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The long-range electronic correlations in a uniform electron gas may be deduced from the random-
phase approximation (RPA) of Bohm and Pines. Here we generalize the RPA to nonuniform systems
and use it to derive many-electron Slater-Jastrow trial wave functions for quantum Monte Carlo sim-
ulations. The RPA theory fixes the long-range behavior of the inhomogeneous two-body terms in the
Jastrow factor and provides an accurate analytic expression for the one-body terms. It also explains
the success of Slater-Jastrow trial functions containing determinants of Hartree-Fock or density-
functional orbitals, even though these theories do not include Jastrow factors. After adjusting the
RPA Jastrow factor to incorporate the known short-range behavior, we test it using variational
Monte Carlo. In the small inhomogeneous electron gas system we consider, the analytic RPA-based
Jastrow factor slightly outperforms the standard numerically optimized form. The inhomogeneous
RPA theory therefore enables us to reduce or even avoid the costly numerical optimization process.

PACS: 71.10.Ca, 71.45.Gm, 02.70.Lq

I. INTRODUCTION

This paper discusses approximate ground-state wave
functions for inhomogeneous interacting many-electron
systems such as solids. In particular, we consider wave
functions of the Slater-Jastrow type, Ψ = eJD, where
D is a Slater determinant and J , the Jastrow factor,
takes account of the electronic correlations. Our aim is
to understand the surprisingly accurate results obtained
when Slater-Jastrow trial functions are used in varia-
tional quantum Monte Carlo (VQMC) simulations1,2 of
weakly-correlated solids such as silicon. Despite the ap-
parent simplicity of the Slater-Jastrow form, cohesive
energies calculated using VQMC are typically an order
of magnitude more accurate3–7 than cohesive energies
obtained using Hartree-Fock (HF) or density-functional
theory within the local density approximation (LDA).8

This is not the place for a general introduction to
VQMC (see Hammond et al.2 and Foulkes et al.9 for
reviews), but a brief sketch may be helpful. The idea
is to obtain an approximate many-electron ground state
by numerically optimizing an explicit parametrized trial
wave function. The multi-dimensional integrals that give
expectation valus are then evaluated using Monte Carlo
integration,10 which scales much more favorably with the
dimension than grid-based integration methods.

The trial wave functions used in most QMC simula-
tions contain a Slater determinant of LDA or HF or-
bitals and a Jastrow factor that includes pairwise correla-
tion terms, uσi,σj (ri, rj), and one-electron terms, χσi(ri),
where ri and σi are the position and spin component
of electron i. In simulations of solids, it is common
to simplify the Jastrow factor by insisting that u be
both homogeneous and isotropic (i.e., uσi,σj (ri, rj) is as-

sumed to depend only on the interelectronic distance
rij = |ri − rj |). This approximation works remarkably
well, even in strongly inhomogeneous solids. The u and
χ functions are usually obtained by optimizing specific
parametrized functional forms according to the varia-
tional principle.

In this paper we derive a physically-motivated inhomo-
geneous and anisotropic Jastrow factor for nonuniform
systems, based on a generalization of the random-phase
approximation (RPA) of Bohm and Pines.11 This enables
us to reduce or even dispense with the time-consuming
optimization procedure.

The RPA theory of the homogeneous electron gas11 is
often quoted in discussions of Jastrow factors for QMC
simulations.12 Although complicated to derive, the ho-
mogeneous RPA has played a central part in the theory
of many-electron systems for almost 50 years and has
a wide range of applications. In the QMC context, it
predicts that the u function should decay like 1/rij for
large rij , but says nothing about the χ function (which
is zero in a homogeneous system) or the short-range be-
havior of u. Although it is easy to modify the u function
to make it have the correct cusp-like behavior at short
range, the absence of χ terms implies that the homoge-
neous RPA Jastrow factor produces inaccurate densities,
and hence poor energies, when used in strongly inhomo-
geneous systems. This problem is usually fixed by adding
a parametrized χ function and optimizing the parameters
numerically.3

Here, we generalize the RPA theory to inhomogeneous
systems (we have recently learned of some unpublished
work along similar lines by Fahy and coworkers). The
potential applications of the inhomogeneous RPA are at
least as numerous as those of the homogeneous RPA, and
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so we view this derivation as a central part of the paper.
In the homogeneous limit, our approach reduces to that
of Bohm and Pines,11 although with some improvements.
In particular, we provide a clearer understanding of the
so-called subsidiary condition.

We then apply the inhomogeneous RPA theory to
the construction of trial functions for QMC simulations.
Some of the results we obtain have been discussed previ-
ously by Malatesta13 and Fahy,14 who used simple phys-
ical arguments to propose a relationship between the u
and χ functions. Although these authors pointed out the
link to the RPA, they made no attempt to derive it. Here
we provide a derivation. Furthermore, the theory we de-
velop gives a complete prescription for u and χ, not just
a relationship between them.

The most obvious consequence of the inhomogeneous
RPA theory is that it produces a truly inhomogeneous
and anisotropic correlation term. The short-range be-
havior of the inhomogeneous RPA u function is no better
than that of the homogeneous version, but is more diffi-
cult to correct. We impose the required short-range cusps
using a k-space method which, although approximate,
works well. Although the inhomogeneities of the RPA u
function are significant, the imposition of the cusp con-
ditions makes the u function much more homogeneous.
This explains why Slater-Jastrow trial functions incor-
porating homogeneous u functions describe real solids so
well.

Another interesting aspect of the inhomogeneous RPA
theory is that it provides a justification for using Slater
determinants consisting of LDA or HF orbitals. This is
common practice but is not obviously correct: one might
guess that the HF orbitals that are optimal in the absence
of a Jastrow factor would no longer be accurate in its
presence. In fact, the RPA theory shows that HF or
LDA orbitals are close to optimal whether or not an RPA
Jastrow factor is present.

We test our inhomogeneous RPA Jastrow factor by
carrying out VQMC calculations for a strongly inhomo-
geneous electron gas. We find that the inhomogeneous
RPA χ function is of such high quality that there is no
need to resort to the standard but costly numerical opti-
mization methods. The small inhomogeneities remaining
in the u function after the cusp conditions have been im-
posed produce a relatively small improvement, but the
LDA is so accurate that even this small improvement is
∼15% of the difference between the LDA and VQMC
ground-state energies. Since the LDA sets the standard
that VQMC calculations are supposed to surpass, such a
change is physically significant. Other work15,16 suggests
that inhomogeneous u functions are somewhat more ef-
fective in full core atoms and molecules.

In summary, the five main results of this paper are:

1. We have extended the RPA to inhomogeneous sys-
tems.

2. We have used the inhomogeneous RPA and the
cusp conditions to generate accurate inhomoge-

neous Jastrow factors without numerical optimiza-
tion. This approach yields a complete, parameter-
free prescription for the u and χ functions, not just
a relationship between them.

3. We have explained why Slater-Jastrow-type wave
functions containing LDA or HF orbitals work so
well, and why the use of homogeneous u functions
is often sufficient even in strongly inhomogeneous
systems.

4. We have developed a method for imposing cusps on
inhomogeneous Jastrow factors.

5. We have tested the analytic RPA Jastrow factor in
a strongly inhomogeneous electron gas, and found
that it slightly outperforms standard numerically
optimized Jastrow factors.

The rest of this paper is organized as follows. In Sec. II
we describe the Slater-Jastrow trial wave functions used
in most QMC simulations of atoms, molecules, and solids.
Sec. III presents the RPA theory of the inhomogeneous
electron gas, and Sec. IV explains how it leads to Slater-
Jastrow trial wave functions containing both χ terms and
inhomogeneous u terms. Sec. V discusses the results of
the VQMC simulations we have done to test the inhomo-
geneous RPA Jastrow factor, Sec. VI discusses computa-
tional issues, and Sec. VII concludes.

II. TRIAL WAVE FUNCTIONS FOR QMC
SIMULATIONS

The aim of this paper is to provide a better physi-
cal understanding of the success of the Slater-Jastrow
trial wave functions used in many QMC calculations of
atoms, molecules, and weakly correlated solids. A Slater-
Jastrow trial function is the product of a totally anti-
symmetric Slater determinant D and a totally symmetric
Jastrow factor eJ . When dealing with spin-independent
Hamiltonians, the Slater determinant may be split into
two smaller determinants, one for each spin value:

Ψ = eJD↑D↓ . (2.1)

This reduces the numerical complexity without loss of
generality.17 The orbitals used inD↑ andD↓ are normally
obtained from LDA or HF calculations.

The Slater determinants build in exchange effects but
neglect the electronic correlations caused by the Coulomb
interactions. The most important correlation effects,
which occur when pairs of electrons approach each other,
may be included by choosing a pairwise Jastrow factor
of the form:

J =
1

2

∑

i,j

uσiσj (ri, rj) . (2.2)
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The correct short range behaviour of the two-body term
can be enforced by introducing spin dependent cusp
conditions18,19 on uσiσj :

∂u↑↓(ri, rj)
∂rij

∣∣∣∣
rij=0

=
1

2
,

∂u↑↑(ri, rj)
∂rij

∣∣∣∣
rij=0

=
1

4
. (2.3)

These ensure that the local energy EL = ĤΨ/Ψ, which is
the quantity actually sampled in the simulation, does not
diverge as rij approaches zero. (Except where otherwise
stated, we use Hartree atomic units, h̄ = e = 4πε0 =
me = 1, throughout this paper.)

Because the LDA or HF orbitals in D↑ and D↓ already
give a reasonably good approximation to the density, the
introduction of a two-body u function usually causes the
density of the many-electron wave function to deterio-
rate. As a result the trial energy deteriorates too. It
is therefore necessary to introduce one-body χ terms to
adjust the Jastrow factor:

eJ = exp


1

2

∑

i,j

uσiσj (ri, rj) +
∑

i

χσi(ri)


 . (2.4)

Note the sign conventions here: our definition of u is
the negative of that used by many other authors. Most
authors also omit the diagonal i = j terms in the sum
over i and j. In homogeneous systems the diagonal terms
only affect the normalization of the trial function, while
in inhomogeneous systems they add one-body contribu-
tions that may be accounted for by redefining χσ(r).

Since we are using periodic boundary conditions, it is
often convenient to express the χ function, the electron
density, and the Jastrow factor in reciprocal space. We
use symmetric definitions of the Fourier transformations,

f(k) =
1√
V

∫

V

f(r)eik·rd3r , (2.5)

g(k,k′) =
1

V

∫

V

eik·rg(r, r′)e−ik
′·r′d3rd3r′, (2.6)

with back transformations f(r) = V −1/2
∑

k f(k)e−ir·k

and g(r, r′) = V −1
∑

k,k′ e
−ir·kg(k,k′)eir

′·k′ .
Several different types of Jastrow factor are in com-

mon use, the best known of which12 is based on the RPA
of Bohm and Pines.11 Others are based on the RPA in
the form due to Gaskell20 or the Fermi hypernetted chain
approximation.21 For extra accuracy, most Jastrow fac-
tors incorporate a number of variational parameters that
are optimized numerically.22,23

A. The homogeneous RPA correlation term

As will be explained in Sec. IV, the RPA theory of
Bohm and Pines11 suggests that the long-range behavior
of the correlation term u in a homogeneous electron gas
of number density n should take the form:

uσiσj (ri, rj) = uσiσj (rij ) = − 1

ωprij
, (2.7)

where ωp =
√

4πn is the plasma frequency. This spin-
independent two-body term has no cusp and is only ex-
pected to be correct for large rij . Multiplying Eq. (2.7)
by 1− exp(−rij/Fσiσj ) yields

uσiσj (rij) = − 1

ωprij

(
1− e−rij/Fσiσj

)
, (2.8)

which approaches Eq. (2.7) for large rij and also has the
correct cusp behavior if Fσiσj is chosen appropriately.

B. The χ function

The χ function needed to counteract the density-
altering effects of the u function is normally obtained by
numerical optimization. To avoid this costly procedure
we can use the result of Sec. III and include a one-body
term of the form:

χσ(k) = −
∑

k′,σ′

uσσ′ (k,k
′)nσ′(k

′) . (2.9)

If the u function is homogeneous, uσσ′(r, r
′) = uσσ′(r −

r′), this reduces to

χσ(k) = −
√
V
∑

σ′
uσσ′(k)nσ′ (k) (2.10)

as derived by Malatesta.et al.13 Strictly speaking, how-
ever, the u function is only homogeneous when the elec-
tron density is homogeneous, and hence when χ = 0.

III. THE RANDOM-PHASE APPROXIMATION
FOR INHOMOGENEOUS SYSTEMS

This section generalizes the standard RPA treatment
of homogeneous systems11,24,25 to inhomogeneous sys-
tems. As we are interested in describing the long-range
correlations due to the electron-electron interaction, we
wish to make a connection between the Hamiltonian and
the long wavelength density fluctuations known as plas-
mons. Our eventual aim is to split the Hamiltonian into
an electronic term with short-range interactions and a
plasmon term that is only weakly coupled to the elec-
trons. Once the electron and plasmon parts of the Hamil-
tonian have been (almost) decoupled in this way, we shall
see that the long-range correlations are described by the
ground-state wave function of the plasmon part, which is
simply a set of quantum mechanical harmonic oscillators.
At shorter wavelengths the plasmons are not well defined
and the collective plasmon description of electronic cor-
relation ceases to be valid. Instead, the electrons feel a
short-range screened interaction that produces additional
electron-electron scattering-like correlations.
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The assumption of weak plasmon-electron interaction
is reasonable at small k since long wavelength plasmons
are long lived. For larger k values the almost flat plasmon
dispersion curve runs into the continuum of electron-hole
pair excitations and the plasmons are no longer well de-
fined. In a uniform electron gas this happens at a wave
vector kc given by25

kc ≈
1

2
kF r

1/2
s ∝ n1/6 , (3.1)

where kF is the Fermi wave vector, rsa0 is the radius of
a sphere containing one electron on average, and a0, the
Bohr radius, is the atomic unit of length. This estimate
of the cutoff should also be applicable to inhomogeneous
systems as long as the density does not vary too much.
We see that for typical metals with rs values of 2 or 3
the cutoff is of the order of the Fermi wave vector.

A. Orientation

The RPA is a sophisticated theory and the derivation
is complicated even in the homogeneous case.11 The inho-
mogeneous generalization presented here clarifies certain
aspects, but also introduces extra subtleties. To help
orient readers, here is a brief summary of the steps to
follow:

1. Extra degrees of freedom are added to the many-
electron Hamiltonian. Although these operate in
a separate Hilbert space, they will later become
linked to the plasmons.

2. It is shown that the parameters of the extended
Hamiltonian may be chosen such that its ground
state is simply related to that of the original Hamil-
tonian. This choice of parameters may be viewed
as the imposition of a subsidiary condition on the
extra degrees of freedom.

3. After applying a unitary transformation, the ex-
tended Hamiltonian is approximated as a sum
of two decoupled Hamiltonians (this is the ran-
dom phase approximation). One of the decoupled
Hamiltonians acts in the original Hilbert space, the
other in the Hilbert space of the additional degrees
of freedom.

4. The part of the decoupled Hamiltonian involving
the additional degrees of freedom is a set of har-
monic oscillators, the frequencies of which corre-
spond to the plasmon energies. A straightforward
analysis (not included here) shows that the sub-
sidiary condition links the momentum and position
operators occurring in these harmonic oscillators to
the electric field and longitudinal vector potential
of the inhomogeneous electron gas.

5. The approximate RPA Hamiltonian yields an ap-
proximate ground-state wave function. After in-
verting the unitary transformation, it is then pos-
sible to extract an approximate ground state of the
original Hamiltonian. This has the Slater-Jastrow
form including both an inhomogeneous u function
and a χ function.

B. The RPA Hamiltonian in inhomogeneous systems

The aim is to find an approximate ground state |ψ0〉
with energy E0 of the following Hamiltonian:

Ĥ =
1

2

∑

i

p̂2
i +

∑

i

V (r̂i)

+ 2π
∑

k

n̂kn̂
†
k

k2
− 2πN

V

∑

k

1

k2
, (3.2)

where V (r) is an applied potential. Note that we adopt
a slightly unusual definition of the number density oper-
ator,

n̂k =
1√
V

∑

i

eik·r̂i , (3.3)

which includes a 1/
√
V factor in accord with the symmet-

ric definition of the Fourier transform used throughout
this paper. The system is assumed to be charge neutral
and so the k = 0 terms are omitted from all k-space
summations.

The “physical” Hilbert space in which this Hamilto-
nian acts will be denoted HR. For reasons that will be-
come clear later on, it is convenient to rewrite Ĥ in the
form,

Ĥ =
1

2

∑

i

p̂2
i +

∑

i

Ṽ (r̂i)

+ 2π
∑

k

n̂kn̂
†
k

k2
− 2πN

V

∑

k

1

k2

+
1

2

∑

k<kc

π0
kπ

0
−k −

∑

k<kc

(
4π

k2

)1/2

π0
kn̂
†
k ,

(3.4)

where Ṽ (r) is defined via:

Ṽ (r) = V (r) − ∆E

N
−∆V (r) , (3.5)

∆E =
1

2

∑

k<kc

π0
kπ

0
−k , (3.6)

∆V (r) = −
∑

k<kc

(
4π

k2

)1/2

π0
k

e−ik·r√
V

, (3.7)

4



the π0
k are arbitrary numbers satisfying π0

k
∗

= π0
−k, and

kc is the plasmon cutoff from Eq. (3.1).
Let us now introduce conjugate pairs of operators, π̂k

and q̂k, acting in a different Hilbert space HO, which
we call the oscillator space. The “momentum” operator
π̂k and the “position” operator q̂k are taken to be the
Fourier transforms of field operators π̂(r) = π̂†(r) and
q̂(r) = q̂†(r):

q̂†k =
1√
V

∫

V

eik·rq̂†(r)d3r , (3.8)

π̂k =
1√
V

∫

V

eik·rπ̂(r)d3r , (3.9)

which satisfy the standard canonical commutation rela-
tion [π̂(r), q̂(r′)] = −iδ(r − r′). It therefore follows that

π̂†k = π̂−k and q̂†k = q̂−k obey

[π̂k, q̂k′ ] = −iδk,k′ . (3.10)

For the time being π̂k and q̂k have little physical meaning,
but later in the derivation they will become associated
with the plasmon coordinates.

Now consider the Hermitian extended Hamiltonian,

ĤBP =
1

2

∑

i

p̂2
i +

∑

i

Ṽ (r̂i)

+ 2π
∑

k

n̂kn̂
†
k

k2
− 2πN

V

∑

k

1

k2

+
1

2

∑

k<kc

π̂kπ̂−k −
∑

k<kc

(
4π

k2

)1/2

π̂kn̂
†
k , (3.11)

which is an operator in the extended Hilbert spaceHext =
HR

⊗HO . Note that the potential Ṽ is still the same
as given by Eq. (3.5); the variables π0

k that were used

to construct Ṽ have not been replaced by operators in
HO , but remain ordinary complex numbers. Because
ĤBP and π̂ commute they may be diagonalized simulta-
neously, and hence all eigenstates of the extended Hamil-
tonian ĤBP may be written in the form |ψπ〉|π〉, where
π̂k|π〉 = πk|π〉 for all k < kc.

Let |ψ0〉 and E0 be the ground-state wave function
and ground-state eigenvalue of the physical Hamiltonian
Ĥ . If we define an eigenstate |π0〉 of the π̂k operators
such that π̂k|π0〉 = π0

k|π0〉 for all k < kc, it follows that

|ψ0〉|π0〉 is an eigenstate of ĤBP with the same eigen-
value E0. It need not, however, be the ground state of
ĤBP, which might correspond to a different wave func-
tion |ψmin〉|πmin〉. The question that now arises is how
to choose the constants π0

k (and hence the modified po-

tential Ṽ ) such that |ψ0〉|π0〉 is in fact the ground state

of ĤBP and not just some other eigenstate. This can be
achieved using the Hellmann-Feynman theorem.

Consider the lowest energy state |Φπ〉 = |ψπ〉|π〉 cor-
responding to some fixed oscillator-space eigenstate |π〉.

The energy eigenvalue of |Φπ〉 will be denoted Eπ . When

ĤBP acts on |Φπ〉, the operators π̂k may be replaced by
their eigenvalues πk, and hence |ψπ〉 is in fact the ground
state of

Ĥπ =
1

2

∑

i

p̂2
i +

∑

i

Ṽ (r̂i)

+ 2π
∑

k

n̂kn̂
†
k

k2
− 2πN

V

∑

k

1

k2

+
1

2

∑

k<kc

πkπ−k −
∑

k<kc

(
4π

k2

)1/2

πkn̂
†
k . (3.12)

Note that Ĥπ operates not in the extended Hilbert space
but in HR. Furthermore, it is important to keep in mind
that Ṽ is formed using the as yet unknown numbers π0

k.

The overall ground state of ĤBP corresponds to the min-
imum of Eπ with respect to π. As we are now looking at
a standard quantum mechanical problem formulated in
the physical Hilbert space HR, the Hellmann-Feynman
theorem gives:

∂Eπ

∂πk
=

〈
ψπ

∣∣∣∣∣
∂Ĥπ

∂πk

∣∣∣∣∣ψπ
〉

(3.13)

= π−k −
(

4π

k2

)1/2

〈ψπ |n̂†k|ψπ〉 , (3.14)

where |ψπ〉 is assumed normalized. If the overall ground

state of ĤBP occurs when π = πmin, it follows that:

0 = πmin
−k −

(
4π

k2

)1/2

〈ψπmin |n̂†k|ψπmin〉 . (3.15)

Eq. (3.15) is the generalization to inhomogeneous sys-
tems of the “subsidiary condition” of Bohm and Pines.11

It can be rewritten as

Ω̂k|Φ〉 = 0 (k < kc), (3.16)

where

Ω̂k = π̂k −
(

4π

k2

)1/2

〈n̂k〉01̂ , (3.17)

and has to be obeyed by |Φ0〉, the exact ground state of

ĤBP. In the case of a homogeneous system, Eq. (3.16)
reduces to π̂k|Φ〉 = 0 as derived using a different method
by Bohm and Pines.11 Note that the subsidiary condition
is not a prescription for the replacement of one variable
by another, as stated by Bohm and Pines;11 instead, it
characterizes a property of the ground state of ĤBP that
aids us in devising approximations.

We wish to choose the constants π0
k such that π0

k =
πmin

k , since in this case we have already argued that the
physical-space part |ψπ0〉 of the Bohm-Pines ground state

|Φπ0〉 = |ψπ0〉|π0〉 (3.18)
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is equal to the exact physical ground state |ψ0〉. The
sought after link between |ψ0〉 and the π0

k is therefore:

π0
−k =

(
4π

k2

)1/2

〈ψ0|n̂†k|ψ0〉 =

(
4π

k2

)1/2

〈n̂−k〉0 , (3.19)

where 〈n̂k〉0 = 〈ψ0|n̂k|ψ0〉 is a Fourier component of the
ground-state electron density n(r). Note that Eq. (3.19)
is not an operator equation; it simply links one number,
π0
−k, to another, 〈n̂−k〉0. Since all the π̂k operators have
k < kc, Eq. (3.19) only applies when k < kc.

More generally, if we have set the parameters π0
k using

Eq. (3.19), the physical-space parts |ψπ〉 of all extended-
space eigenstates |Φπ〉 = |ψπ〉|π〉 that obey the sub-
sidiary condition, Eq. (3.16), are eigenstates of the origi-
nal Hamiltonian, Eq. (3.2). This follows from the defini-

tion of the potential Ṽ (r), which is such that the Hamil-
tonian in Eq. (3.12) is the same as the original Hamilto-
nian of Eq. (3.2) when the value of π is consistent with

the subsidiary condition: Ĥπ |πk=π0
k

= Ĥ .

Eq. (3.19) specifies π0
k in terms of the ground-state den-

sity, which is obtained by solving ĤBP. Unfortunately,
this Hamiltonian depends on the parameters π0

k calcu-
lated from its ground state, and so we are faced with
a self-consistency problem analogous to those encoun-
tered in bandstructure calculations. However, as we only
need the ground-state density, and as it is known that
the LDA gives reasonably good ground-state densities
in most solids, we can in practice use the LDA density
〈n̂k〉LDA

0 to obtain a good approximation for π0
k.

Let us now use the subsidiary condition to evaluate
∆E and ∆V (r). For ∆E we get

∆E =
1

2

∑

k<kc

4π

k2
〈n̂k〉0〈n̂−k〉0

=
1

2

∫
nl(r)nl(r′)
|r− r′| d3rd3r′ , (3.20)

where nl(r) is the long wavelength (k < kc) part of the
ground-state electron density. The constant ∆E is there-
fore the long wavelength contribution to the Hartree en-
ergy. For ∆V we get

∆V (r) = − 1√
V

∑

k<kc

4π

k2
〈n̂k〉0e−ikr , (3.21)

and hence ∆V (r) is the Hartree potential corresponding
to the long wavelength Fourier components of the elec-
tronic charge density. Because ∆V (r) is subtracted from

V (r) to give Ṽ (r), the extended Hamiltonian ĤBP con-
tains a reduced external potential. The long-range part of
the mutual repulsion of the electrons has been absorbed
into the plasmon degrees of freedom via the subsidiary
condition.

C. The unitary transformation

We have now concluded that we can concentrate on
the ground state of the Bohm-Pines Hamiltonian, ĤBP,
from Eq. (3.11) instead of the ground state of the original
Hamiltonian from Eq. (3.2).

Unsurprisingly, the Bohm-Pines extended Hamiltonian
cannot be solved exactly. It may, however, be solved
approximately by means of a unitary transformation.11

We use the unitary operator

Ŝ = exp

[
−i
∑

k<kc

(
4π

k2

)1/2

q̂kn̂k

]
(3.22)

to transform an eigenstate |Φ〉 of ĤBP into an eigen-

state |Φnew〉 = Ŝ|Φ〉 of the transformed Hamiltonian

Ĥnew
BP = ŜĤBPŜ

†. The position operators r̂i and q̂k are
unchanged by the transformation because they commute
with Ŝ, but the momentum operators transform as fol-
lows:

p̂i → p̂new
i = p̂i + i

(
4π

V

)1/2 ∑

k<kc

q̂kεke
ik·r̂i , (3.23)

π̂k → π̂new
k = π̂k +

(
4π

k2

)1/2

n̂k , (3.24)

where εk = k/k is a unit vector in the k direction.
The final result of the unitary transformation defined

by Eq. (3.22) is the Hamiltonian:

Ĥnew
BP =

1

2

∑

i

p̂2
i + 2π

∑

k>kc

n̂kn̂
†
k

k2

− 2πN

V

∑

k

1

k2
+
∑

i

Ṽ (r̂i)

+ i

(
4π

V

)1/2 ∑

k<kc

∑

i

εk ·
(

p̂i −
k

2

)
q̂ke

ik·r̂i

+
2π√
V

∑

k,k′<kc

(εk · εk′) q̂kq̂−k′ n̂k−k′

+
1

2

∑

k<kc

π̂kπ̂−k , (3.25)

which is obtained by replacing p̂i and π̂k in Eq. (3.11)
by p̂new

i and π̂new
k . The subsidiary condition becomes

Ω̂new
k |Φnew〉 = 0 (k < kc) , (3.26)

where

Ω̂new
k = π̂k +

(
4π

k2

)1/2

(n̂k − 〈n̂k〉0) . (3.27)

We now make the random-phase approximation, which
amounts to replacing the n̂k−k′ = V −1/2

∑
i e
i(k−k′)·r̂i
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factor in the fourth line of Eq. (3.25) by its ground-state
expectation value. In uniform systems the electronic po-
sitions ri are random and so the phases are also ran-
dom; the expectation value of n̂k−k′ is therefore equal to

Nδk,k′/
√
V . In inhomogeneous systems we have to eval-

uate the expectation value of the (untransformed) opera-
tor n̂k−k′ in the transformed ground state |Φnew〉. Since
the density operator n̂(r) =

∑
i δ(r̂i − r) commutes with

the unitary transformation, it follows that

〈Φnew|n̂(r)|Φnew〉 = 〈Φ|Ŝ†n̂(r)Ŝ|Φ〉 = 〈Φ|n̂(r)|Φ〉 .
(3.28)

The required expectation value of n̂k−k′ is therefore equal
to the Fourier component 〈n̂k−k′〉0 of the ground-state
electron density of the original (untransformed) Bohm-
Pines Hamiltonian from Eq. (3.11).

Following Bohm and Pines,11 the plasmon-electron
coupling term on the third line of Eq. (3.25) will also
be neglected. To justify this approximation (and indeed
the RPA) we can appeal to the measured physical proper-
ties of interacting electron gases; we know that the plas-
mons are well defined when k < kc, and hence that the
plasmon-electron coupling terms must indeed be small.

IV. THE GROUND-STATE WAVE FUNCTION

This section explains how the inhomogeneous RPA
theory introduced above leads to approximate ground-
state wave functions of the Slater-Jastrow type, and
shows that the use of Slater determinants of LDA or HF
orbitals is close to optimal even in the presence of the
RPA Jastrow factor. The RPA u and χ functions de-
pend on the electron density and are closely related to
each other.

A. The RPA ground state

The two approximations described above decouple
the electrons and plasmons and reduce the transformed
Hamiltonian of Eq. (3.25) to the RPA Hamiltonian

ĤRPA = Ĥsr + Ĥp. The first two lines of Eq. (3.25)
yield the short-range electronic Hamiltonian,

Ĥsr =
1

2

∑

i

p̂2
i + 2π

∑

k>kc

n̂kn̂
†
k

k2

−2πN

V

∑

k

1

k2
+
∑

i

Ṽ (r̂i) , (4.1)

and the last two lines yield the plasmon Hamiltonian,

Ĥp =
1

2
(π̂ · π̂† + q̂ ·M · q̂†) , (4.2)

where the matrix M is given by

Mk,k′ = (εk · εk′)
1

V

∫
ei(k−k′)·rω2

p(r)d3r , (4.3)

and we have introduced a position dependent local
plasma frequency defined by ω2

p(r) = 4πn(r). The full

ground state of ĤRPA is the product of the ground states
of Ĥsr and Ĥp.

If we choose to work in a representation in which the π̂k

operators are diagonal, the plasmon ground state takes
the standard simple harmonic oscillator form:

Ψp ∝ exp


−1

2

∑

k,k′<kc

π∗k
(
M−1/2

)
k,k′

πk′


 . (4.4)

Making use of the expression for Ṽ from Eq. (3.5) and

the condition π0
k =

√
4π/k2〈n̂k〉0 from Eq. (3.19), the

short-range Hamiltonian of Eq. (4.1) becomes:

Ĥsr =
1

2

∑

i

p̂2
i +

∑

i

V (r̂i)

+ 2π
∑

k>kc

n̂kn̂
†
k

k2
− 2πN

V

∑

k

1

k2

+
1√
V

∑

i

∑

k<kc

4π〈n̂k〉0
k2

e−ik·r̂i

− 2π
∑

k<kc

〈n̂k〉0〈n̂−k〉0
k2

. (4.5)

The first two lines are identical to the original Hamilto-
nian, Eq. (3.2), but with the small k (long wavelength)
contributions to the electron-electron interactions omit-
ted. The third line is the Hartree potential corresponding
to those long wavelength Coulomb interactions,

1√
V

∑

i

∑

k<kc

4π〈n̂k〉0
k2

e−ik·r̂i =
∑

i

∫
nl(r′)

|r̂i − r′|d
3r′ ,

(4.6)

and the fourth line is the Hartree energy, which is sub-
tracted to prevent double counting.

The short-range Hamiltonian is therefore equivalent
to the original Hamiltonian, Eq. (3.2), but with the
long wavelength parts of the Coulomb interaction treated
within the Hartree approximation. Since the long wave-
length parts of the effective potentials used in Hartree-
Fock and LDA calculations are both dominated by the
Hartree contributions, we might equally well say that
Ĥsr is equivalent to the original Hamiltonian but with
the small k Coulomb interactions approximated using
Hartree-Fock or LDA (provided the HF or LDA density
is sufficiently similar to the exact ground-state density).

In practice, of course, we do not attempt to solve Ĥsr

exactly, but treat it within an independent electron ap-
proach such as Hartree-Fock or LDA. This additional ap-
proximation replaces the short-range part of the electron-
electron interaction by a mean field, which simply adds
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to the long wavelength mean field already introduced by
the RPA. The overall effect is equivalent to starting from
the original Hamiltonian and replacing the full interac-
tion by a mean field. This implies that one can obtain the
short-range “electronic” part of the RPA wave function
by starting from the original fully interacting Hamilto-
nian and treating it using any sensible mean-field ap-
proximation. The best single-particle orbitals to use in
the Slater determinant are therefore very close to the
familiar Hartree-Fock or LDA orbitals; they are not sig-
nificantly altered by the presence of the RPA plasmon
wave function Ψp.

The short-range Hamiltonian of Eq. (4.5) still con-
tains the full Coulomb interaction for k > kc, and so
still diverges like 1/rij whenever two electrons approach
each other. The electron-electron cusps should there-
fore appear in the short-range electronic wave function,
not in the wave function that describes the plasmons.
One drawback of treating the short-range Hamiltonian
within a mean-field approximation is that this neglects
the electron-electron cusps, which play an important role
in reducing the total energy of the many-electron system.
This limitation of the mean-field treatment of Ĥsr may
be remedied by building the cusps into Ψp instead.

B. Inverting the unitary transformation

The ground state of ĤRPA is the product of the ground
states of Ĥsr and Ĥp, neither of which commutes with the
transformed subsidiary condition, Eq. (3.27). This im-

plies that, unlike the ground state of Ĥnew
BP , the ground

state of ĤRPA need not obey the subsidiary condition
automatically. In consequence, the approximate ground
state of ĤBP obtained by applying the back transforma-
tion, Ŝ†, to the ground state of ĤRPA, need not be an
eigenfunction of the plasmon momentum operators, and
we can no longer extract an approximation to the spatial
ground state by simply forgetting about the |π〉 factor in
a product wave function of the form |ψ〉|π〉. Fortunately,
however, the subsidiary condition is still exact, and so
still defines the subspace of the extended Hilbert space
in which the true ground state lies. We can therefore take
the ground state of the approximate Hamiltonian, ĤRPA,
and project it onto that subspace. The required projec-
tion operator to be applied after the back transformation
is

∏

k<kc

∣∣πk = π0
k〉〈πk = π0

k

∣∣ . (4.7)

As discussed in Sec. IV A, we approximate the ground
state of Ĥsr as a Slater determinant D. The ap-
proximate ground state of the full Hamiltonian ĤRPA

is therefore ΦRPA({ri}, {πk}) = 〈{ri}, {πk}|ΦRPA〉 =
Ψp({πk})D({ri}). We can now obtain an approximate

ground state of the original Hamiltonian ĤBP by back

transforming using the inverse of the unitary transfor-
mation. The only important effect of the back transfor-
mation is to shift the numbers πk appearing in Ψp as
follows:

πk → πk −
(
4π/k2

)1/2
nk , (4.8)

where nk = V −1/2
∑
i e
ik·ri . This can be verified by ob-

serving that, when evaluating a back-transformed wave
function Φold({ri}, {πk}) = 〈{ri}, {πk}|Ŝ†|Φ〉, we can ap-
ply the transformation to the bra 〈{ri}, {πk}| rather than
the ket |Φ〉. But since

π̂kŜ |{ri}, {πk}〉 = ŜŜ†π̂kŜ |{ri}, {πk}〉
= Ŝ

(
π̂k −

(
4π/k2

)1/2
n̂k

)
|{ri}, {πk}〉

=
(
πk −

(
4π/k2

)1/2
nk

)
Ŝ |{ri}, {πk}〉 , (4.9)

we see that

Ŝ |{ri}, {πk}〉 =
∣∣∣{ri}, {πk −

(
4π/k2

)1/2
nk}

〉
. (4.10)

The πk eigenvalues of the transformed bra are therefore

shifted by −
(
4π/k2

)1/2
nk relative to those of the orig-

inal bra. As a result, Φold({ri}, {πk}) = Φ({ri}, {πk −(
4π/k2

)1/2
nk}).

Applying the projection operator given in Eq. (4.7)
replaces the remaining πk by π0

k = (4π/k2)1/2〈n̂k〉0. (In
the homogeneous case this is zero.) All in all, then, the
spatial part of the approximation to the ground state is

Ψ = ΨJD = exp


1

2

∑

i,j

ũ(ri, rj)


D , (4.11)

where

ũ(r, r′) = −4π
∑

k,k′<kc

[

(
e−ik·r√
V
− 〈n̂−k〉0

N

)
[
M−

1
2

]
k,k′

kk′

(
eik
′·r′
√
V
− 〈n̂k′〉0

N

) ]
.

(4.12)

The RPA Jastrow factor includes constant terms, one-
electron terms, and two-electron terms. The constant
terms may be ignored as they only affect the normaliza-
tion of the wave function. The remaining one- and two-
electron terms may then be disentangled and ΨJ rewrit-
ten in the form,

ΨJ = exp


1

2

∑

i,j

u(ri, rj) +
∑

i

χ(ri)


 , (4.13)

where u(r, r′) and χ(r) are defined via:
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u(r, r′) = − 1

V

∑

k,k′<kc

e−ik·r
4π
[
M−1/2

]
k,k′

kk′
eik
′·r′ , (4.14)

and

χ(r) =
1√
V

∑

k,k′<kc

e−ik·r
4π
[
M−1/2

]
k,k′

kk′
〈n̂k′〉0 (4.15)

= −
∫

V

u(r, r′)nl(r′)d3r′ . (4.16)

As in Eq. (3.20), nl(r) is the long wavelength k < kc
part of the ground-state electron density. In k-space, the
relationship between u and χ takes the form,

χ(k) = −
∑

k′<kc

u(k,k′)n(k′) , (4.17)

discussed in Sec. II B.
In a homogeneous system, Eq. (4.3) reduces toMk,k′ =

ω2
pδk,k′ . The χ function therefore vanishes and the u

function becomes

uhom(k,k′) = −4π

ωp

1

kk′
δk,k′ . (4.18)

Transforming to real space we obtain

uhom(r, r′) = uhom(|r− r′|)

= − 1

V

1

ωp

∑

k<kc

e−ik·(r−r′) 4π

k2
. (4.19)

If kc is set equal to infinity this gives

uhom(|r− r′|) = − 1

ωp|r− r′| . (4.20)

For finite kc, the divergence of u(|r− r′|) at small |r− r′|
is suppressed, but the 1/|r − r′| decay at large |r − r′|
remains more or less unaltered.

C. The cusp conditions in inhomogeneous systems

Sec. II A explained how cusps may be built in to a ho-
mogeneous RPA Jastrow factor by adding an exponential
factor to the u function:

u(r) = − 1

ωpr

(
1− e−r/F

)
. (4.21)

At large r this u function has the 1/(ωpr) behavior im-
plied by the RPA, while at small r it tends smoothly
towards the required cusp at r = 0. When supplemented
by appropriate χ functions, such Jastrow factors are re-
markably successful. It is therefore worth considering
how we might add cusps to our inhomogeneous RPA u
function.

This is not easy, since the inhomogeneous u function is
given as a complicated truncated double Fourier series.
The series determines the behavior of u(r, r′) when r−r′

is large, and we have to find a way of splicing this known
long-range behavior onto the cusp which fixes the slope of
u(r, r′) as |r−r′| → 0. It turns out that this interpolation
problem is easiest to handle when expressed in k-space.

Eq. (4.21) can be Fourier analyzed to give:

u(k) =
−4π√
V ωp

1/F 2

k2(k2 + 1/F 2)
. (4.22)

Using the cusp conditions, Eq. (2.3), we see that 1/F 2 =
Cωp, where C = 1 for antiparallel spins and C = 1/2 for
parallel spins. Hence

u(k) =
−4π√
V

C

k2(k2 + Cωp)
. (4.23)

In Sec. V B we test a homogeneous u function defined
using a truncated Fourier series of this form and find
that most of the cusp energy can be retrieved using a
reasonably low cutoff.

Eq. (4.23) defines a natural k-space crossover, kx, given
by k2

x = Cωp. The terms with k < kx produce the RPA
behavior at large r, while for k > kx we have u(k) ∝ 1/k4,
which generates the cusp. The density dependence of kx
differs from that of the plasmon cutoff kc from Eq. (3.1).
It turns out, however, that for typical metallic densities
kc and kx are both of the order of kF . The k2 + Cωp
factor in the denominator of Eq. (4.23) therefore allows
us to introduce the cusp without significantly affecting
the large r (k < kc) behavior implied by the RPA. If the

density is extremely small, kx (∝ ω1/2
p ∝ n1/4) is smaller

than kc (∝ n1/6), and so this method for imposing the
cusp is no longer consistent with the RPA limit.

Eq. (4.23) suggests a simple k-space prescription for
building a cusp into the inhomogeneous Jastrow factor.
We write the inhomogeneous Jastrow factor as a double
Fourier series,

u(r, r′) =
1

V

∑

k,k′

e−ik·ru(k,k′)eik
′·r′ , (4.24)

noting that in a homogeneous system we have u(k,k′) =√
V u(k)δk,k′ . We use this relationship to rewrite the

homogeneous u function of Eq. (4.23) in a form suitable
for generalization to the inhomogeneous case,

u(k,k′) = −4πC

kk′

(
kk′δk,k′ + Cωpδk,k′

)−1

, (4.25)

where the inversion is interpreted that of a (diagonal)
matrix. In the absence of cusps, we have seen that the
homogeneous Jastrow factor may be obtained from the
inhomogeneous one by replacing

Mk,k′ =
1

V

(k · k′)
kk′

∫
ei(k−k′)·rω2

p(r)d3r (4.26)
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by ω2
pδk,k′ . As we now wish to extrapolate from a ho-

mogeneous Jastrow factor to an inhomogeneous one, we
do the opposite and replace ωpδk,k′ = (ω2

pδk,k′)
1/2 by the

matrix square root M
1/2
k,k′ . Eq. (4.25) then becomes

u(k,k′) = −4πC

kk′

(
kk′δk,k′ + CM

1/2
k,k′

)−1

= − 4πC

(kk′)2

(
δk,k′ +

CM
1/2
k,k′

kk′

)−1

. (4.27)

By expressing M
1/2
k,k′ in terms of the original cuspless u

function, Eq. (4.27) can be cast in a form that is appli-
cable to a wide variety of cuspless correlation terms.

If we make the reasonable assumption that the Fourier
series for ω2

p(r) converges rapidly, the elements of the
matrix M are constant along the diagonal and fall off as
we move away from the diagonal. For large k and k′ this
guarantees that u(k,k′) is dominated by the 1/(kk′)2 ≈
1/k4 prefactor, generating a cusp. For small k and k′ we
have

u(k,k′) ≈ − 4πC

(kk′)2

(
CM

1/2
k,k′

kk′

)−1

= −4π
M
−1/2
k,k′

kk′
,

(4.28)

which is the RPA result. The u function of Eq. (4.27)
therefore interpolates smoothly between the anisotropic
long-range correlation term derived from the inhomoge-
neous RPA and the cusp at short range.

D. The one-body term

The introduction of the cusp modifies the k < kc
Fourier components of the RPA u function and intro-
duces nonzero Fourier components with k > kc. In addi-
tion, it makes the u function spin dependent, suggesting
that we need a spin-dependent one-body term. We there-
fore generalize our expression for χ(k) from Eq. (4.17) by
extending the wave vector sum to include components
with k > kc and introducing a sum over spin indices,

χ↑(k) = −
∑

k′

[u↑↑(k,k
′)n↑(k

′) + u↑↓(k,k
′)n↓(k

′)] ,

(4.29)

with an equivalent formula for χ↓(k). In an unpolarized
system, where n↑(k′) = n↓(k′) = 1

2n(k′), this reduces to

χ↑(k) = −
∑

k′

1

2
[u↑↑(k,k

′) + u↑↓(k,k
′)] n(k′) . (4.30)

In the case of a homogeneous correlation term u this
further reduces to

χ↑(k) = −1

2

√
V [u↑↑(k) + u↑↓(k)] n(k) , (4.31)

as first proposed by Malatesta et al.13

V. RESULTS

This section assesses the effectiveness and accuracy of
QMC trial wave functions containing RPA Jastrow fac-
tors. Sec. V A describes the systems studied and explains
how the results are presented; Sec. V B considers homo-
geneous systems; and Sec. V C looks at inhomogeneous
systems.

All the results were obtained using trial wave functions
of the standard Slater-Jastrow form, where the spin-up
and spin-down Slater determinants were constructed us-
ing accurate LDA orbitals. The Jastrow factor contained
two- and one-body terms, u(ri, rj) and χ(ri), of vari-
ous different types. Note that from now on we drop the
u(ri, ri) self-interaction terms from the Jastrow factor.
This is equivalent to altering χ(ri) by a negligible amount
(ca. 5%).

The Monte Carlo runs discussed in the rest of this sec-
tion were accumulated using samples of 10,000 statisti-
cally independent configurations of all the electrons, ex-
cept for the energy data for the inhomogeneous system
discussed in Sec. V C, where we used 100,000 configura-
tions. The quoted standard deviations characterize the
fluctuations of the individual local energy readings; the
errors in the mean energies are given in brackets.

A. System geometry

The Hamiltonian is chosen to obey periodic bound-
ary conditions with a simulation cell consisting of the
Wigner-Seitz cell of a face-centered cubic (FCC) lattice.
The lattice vectors of the simulation-cell lattice will be
denoted by A1, A2, and A3, and the corresponding body-
centered cubic (BCC) reciprocal lattice vectors by B1,
B2, and B3.

For reasons of simplicity, we have chosen to study elec-
tron gas systems subject to external potentials that vary
along the B3 direction only,26

Vext(r) = V0 cos(B3 · r) , (5.1)

where V0 = 1 in atomic units. Since B3 is a reciprocal
lattice vector, this choice ensures that the potential has
the same periodicity as the simulation cell. The electron
density and χ functions, which also vary only in the B3

direction, share this periodicity.
The two-body term must also respect the periodic

boundary conditions applied to the simulation cell. This
implies that analytic Jastrow factors based on the u func-
tion of Eq. (4.21) must be made periodic by including
contributions from all the electrons in a periodic lattice
of identical copies of the simulation cell. Since the an-
alytic u function decays like 1/r at large r, the sum of
contributions is evaluated using Ewald summation tech-
niques. Numerical Jastrow factors calculated from the
inhomogeneous RPA are periodic by construction.
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The next two subsections contain a number of figures
showing electron densities, χ functions, and u functions.
Charge densities and χ functions are plotted along the
B3 direction from one side of the simulation cell to the
other. The inhomogeneous two-body term u(r1, r2) is
more difficult to represent. We have chosen to fix the
position r1 of the first electron, while sweeping r2 along
the B3 direction on a line passing through r1. Fig. 1
shows the three positions of the first electron considered.

B. Homogeneous systems

The FCC simulation cell considered in this section held
an unpolarized uniform electron gas of 61 up-spin elec-
trons and 61 down-spin electrons. The density parameter
rs was equal to 2, corresponding to a Fermi wave vector
kF=0.96a−1

0 . Two different Jastrow factors were consid-
ered:

a. Homogeneous RPA without cusps. The homoge-
neous RPA theory suggests using a correlation term of
the form,

u(ri, rj) =
−4π

V ωp

∑

k<kc

1

k2
eik·(ri−rj) . (5.2)

We saw in the introduction to Sec. III that for typical
metallic densities the cutoff kc is comparable to the Fermi
wave vector kF .

b. Homogeneous RPA with cusps. In Sec. II A we saw
how a cusp may be introduced by adding an exponential
factor to the kc→∞ limit of the homogeneous RPA u
function,

uσiσj (rij) = − 1

ωprij
(1− e−rij/Fσiσj ) , (5.3)

where Fσiσj is chosen appropriately.
Table I shows the local energy averages and standard

deviations obtained in VQMC simulations using these
two Jastrow factors. For comparison, we also show re-
sults obtained using a “Hartree-Fock” trial function in-
cluding up- and down-spin Slater determinants of LDA
orbitals (in this case plane waves) but no Jastrow fac-
tor. The introduction of an RPA Jastrow factor without
a cusp lowers the calculated energy considerably but has
little effect on the standard deviation. The introduction
of the cusp lowers the energy greatly and also reduces the
standard deviation. It is clear that the presence of the
cusp is vital if accurate total energies are to be obtained.

In Eq. (4.23) we saw how the u function with a cusp
from Eq. (5.3) may be represented as a Fourier series. We
can investigate the usefulness of this representation by
cutting off the series at a wave vector kn and varying kn
to see how fast the calculated VQMC energy converges.
Fig. 2 shows the convergence of the energy graphically.
It can be seen that a cutoff of kn=3.95a−1

0 produces a
wave function with the same energy (to within statistical

uncertainties) as an infinite cutoff. As the 3.95a−1
0 cutoff

is small enough to be computationally feasible, there is
no difficulty in representing the cusp in k-space. Note
also how the standard deviation decreases as the energy
improves.

C. Inhomogeneous systems

As mentioned above, the inhomogeneous systems we
consider have a background potential that varies in one
dimension only. The strongly inhomogeneous LDA elec-
tron density of the unpolarized 64 electron simulation cell
considered in this subsection is shown in Fig. 3. The av-
erage electron density is the same as that of a uniform
system with rs=2 and Fermi wave vector k0

F=0.96a−1
0 .

The LDA result for the energy is −15.658× 10−2 eV per
electron.

In addition to investigating the influence of the cusp,
as in the homogeneous case, we must also now investigate
the effects of the one-body χ function and compare the
accuracies of homogeneous and inhomogeneous u func-
tions. We therefore split this section into three subsec-
tions:

1. First we look at the pure (i.e. cuspless) homoge-
neous RPA Jastrow factor (which has no χ func-
tion) and compare it with the pure inhomogeneous
RPA Jastrow factor (which does have a χ function).

2. Second we investigate the effects of adding cusps to
these two correlation factors.

3. Finally we add an ad-hoc one-body χ term to the
homogeneous RPA Jastrow factor.

1. Inhomogeneous RPA without cusps

The inhomogeneous RPA Jastrow factor considered
here is the one derived in Sec. IV A (Eqs. (4.13), (4.14),
and (4.15)), which includes both u and χ functions. As
always in this work, the matrix M is constructed using
the LDA density, and the Slater determinants contain
LDA orbitals. The homogeneous RPA Jastrow factor in-
cludes the u function from Eq. (5.2) but no χ. In both
cases the cutoff kc is set equal to the Fermi wave vector,
k0
F=0.96a−1

0 , of a homogeneous system with the same
average electron density as the inhomogeneous system.

Table II compares the VQMC energies and standard
deviations calculated using the homogeneous (RPA1) and
inhomogeneous (RPA2) Jastrow factors without cusps. It
is clear that the inhomogeneous Jastrow factor is much
the better of the two. The reason is apparent from Fig. 3,
which demonstrates that the inhomogeneous Jastrow fac-
tor, which has a built-in one-body term, produces a near
optimal density. Fig. 3 also shows that the homogeneous
RPA Jastrow factor (which has no one-body term) gives
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a very poor electron density. This explains why the cor-
responding VQMC energy is so poor

In Fig. 4 we plot the inhomogeneous RPA two-body
term. Both inhomogeneity and anisotropy can be seen.
To aid understanding, Fig. 5 shows the Jastrow factors of
three different homogeneous systems, the constant den-
sities of which correspond to the local densities at the
central positions of plots A, B, and C, respectively. It
is clear that the three inhomogeneous u functions shown
in Fig. 4 are much more similar than the three homo-
geneous u functions shown in Fig. 5. This shows that
the inhomogeneous RPA u function is not well approxi-
mated by a local-density-like approximation based on the
homogeneous RPA.27

At point B, the charge density around the electron is
asymmetric, and this is reflected in the anisotropy of the
u function. We find that the Jastrow factor has a larger
range in the low density regions than in the high den-
sity regions, consistent with the “local density” picture
of Fig. 4 and with the physical expectation that screening
should be more effective at high densities. This interpre-
tation also explains the shape of the anisotropy: the u
function is weaker on the high density side where the
screening is more effective. We find, however, that the
range of variation of the inhomogeneous Jastrow factor
is much smaller than predicted by the “local density”
picture.

2. Inhomogeneous RPA with cusps

A cusp may be added to the inhomogeneous RPA u
function using the Fourier-space method explained in
Sec. IV C. The results discussed below are obtained with
a Fourier cutoff kn of 4.95a−1

0 ; Fig. 2 suggests that this
is large enough to represent the cusp accurately. Since
we choose not to change the relationship between the u
and χ functions, Eq. (2.9), the introduction of the cusp
also modifies the one-body χ function.

The addition of the cusp to the inhomogeneous RPA
Jastrow factor (to produce the Jastrow factor denoted
RPA3 in Table II) reduces the calculated VQMC energy
from −13.32(1)× 10−2 eV per electron to −15.795(4)×
10−2 eV per electron. The latter is the best variational
estimate of the energy we were able to obtain using any
of the Jastrow factors considered in this paper. The ad-
dition of cusps to the homogeneous u function does not
introduce a one-body term and so the density obtained
using the homogeneous RPA Jastrow factor is still poor.
Energies calculated using the homogeneous RPA Jastrow
factor therefore remain much worse than energies calcu-
lated using the inhomogeneous RPA Jastrow factor.

Fig. 6, which is analogous to Fig. 4, shows the inhomo-
geneous RPA u function after the cusp has been added.
It is clear that the addition of the cusp greatly reduces
the amount of inhomogeneity and anisotropy. Despite
the fact that the system is strongly inhomogeneous, the

cusp acts as such a stringent constraint that u(ri, rj) is
close to homogeneous. Although the inhomogeneity de-
rived from the RPA must persist when |ri − rj | is large
enough, the crossover length, 2π/kx, corresponding to
the average density rs=2, is comparable to our system
size. This implies that the form of the u function is
largely determined by the cusp throughout our system.
If we had studied larger systems we would have seen the
RPA reassert itself at large |ri − rj |, but previous work
on numerical trial function optimization28 and finite-size
errors29,30 has shown that the behavior of the u function
at such large values of |ri−rj | has very little effect on the
total energy. The fact that the inhomogeneous u func-
tion becomes so homogeneous once the cusp has been
added explains the surprisingly good performance of the
homogeneous u functions used in most QMC simulations
of solids.

3. Variance optimized one- and two-body terms

In this subsection we compare Jastrow factors based
on the inhomogeneous RPA theory with Jastrow factors
obtained using numerical variance optimization.

We have already explained that we always construct
the χ function appearing in the inhomogeneous RPA Jas-
trow factor from the u function and density according to
Eq. (2.9). Although Eq. (2.9) was derived within the
RPA, we assume that it holds unaltered even after the
spin-dependent cusps have been added to u. This as-
sumption proves very successful in practice, yielding χ
functions that are not significantly worse than those com-
puted (at much greater cost) using numerical variance
optimization.

When adding a χ function to the homogeneous u func-
tion of Eq. (5.3) we have two options: we could try using
Eq. (2.9) again, or we could use variance minimization.
Since u is now a function of |ri − rj | only, Eq. (2.9) re-
duces to Eq. (2.10), which was first derived by Malatesta
et al.13,14 The impressive accuracy of Eq. (2.10) is shown
in Fig. 7, where we compare the analytic χ function with
one obtained using additional numerical variance opti-
mization. We see that the two χ functions (and hence
the two electron densities) are very similar. The corre-
sponding change in the energy (denoted VM1 in Table
II) is not statistically significant.

In addition, in Table II, we give the energy (denoted
VM2) calculated using numerically optimized (homo-
geneous) u and χ functions of the type described by
Williamson et al.28 It may appear surprising that this
very general optimization procedure yields such disap-
pointing results, but the explanation is simple: for com-
putational reasons, the variance optimized u function is
constrained to be zero everywhere on the cell boundary,
and this is a significant drawback in small simulation cells
such as ours. In larger simulation cells the behaviour of
the u function at the cell boundary is less important and
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the optimized u function outperforms the familiar Ewald
form.

A comparison (see Table II) of the results for the RPA3
Jastrow factor, which has an inhomogeneous u function
with a cusp, and the RPA4 Jastrow factor, which has
a homogeneous u function with a cusp, shows that the
inhomogeneity of the u function provides a small but sig-
nificant improvement. The energy difference amounts to
3.3 standard deviations, and so the probability that it is
negative (i.e., that the introduction of inhomogeneity is
actually an improvement) is 99.96%.

The effect of the finite cutoff kn can also be seen in
Table II, by comparing the RPA4 result with the result
for the Ewald-summed Jastrow factor (EW). Note that
both of these Jastrow factors have a cusp and include
the same χ function from Eq. (2.10). Furthermore, as
kn → ∞, the two Jastrow factors become identical and
the RPA4 result tends to the EW result. We see that
the presence of the exact cusp in the EW Jastrow factor
reduces the variance slightly but provides a statistically
insignificant improvement in the energy. Since both these
Jastrow factors include homogeneous u functions, neither
is as good as the inhomogeneous Jastrow function RPA3.
As far as the energy is concerned, we conclude that de-
spite the dominance of the cusp and the one-body term,
the inhomogeneity of the RPA correlations does produce
a small but measurable improvement.

The small size of the improvement due to the inho-
mogeneity of the u function is consistent with previous
work and may be explained as follows. In the system
considered here the LDA, which is based on a very sim-
ple spherical approximation to the exchange-correlation
hole, yields a very accurate energy of −15.658× 10−2 eV
per electron. Because this result is so good, any ben-
efits to be gained by improving the description of the
hole must necessarily be fairly small. The difference be-
tween the LDA and homogeneous VMC energies is about
0.12× 10−2 eV per electron, and the introduction of the
inhomogeneous u function yields another 0.02× 10−2 eV
per electron; the effect of the inhomogeneity is therefore
a substantial 15% of the difference between the VMC and
LDA energies.

VI. COMPUTATIONAL EFFICIENCY

The inhomogeneous Jastrow factor consists of a dou-
ble Fourier sum and a sum over all the electrons. By
rearranging these sums the computational effort can be
made to scale as N2

e for each single electron move, where
Ne is the number of electrons. In contrast, the scaling of
QMC simulations using homogeneous Jastrow factors is
Ne+εN2

e , where ε is often fairly small.9 The introduction
of the inhomogeneous u function is certainly not without
computational cost, but does not affect the asymptotic
scaling of the QMC algorithm.

As we were interested in evaluating the quality of the

trial function rather than in computational efficiency, we
did not optimize our programs for speed. Nevertheless,
the generation of 100,000 configurations for the 64 elec-
tron system takes only a couple of days on a modern
workstation. Furthermore, as the time required to evalu-
ate the inhomogeneous Jastrow factor scales as the sixth
power of the Fourier cutoff kn, the speed of the calcula-
tion could be dramatically improved by reducing kn. Our
chosen cutoff of 4.95a−1

0 was very conservative, and the
small errors introduced by reducing it could easily be cor-
rected. Using a sensible choice for kn and optimized code
running on a workstation, the inhomogeneous RPA Jas-
trow factor could certainly be used to study comparably-
sized simulation cells of real (pseudo)solid.

In fact, the overwhelming majority of the effort in-
volved in a typical solid state VMC calculation concerns
the generation and optimization of trial functions. The
greatest advantage of the RPA-based approach discussed
in this paper is that it provides accurate analytic u and
χ functions, thus avoiding or dramatically reducing the
need for numerical wavefunction optimization.

VII. CONCLUSIONS

Our principal aim was to better understand the physics
underlying the Slater-Jastrow trial wave functions used
in QMC simulations of solids. We began by generalizing
Bohm and Pines’ RPA treatment of the homogeneous
electron gas11 to the inhomogeneous case. The result
of this analysis was a Slater-Jastrow trial wave function
containing an anisotropic inhomogeneous Jastrow factor
expressed as a double Fourier sum. The optimal orbitals
appearing in the Slater determinants were shown to be
close to Hartree-Fock or LDA orbitals, even though these
theories do not include Jastrow factors.

The RPA describes the long-range electronic correla-
tions accurately, but not the scattering-like correlations
at short distances. We saw, however, that the correct
short-range behavior determined by the cusp conditions
may easily be imposed on any Jastrow factor represented
in k-space. When the inhomogeneous RPA result is mod-
ified in this way, the result is a parameter-free Jastrow
factor with the correct short and long-range behavior.
Unlike previous work,13,14 this approach provides both u
and χ functions, not just a relationship between them.

For a system of 64 electrons in a strong sinusoidal ex-
ternal potential, we showed that trial functions incor-
porating modified RPA Jastrow factors are both accu-
rate and computationally tractable. Since such Jastrow
factors are parameter-free, the time-consuming variance
minimization procedure normally used to generate accu-
rate χ functions is not required. The inhomogeneity of
the two-body u function yields only a small benefit in the
system we studied, but even this small improvement is
∼15% of the difference between the LDA and homoge-
neous VMC energies. The reason why these differences
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are not larger, and the reason why homogeneous u func-
tions often work so well, is that the imposition of the
cusp conditions washes out most of the inhomogeneity of
the RPA u function when |ri − rj | is small.

If we compare the plasmon cutoff kc (∝ n1/6) from
Eq. (3.1) with the wave vector kx (∝ n1/4) that char-
acterizes the crossover from screening behavior to cusp-
like behavior (see Sec. IV C), we see that the cusp is
relatively less important in high density systems. This
suggests that the inhomogeneity of the RPA u function
may produce a more obvious improvement when the av-
erage electron density is both large and strongly varying.
This is intuitively sensible, since in low density systems
we expect the short-range electron-electron scattering de-
scribed by the cusp to dominate, whereas at higher den-
sities screening and collective effects should be more im-
portant. Possible candidates for high density systems in-
clude calculations explicitly involving the core electrons,
where it is already known that the use of inhomogeneous
u functions is advantageous.22 Other systems where one
might expect inhomogeneities in the correlation term to
become important are rare earth elements, where some
of the valence electrons are strongly bound to the core.
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FIG. 1. In figures showing two-body terms, plots labeled
A, B and C respectively show u(r1, r2) as a function of r2 for
r1 fixed at the peak (A), the average (B), and the minimum
(C) of the electron density. In all cases r2 is swept along
the B3 direction on a line passing through r1. The relative
coordinate z measures the distance between the two electrons
and thus equals zero when the two electrons are at the same
place, irrespective of the fixed position of r1.
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FIG. 2. The convergence of the VQMC energy as a function
of the cutoff kn used in the truncated Fourier series represen-
tation of the u function from Eq. (5.3). The results are for
the uniform system considered in Sec. V B. The dotted line
shows the calculated value of the energy when kn=∞ (the
standard deviation of this result is too small to show here).
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FIG. 3. The electron density of the strongly inhomoge-
neous 64 electron system considered in Sec. V C. The LDA
density (solid line) is compared to the densities obtained using
the homogeneous RPA (dotted line) and the inhomogeneous
RPA (dashed line); the z-axis lies along the B3 direction.
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FIG. 4. The inhomogeneous RPA u function with no cusp
for three different positions of the fixed electron. The results
are for the inhomogeneous system considered in Sec. V C. The
definition of z and the positions of A, B, and C are explained
in Fig. 1. The Jastrow factor is stronger in the low density
region.
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FIG. 5. The RPA u functions for three different uniform
electron gases, the densities of which are equal to the densi-
ties at points A, B, and C of the strongly inhomogeneous 64
electron system considered in Sec. V C. The definition of z
and the positions of A, B, and C are explained in Fig. 1. The
homogeneous u functions are of course isotropic.
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FIG. 6. The inhomogeneous RPA u function with a cusp
for three different positions of the fixed electron. The results
are for the strongly inhomogeneous 64 electron system con-
sidered in Sec. V C. The definition of z and the positions of
A, B, and C are explained in Fig. 1. The addition of the cusp
reduces the inhomogeneity and anisotropy observed in Fig. 4.
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FIG. 7. Comparison of the χ function (solid line) obtained
from Eq. (2.10) with one (dashed line) obtained using addi-
tional variance minimization. The results are for the strongly
inhomogeneous 64 electron system considered in Sec. V C,
using the homogeneous Ewald-summed Jastrow factor with
cusp. The corresponding energies are equal to within the sta-
tistical error.

TABLE I. VQMC local energy averages E and standard
deviations σ of the uniform system considered in Sec. V B in
units of of 10−2eV per electron. Results for three different
trial wave functions are shown. The HF trial function has
no Jastrow factor. The RPA results use the “pure” RPA u
function from Eq. (5.2). The best energies are obtained using
the RPA u function with a cusp from Eq. (5.3).

HF RPA RPA+CUSP

E 2.951(28) 1.942(26) -0.589(05)
σ 2.79 2.60 0.50

TABLE II. VMC local energy averages E and standard de-
viations σ for the inhomogeneous system considered in Sec-
tion V C. Results (in units of 10−2eV per electron) for eight
trial wave functions are shown. The HF trial function has no
Jastrow factor. The RPA1 trial function includes a Jastrow
factor containing the homogeneous RPA u function from Eq.
(5.2) but no χ. The RPA2 trial function uses the inhomoge-
neous RPA Jastrow factor derived in Section IV. For RPA1
and RPA2, the RPA cutoff kc was 0.95a−1

0 . The RPA3 trial
function uses the inhomogeneous RPA Jastrow factor from
Section IV, to which cusps have been added as explained in
Section IV C. The RPA4 trial function uses the homogeneous
RPA u function from Eq. (4.23) plus a χ function generated
using Eq. (2.10). The Fourier cutoff kn was 4.95a−1

0 in both
cases. The EW trial function uses the Ewald-summed homo-
geneous u function from Eq. (5.3) and an analytic χ function
calculated using Eq. (2.10). The VM1 trial function uses the
same Ewald-summed homogeneous u function but a variance
optimized χ. The VM2 trial function uses a variance opti-
mized homogeneous u function and a variance optimized χ
function.

HF RPA1 RPA2 RPA3

E -12.227(13) -5.723(14) -13.322(11) -15.795(04)
σ 4.13 4.32 3.60 1.24

RPA4 EW VM1 VM2

E -15.776(04) -15.782(03) -15.786(03) -15.760(03)
σ 1.33 0.83 0.81 0.83
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