
ðsin θ0Þ32×2F1

�
1

4
; 1;

1

2
; cos2θ0

�
dθ0

þ sin θ2F1

�
1

4
; 1;

1

2
; cos2θ

�

×
Z

θ
�
1

4

�
3Dþ 3C

2

�
z3�ðsin θÞ12 −

7

8
Dz3�ðsin θÞ52

�

× cosðθ0Þdθ0: ð70Þ

It is not possible to get an analytical form of the integral
involving the hypergeometric function. However since
certain definite integrals are known for hypergeometric
function, we hope that the final integral involving the
change in area can be obtained by doing an integration by
parts. To evaluate the integration constants we put the
boundary condition Θ ¼ 0 at θ ¼ 0 and θ ¼ π. On
demanding these the values of the constants turn out to

be C1 ¼ πz3�
16

ð2CþDÞ and C2 ¼ − Γð1
4
Þ2z3�ð2CþDÞ
16

ffiffiffiffi
2π

p .

We now go over to the calculation of the integrals for
calculating the change of area. Before calculating the terms
involving the deviation vector, we first evaluate the ones
involving the metric perturbations only. The first order
change in HEE is,

Δð1ÞS ¼ 1

4GN
Δð1ÞA ¼ 1

8GN

Z
dd−1τ

ffiffiffi
h

p
hab P

ð1Þ
ð∂a; ∂bÞ

¼ 2L
32GN

πz2�ð2CþDÞ ¼ 2L × l2

4GNz30

ð1þ 2β2γ2ÞΓð1
4
Þ2

32Γð3
4
Þ2 ;

ð71Þ

which again matches with the results obtained in [27,28].
As before the last three terms in the second variation
formula are,

Z
dd−1τ

ffiffiffi
h

p hab

2
P
ð2Þ
ð∂a; ∂bÞ ¼

2L × π3=2c5ð7C0 þ 5D0Þ
21

ffiffiffi
2

p
Γð3

4
Þ2 :

ð72Þ

The next term which involves the product of
perturbations is,

Z
dd−1τ

ffiffiffi
h

p 1

2
hachbd P

ð1Þ
ð∂a; ∂bÞP

ð1Þ
ð∂c; ∂dÞ

¼ 2L × z5�Kð12Þð77C2 þ 45D2Þ
231

ffiffiffi
2

p : ð73Þ

Finally we have the term

Z
dd−1τ

ffiffiffi
h

p 1

4
habhcd P

ð1Þ
ð∂c; ∂dÞP

ð1Þ
ð∂a; ∂bÞ ¼

2L ×
ffiffiffi
π

p
z5�Γð54Þð77C2 þ 110CDþ 45D2Þ

462Γð3
4
Þ : ð74Þ

Now we go over to the other integrals. Consider the term,

Z
dd−1τ

ffiffiffi
h

p
ðhabhcd P

ð1Þ
ð∂b; ∂dÞgðN⊥; Kð∂a; ∂cÞÞ − habgðCð∂a; ∂bÞ; N⊥ÞÞ

¼
Z

L

−L

Z
π

0

1

2z�sin
3
2θ

�
z3�

�
3C
2

þ 3D

�
sin

5
2θ −

7

2
z3�Dsin

9
2θ

�
Θ1dθdλ: ð75Þ

Note that Θ1 contains two terms. One that does not have an analytical form and the other which does. Lets write these as

Θ1 ¼ − cosðθÞffiffiffiffiffiffiffiffiffiffiffi
2 sinðθÞ

p R
θ
0 fðθ0Þdθ0 þGðθÞ þ Θ1

cðθÞ. Therefore the above integral becomes,

Z
L

−L

Z
π

0

1

2z�sin
3
2θ

�
z3�

�
3C
2

þ 3D

�
sin

5
2θ −

7

2
z3�Dsin

9
2θ

��
−

cosðθÞffiffiffiffiffiffiffiffiffiffiffiffi
sinðθÞp

Z
θ

0

fðθ0Þdθ0 þGðθÞ þ Θ1
c

�
dθdλ: ð76Þ

Note that the GðθÞ integral can be obtained easily and evaluates to,

2L×
ffiffiffi
π

p
z5�Γð94Þð77C2þ110CDþ29D2Þ

352Γð11
4
Þ : ð77Þ

The complementary part of the solution gives,
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−
2L
64

ffiffiffi
π

2

r
z5�Γ

�
1

4

�
2

ð2CþDÞ2: ð78Þ

The other integral is of the form
R
π
0 ðgðθÞ R θ

0 fðθ0Þdθ0Þdθ and can be evaluated by parts,Z
π

0

gðxÞ
Z

x

0

fðx0Þdx0dx ¼
��Z

x

0

fðx0Þdx0
��Z

gðxÞdx
��

π

0

−
Z

π

0

fðxÞ
Z

gðx0Þdx0dx: ð79Þ

The first term in the above expression does not contribute, while the second term reproduces the number obtained for GðθÞ.
The total variation Δð2ÞS is then given as,

Δð2ÞS ¼ 1

4GN
Δð2ÞA ¼ 2L × l5

z60

Γð1
4
Þ5

Γð3
4
Þ7
ð−84ðπ − 1Þβ4γ4 þ 28ð4 − 3πÞβ2γ2 þ ð48 − 21πÞÞ

21504 × 4GN

ffiffiffi
2

p
π

ð80Þ

This expression gives the second order change of HEE. As in the case of circular disk, the positivity of relative entropy
demands that Δð2ÞA ≤ 0. This can be checked through a plot of Δð2ÞA against β (See Fig. 1). The whole expression is
negative (at β ¼ 0) and monotonically decreasing as β increases. The change ΔS or the plot cannot however be trusted for
large values of β, since one needs to add further higher order corrections to the change for large β.
The full expression for change of HEE is then given by

ΔS¼Δð1ÞSþ1

2
Δð2ÞS¼ 2L× l2

4GNz30

ð1þ2β2γ2ÞΓð1
4
Þ2

32Γð3
4
Þ2 þ2L× l5

2×z60

Γð1
4
Þ5

Γð3
4
Þ7
ð−84ðπ−1Þβ4γ4þ28ð4−3πÞβ2γ2þð48−21πÞÞ

4GN ×21504
ffiffiffi
2

p
π

ð81Þ

the above expression gives the net change in HEE for strip entangling surface up to second order over pure AdS(ground
state) value. It is important to note that this expression exactly matches with the expression obtained in [27].

2. Strip along “x” boost along “y”

In this case all the integrals for e1 are same as that of the previous case with C,D replaced by C̃, D̃ and C0,D0 replaced by
C̃0; D̃0 (see Appendix B). However in this case the nonhomogeneous part of the e0 equation is nontrivial. Hence the extremal
surface does not remain on the same time slice. The equation is,

4 sin2 θ∂2
θα

0 þ 2 sin θ cos θ∂θα
0 þ z�2 sin θ∂2

λα
0 − 2α0 ¼ −3z3�ðsin θÞ52B cos θ; ð82Þ

which following the previous arguments reduces to solving only the equation,

d2Θ0

dθ2
þ1

2
cotθ

dΘ0

dθ
−
1

2
cosec2θΘ0 ¼−

3

4
z3�ðsinθÞ12Bcosθ: ð83Þ

FIG. 1. Plot of Δð2ÞA vs β for strip along x boost along x.
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The solutions of this can be obtained in a straightforward
manner and therefore we do not have to resort to efforts
made in the previous section. The full solutions turns out to
be of the form,

Θ0¼ −B̃z3�θ
4

ffiffiffiffiffiffiffiffiffi
sinθ

p þ B̃z3� sin2θ
8

ffiffiffiffiffiffiffiffiffi
sinθ

p −
2C1Eð14ðπ−2θÞj2Þffiffiffiffiffiffiffiffiffiffiffiffi

sinðθÞp þ C2ffiffiffiffiffiffiffiffiffiffiffiffi
sinðθÞp :

ð84Þ

Imposing the conditions Θ ¼ 0 at θ ¼ 0 and θ ¼ π, fixes
C1 and C2, the solutions of which are,

C1 ¼
πB̃z3�

8
ffiffiffi
2

p ð2Eð1
2
Þ − Kð1

2
ÞÞ ; C2 ¼

1

8
πB̃z3�; ð85Þ

where KðαÞ and EðαÞ are the complete elliptic integral of
the first and second kind respectively. The contributions
coming from the component α1 of the deviation vector turns
out to be same as that in the previous section with C, D
replaced by C̃, D̃ and C0, D0 replaced by C̃0; D̃0. The only
other contribution different from the previous case comes
from −TrðCÞ for the component α0 of the deviation vector
and evaluates to,

2Lπ3=2ð21π − 80ÞB2z5�
336

ffiffiffi
2

p
Γð3

4
Þ2 : ð86Þ

Total variation Δð2ÞS without the previous term is then
given by,

Δð2ÞS ¼ 2L × l5

4GNz60

Γð1
4
Þ5

Γð3
4
Þ7
�ð20 − 21πÞβ4γ4 þ 2ð40 − 21πÞβ2γ2 þ 2ð21π − 80Þβγ4 þ ð48 − 21πÞ

21504
ffiffiffi
2

p
π

�
: ð87Þ

As in the previous case Δð2ÞA ≤ 0. This can be checked by
plotting Δð2ÞS against β (see Fig. 2). It is negative and
monotonically decreasing as a function of β. It is important to
note that the boost independent term in the expression for
Δð2ÞS for both the cases is same. Setting boost to zero makes
both the cases identical to AdS black brane geometry.

The first order change in HEE is given by

Δð1ÞS ¼ 1

4GN
Δð1ÞA ¼ 2L × l2

4GNz30

ð1þ β2γ2ÞΓð1
4
Þ2

32Γð3
4
Þ2 : ð88Þ

Thus the full expression for change in HEE is then given by

ΔS ¼ Δð1ÞSþ 1

2
Δð2ÞS ¼ 2L × l2

4GNz30

ð1þ β2γ2ÞΓð1
4
Þ2

32Γð3
4
Þ2

þ 2L × l5

8GNz60

Γð1
4
Þ5

Γð3
4
Þ7
�ð20 − 21πÞβ4γ4 þ 2ð40 − 21πÞβ2γ2 þ 2ð21π − 80Þβγ4 þ ð48 − 21πÞ

21504
ffiffiffi
2

p
π

�
ð89Þ

FIG. 2. Plot of Δð2ÞA vs β for strip along x boost along y.
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the above expression gives the net change in HEE for strip
entangling surface up to second order over pure AdS
(ground state) value.

VII. ISSUES OF GAUGE DEPENDENCE

The Φλ’s in Sec. III are called the identification maps. It
encodes the information about how points in the perturbed
and the unperturbed space times are to be identified. The
notion of gauge transformation can be shown to arise due to
different choices of the Φλ’s. It is evident that the
identification maps can be so chosen that the location of
the perturbed minimal surface in the unperturbed spacetime
is same as that of the unperturbed minimal surface. This is
precisely the interpretation of the Hollands-Wald gauge
[29] used in [14,30,31]. But it seems that this in general can
be done at any order of perturbation and not just at the
linear order. Further, it seems that by choice of such a gauge
one renders the inhomogeneous term, in the Jacobi equa-
tion obtained, trivial and therefore irrelevant. We must
emphasize that this is not the case. In order to find the
Hollands Wald gauge (at linear order) one has to solve a
linear second order differential equation which is precisely
the inhomogeneous Jacobi equation. This has also been
pointed out in [32]. Therefore choosing the Hollands-Wald
gauge does not trivialize the problem of finding the change
in area. However, it is absolutely possible that the Holland-
Wald gauge is a convenient choice if one tries to find
identities that the higher order perturbations of the area
functional satisfy or finding relations between two gauge
independent quantities like the “Fisher information” and
the canonical energy [14].
Having discussed this it is quite viable to state that the

inhomogeneous equation is gauge covariant. In other
words any gauge transformation of the metric perturbation
can be absorbed in a shift of the deviation vector itself.
This is a quite plausible conclusion that follows from the
following lemma due to [23]. The linear perturbation Q1

of a quantity Q0 on ðM; gÞ is gauge invariant if and only if
one of the following holds: (i) Q0 vanishes, (ii) Q0 is a
constant scalar, (iii) Q0 is a constant linear combination of
products of Kronecker deltas. In our case Q0 is the mean
curvature (H) of the extremal surface in the background
spacetime and hence is identically zero. However there is a
subtle issue in application of the above lemma in our case.
The quantities Q defined in the lemma are globally
defined while H is locally defined on a codimension
two surface. The expression for the second variation of the
area functional is however invariant under different
choices of Φλ∶ M → Mλ.

VIII. CONCLUSION

A few comments about higher order perturbations are in
order. As is usual with any perturbation theory, the
homogeneous part of the second order perturbation

equation would be same as the Jacobi equation.
However the inhomogeneous term will now depend both
on second order perturbations as well as first order
deviations. Note the second order deviation vector M
(say), can always be taken to commute with N owing to
the fact that they represent independent variations. Since
the normal bundle is two dimensional one can have at most
two mutually commuting directions. Hence it seems that
the perturbation will terminate at second order and the
complete change of entanglement entropy can be obtained
by exponentiating this change. However this is speculative
and requires further investigation. We have presented a
systematic approach to obtain the change in HEE up to
second order. For simplicity we have calculated this in 4-
dimensions but the approach remains unchanged in higher
dimensions. The inhomogeneous Jacobi equation and
second variation of the area functional presented here
can be applied to non AdS geometries also. In fact the
Jacobi operator simplifies for the asymptotically flat case.
We have seen that second order change receives contribu-
tions from first order changes in the embeddings and
second order change of the bulk metric. In this approach
the nature of the flow of the extremal surface can be
understood by looking at the components of the deviation
vector. Further, having obtained the second variation one
can check if it satisfies more general entropy bounds
[33–36] or has any relation with geometric inequalities
[37] in general. This is expected following [38] where a
precise notion of such bounds in a quantum field theory
was given in terms of the relative entropy.
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subsystems, with boosted black brane like perturbations
and evaluate the area variation upto second order.

APPENDIX A: REVISITING THE DERIVATION
OF THE INHOMOGENEOUS JACOBI

EQUATION FOR GEODESICS

To make sure that in the notation used, the equation we
have obtained, is indeed the correct equation we are looking
for, we will rederive the inhomogeneous Jacobi equation,
for geodesics, obtained in [16].
Note that the geodesic equation can be written as

ð∇TTÞ⊥ ¼ 0 (where T is the tangent vector to the geodesic
and satisfies ∇TT ¼ fT). We will consider a variation of
the geodesic under δN. The variation accounts for both
change of embeddings and metric perturbations.

δNð∇TTÞ⊥ ¼ δNð∇TTÞ − δNð∇TTÞT
¼ ∇2

TN þ RðN; TÞT þ CðT; TÞ
−∇NðfTÞ − δgðfÞT: ðA1Þ

Our convention implies that δPð∇XYÞ ¼ CðX; YÞ. Noting
that f ¼ gð∇TT;TÞ

gðT;TÞ , we can find the variation δgf. After a few

algebraic steps one gets the following expression,

δPf ¼ gðCðT; TÞ; TÞ
gðT; TÞ : ðA2Þ

Also note that,

∇Nf ¼ gð∇2
TN; TÞ

gðT; TÞ −
fgð∇TN; TÞ
gðT; TÞ : ðA3Þ

Substituting (A2) and (A3) in (A1) we get

δNð∇TTÞ⊥ ¼ ∇2
TN − ð∇2

TNÞT þ RðN⊥; TÞT
− ðf∇TN − fð∇TNÞTÞ þ CðT; TÞ⊥: ðA4Þ

Equating the above to zero gives the inhomogeneous
equation,

∇2
TN

⊥ þ RðN⊥; TÞT − f∇TN⊥ þ CðT; TÞ⊥ ¼ 0: ðA5Þ

In [16] the unperturbed geodesic was taken to be affinely
parametrized. Therefore putting f ¼ 0 in the above equa-
tion reproduces the equation obtained.

APPENDIX B: BOOSTED BLACK BRANE
AS A PERTURBATION OVER AdS

The boosted black brane metric in holographic coordi-
nates is of the following form

ds2¼R2

z2

�
−AðzÞdt2þBðzÞdx2þCðzÞdtdxþdx2þ dz2

fðzÞ
�
;

ðB1Þ

where,

AðzÞ ¼ 1 − γ2
�
z
z0

�
3

; BðzÞ ¼ 1þ β2γ2
�
z
z0

�
3

;

CðzÞ ¼ 2βγ2
�
z
z0

�
3

; fðzÞ ¼ 1 −
�
z
z0

�
3

:

z0 is the location of the horizon and 0 ≤ β ≤ 1 is the boost
parameter, while γ ¼ 1ffiffiffiffiffiffiffiffi

1−β2
p . With the boost along x

direction. The boosted black brane is a finite change from
AdS and hence cannot be observed as a perturbation over it.
In order to see it as a perturbation over AdS, we have to
write it in suitable asymptotic (Fefferman Graham) coor-
dinates. The Fefferman Graham coordinates are obtained
by demanding [42,43]

dz

z
ffiffiffiffiffiffiffiffiffi
fðzÞp ¼ dρ

ρ
ðB2Þ

Integrating this and setting the integration constant to
ðρ03 ¼ 4z03Þ we get

1

z2
¼ 1

ρ2

�
1þ

�
ρ

ρ0

�
3
�4

3 ¼ 1

ρ2
gðρÞ43 ðB3Þ

Now we expand the metric coefficient up to second order in
ð ρρ0Þ3. Substituting this back in the metric we get

ds2 ¼ R2

ρ2
½dρ2 þ ðημν þ ρ3γð3Þμν þ ρ6γð6Þμν Þdxμdxν� ðB4Þ

where

γð3Þμν ¼

2
6666664

−
�
1
3
− γ2

	�
1
z0

	
3

βγ2
�

1
z0

	
3

0

βγ2
�

1
z0

	
3

�
1
3
þ β2γ2

	�
1
z0

	
3

0

0 0 1
3

�
1
z0

	
3

3
7777775
:

ðB5Þ

One can check that Trðγð3Þμν Þ ¼ 0 and
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γð6Þμν ¼

2
666664

−
�
2
9
þ 8

3
γ2
	

1
16z06

− 1
6
βγ2

�
1
z0

	
6

0

− 1
6
βγ2

�
1
z0

	
6

�
2
9
− 8

3
β2γ2

	
1

16z06
0

0 0 2
9

1
16z06

3
777775
: ðB6Þ

The perturbation P
ð1Þ

μν and P
ð2Þ

μν can be read off as, P
ð1Þ

μν ¼ γð3Þμν z and 1
2
P
ð2Þ

μν ¼ γð6Þμν z4 respectively. To calculate the
nonhomogeneous term in the Jacobi equation, we need the expression forCð∂μ; ∂νÞ, which in a given coordinate system can
be written as,

Cμ
νρðxÞ ¼ 1

2
gμσð∂νP

ð1Þ
ρσ þ ∂ρP

ð1Þ
νσ − ∂σP

ð1Þ
νρÞ −

1

2
P
ð1Þμσ

ð∂νgρσ þ ∂ρgνσ − ∂σgνρÞ: ðB7Þ

Note that this quantity is a vector field in the tangent bundle and therefore its coordinate expression has three indices. We
will calculate this for boosts both in the x direction and the y direction. Note that though the direction of the boost does not
affect the results for a spherical boundary subsystem, it does so for the strip subsystem. In the Fefferman graham gauge the
expression for Cð∂μ; ∂νÞ.
For boost along the x axis, the expression for P

ð1Þ
ð∂μ; ∂νÞ and P

ð2Þ
ð∂μ; ∂νÞ is of the following form.

P
ð1Þ

μν ¼

0
BBB@

Az Bz 0 0

Bz Cz 0 0

0 0 Dz 0

0 0 0 0

1
CCCA

1

2
P
ð2Þ

μν ¼

0
BBB@

A0z4 B0z4 0 0

B0z4 C0z4 0 0

0 0 D0z4 0

0 0 0 0

1
CCCA:

The quantity Cμ
νρ can be calculated from Eq. (B7),

Cz
t t ¼ −

1

2
z2A; Cz

x t ¼ −
1

2
z2B; Ct

z t ¼ −
3

2
z2A; Cx

z t ¼
3

2
z2B

Cz
t x ¼ −

1

2
z2B; Cz

x x ¼ −
1

2
z2C; Ct

z x ¼ −
3

2
z2B; Cx

z x ¼
3

2
z2C

Cz
yy ¼ −

1

2
z2D; Cy

z y ¼
3

2
z2D; Ct

t z ¼ −
3

2
z2A; Cx

t z ¼
3

2
z2B

Ct
x z ¼ −

3

2
z2B; Cx

x z ¼
3

2
z2C; Cy

y z ¼
3

2
z2D; ðB8Þ

whereC,D can be read off from the previous expression for P’s and γ’s Eq. (B5) and is given asC ¼ ð1
3
þ β2γ2Þ 1

z3
0

; D ¼ 1
3
1
z3
0

.

The components of 1
2
P
ð2Þ

μν will be C0, D0 and is given as C0 ¼ ð2
9
− 8

3
β2γ2Þ 1

16z06
; D0 ¼ 2

9
1

16z06
.

For boost along the y axis, P
ð1Þ
ð∂μ; ∂νÞ and P

ð2Þ
ð∂μ; ∂νÞ is of the form,

P
ð1Þ

μν ¼

0
BBB@

Ãz 0 B̃z 0

0 C̃z 0 0

B̃z 0 D̃z 0

0 0 0 0

1
CCCA

1

2
P
ð2Þ

μν ¼

0
BBB@

Ã0z4 0 B̃0z4 0

0 C̃0z4 0 0

B̃0z4 0 D̃0z4 0

0 0 0 0

1
CCCA:
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The quantity Cμ
νρ is therefore,

Cz
t t ¼ −

1

2
z2Ã; Cz

y t ¼ −
1

2
z2B̃; Ct

z t ¼ −
3

2
z2Ã; Cy

z t ¼
3

2
z2B̃

Cz
x x ¼ −

1

2
z2C̃; Cx

z x ¼
3

2
z2C̃; Cz

t y ¼ −
1

2
z2B̃; Cz

y y ¼ −
1

2
z2D̃

Ct
z y ¼ −

3

2
z2B̃; Cy

z y ¼
3

2
z2D̃; Ct

t z ¼ −
3

2
z2Ã; Cy

t z ¼
3

2
z2B̃

Cx
x z ¼

3

2
z2C̃; Ct

y z ¼ −
3

2
z2B̃; Cy

y z ¼
3

2
z2D̃ ðB9Þ

where C̃ ¼ 1
3
ð 1z0Þ3; D̃ ¼ ð1

3
þ β2γ2Þð 1z0Þ3; C̃0 ¼ 2

9
1

16z06
; D̃0 ¼ ð2

9
− 8

3
β2γ2Þ 1

16z06
; B ¼ B̃ ¼ βγ2ð 1z0Þ3. This completes our first

step in calculation of area, now we can proceed with solving the inhomogeneous Jacobi equation.
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