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INHOMOGENEOUS STRICHARTZ ESTIMATES
FOR THE SCHRÖDINGER EQUATION

M. C. VILELA

Abstract. We study Strichartz estimates for the solution of the Cauchy prob-
lem associated with the inhomogeneous free Schrödinger equation in the case
when the inital data is equal to zero, proving some new estimates for certain
exponents and giving counterexamples for some others.

1. Introduction

Consider the Cauchy problem for the inhomogeneous free Schrödinger equation

(1)

{
i∂tu + ∆xu = F (x, t), (x, t) ∈ Rn × R,

u(x, 0) = f(x).

R. Strichartz (see [11]), following previous works of E. Stein, P. Tomas and I.E.
Segal (see [10], [13], [14] and [9]), proved in 1977 the following inequality:

(2) ‖u‖
L

2(n+2)
n (Rn+1)

≤ c (‖f‖L2 + ‖F‖
L

2(n+2)
n+4 (Rn+1)

),

where u is the solution of (1). After that, J. Ginibre and G. Velo, K. Yajima,
T. Cazenave and F. Weissler, S.J. Montgomery-Smith, and M. Keel and T. Tao
studied this estimate for more general spaces with different exponents in space and
time (see [5], [15], [2], [8], [3], [7] and [12]).

It is well known that the solution of (1) can be written in the form

(3) u(x, t) = eit∆u0(x) − i

∫ t

0

ei(t−τ)∆F (·, τ )(x) dτ,

where the first term is the solution of the homogeneous problem, that is, F = 0 in
(1), and the second one is the solution of the inhomogeneous problem with inital
data f = 0. The problem of determining in which Lebesgue spaces the solution
of the homogeneous problem lies is completely solved, and we summarize it in the
next theorem.

Theorem 1.1.

(4) ‖eit∆f‖Lq
t Lr

x
≤ c ‖f‖L2 ,

if and only if q, r ≥ 2, (q, r, n) �= (2,∞, 2) and 2/q + n/r = n/2.
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Here Lq
tL

r
x denotes the space of functions F (x, t) such that

‖F‖Lq
t Lr

x
=
∥∥‖F (·, t)‖Lr(Rn)

∥∥
Lq(R)

< ∞,

and the pairs (q, r) that verify the conditions given in the Theorem 1.1 are called
admissible pairs.

In this paper, we deal with the inhomogeneous part of the solution given in
(3). The problem to solve is for which values of q, r, q̃, r̃ ∈ [1, +∞] the following
estimates hold: ∥∥∥∥∫ t

0

ei(t−τ)∆F (·, τ ) dτ

∥∥∥∥
Lq

t Lr
x

≤ c ‖F‖
Lq̃′

t Lr̃′
x

,(5)

∥∥∥∥∫ t

−∞
ei(t−τ)∆F (·, τ ) dτ

∥∥∥∥
Lq

t Lr
x

≤ c ‖F‖
Lq̃′

t Lr̃′
x

,(6)

∥∥∥∥∫ ∞

−∞
ei(t−τ)∆F (·, τ ) dτ

∥∥∥∥
Lq

t Lr
x

≤ c ‖F‖
Lq̃′

t Lr̃′
x

.(7)

The inequalities (5), (6) and (7) involve different operators, but all of them have
similar properties. First of all, because of the scale, the exponents q, r, q̃ and r̃ have
to verify the identity

(8)
1
q̃′

− 1
q

+
n

2

(
1
r̃′

− 1
r

)
= 1.

Observe that if r and r̃ are fixed in (8) the difference 1/q̃′ − 1/q is also fixed, so it
is enough to give the values of q for which the estimates hold. Therefore, we will
represent the results in a plane, drawing on the X axis the values of 1/r̃′ and on the
Y axis the values of 1/r (see Figure 1), and we will say that the estimates are true at
point P for some values of q. On the other hand, if the estimates are true with a pair
(q, r) on the left and a pair (q̃′, r̃′) on the right, then they must also be true when
we switch the roles of (q, r) and (q̃, r̃). Therefore, the estimates are true at point P
when a < 1/q0 < b, if and only if they are true at Q when 1 − b < 1/q̃′0 < 1 − a.
So the picture must be symmetric with respect to the line called line of symmetry,
and then it is enough to study what happens on the right-hand side of this line.

Although the inequalities (5), (6) and (7) have similar properties, they are not
equivalent in general, but we do have that (6) implies (5) and (7). In order to
prove that (6) implies (5), divide the norm in the variable t given in (5) in two,
for t ≥ 0 and for t < 0. When t ≥ 0 we can write [0, t) = (−∞, t) ∩ [0,∞), and
then apply (6). The case t < 0 can be reduced to the case t ≥ 0 by just making
some changes of variable. On the other hand, splitting the integral in (7) into two
integrals and making changes of variable, one can see that (6) also implies (7). A
result of M. Christ and A. Kiselev asserts that (6) and (7) are equivalent when
q̃′ < q (see [4]), but the case q = q̃′ is the interesting one, because it corresponds
to the borderline AB in Figure 2.

The known results about the Strichartz estimates given in (5), (6) and (7) are due
to several authors. In the inequality (2) we find the first result, which was proved
by R. Strichartz in 1977, and it corresponds to the case q = r = q̃ = r̃ = 2(n+2)/n.
After that, J. Ginebre and G. Velo in 1985 (see [5]), K. Yajima in 1987 (see [15]),
and T. Cazenave and F.B. Weissler in 1988 (see [2]) proved the estimates when (q, r)
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Figure 1. The Strichartz estimates given in (5), (6) and (7) are
true at point P with q = q0 and q̃′ = q̃′0, if and only if they are
true at point Q, with q = q̃0 and q̃′ = q′0.

Figure 2. The Strichartz estimates given in (5), (6) and (7) are
true in the pentagon with vertices A, B, C, D and E for certain
values of q.

and (q̃, r̃) are admissible pairs with q �= 2 and q̃ �= 2. In 1998, M. Keel and T. Tao
(see [7]) obtained the result for admissible pairs with q = 2 or q̃ = 2. Note that for
fixed r and r̃, if we take q and q̃ such that (q, r) and (q̃, r̃) are admissible pairs the
identity (8) holds, but there are other values of q and q̃ verifying (8) for which the
estimates (5), (6) and (7) could be true. The first result for pairs different from
the admissible pairs is due to T. Cazenave and F. Weissler (see [3]). In 1992, they
proved the estimates when r = r̃ with 2 < r < 2n/(n − 2) if n ≥ 3 (open segment
DP in Figure 2), 2 < r < ∞ if n = 2, or 2 < r ≤ ∞ if n = 1, 1/q < n(1/2 − 1/r),
and q and q̃ verify (8), obtaining the estimates not only for admissible pairs (q, r),
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2126 M. C. VILELA

Figure 3. The Strichartz estimates given in (5), (6) and (7) are
true inside the triangle ÂBC for all possible q.

(q̃, r̃). Later, in 1994 T. Kato (see [6]) proved the estimates inside the square with
vertices C, D, E and P when 1/q < n(1/2 − 1/r), 1/q̃ < n(1/2 − 1/r̃), and (8) is
verified.

The proofs of J. Ginebre and G. Velo, and T. Cazenave and F. Weissler use the
ideas of R. Strichartz. In this paper, we will follow the ideas of M. Keel and T. Tao
to get some new results that we will prove in section 2. In dimension n ≥ 3 (see
Figure 2), we get that the estimates (5), (6) and (7) are true inside the triangle
ĈDR when q = ∞, obtaining the sharp result in this triangle. We also add to the
known results the triangle B̂CP . More precisely, on the segment BP we have the
estimates just for some values of q, for instance, we prove them at point P when
2n/(n + 2) ≤ q ≤ 2n/(n − 2), improving the result of M. Keel and T. Tao, who
obtained the estimates at point P with q = q̃ = 2. The situation in the rest of the
triangle is better, and we get the estimates for all possible q, except for q = ∞. The
improvement we get in dimension n = 1 or n = 2 is just the critical case q = ∞ in
the triangle ÂBC (see Figure 3).

Concerning negative results, in section 3 we give some counterexamples which
prove that the estimates (5), (6) and (7) are false outside the pentagon with vertices
A′, B′, C, D and E for any q. However, we do not know what happens in either of
the triangle B̂B′C or in its equivalent by duality ÂA′E. In dimension n = 2 we
know that estimates (5) and (6) are false at point A for any q. This is a trivial
generalization of a result of T. Tao given in [12], but the argument fails with estimate
(7).

2. Positive results

In this section we present two theorems. The first one is the main result of this
paper, where we prove the estimates (5), (6) and (7) on the borderline AB (see
Figure 2). In the second one we add to the known results the triangles B̂CP and
ÂEP .

Theorem 2.1. Let be n ≥ 3 and r, r̃ such that

1
r̃′

− 1
r

=
2
n

.
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The Strichartz estimates given in (5), (6) and (7) hold when⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2(n − 1)

<
1
2
− 1

r
<

n + 4
2n(n + 1)

, if
1
r
≤ 1

q
=

1
q̃′

< 1 − n

2

(
1
r̃′

+
1
r
− 1
)

,

n + 4
2n(n + 1)

≤ 1
2
− 1

r
≤ 3

2(n + 1)
, if

1
r
≤ 1

q
=

1
q̃′

≤ 1
r̃′

,

3
2(n + 1)

<
1
2
− 1

r
<

3n − 4
2n(n − 1)

, if − n

2

(
1
r̃′

+
1
r
− 1
)

<
1
q

=
1
q̃′

≤ 1
r̃′

.

Proof. It is enough to prove estimate (6). We divide the proof into four steps.
Step 1. Following [7], we use the bilinear expression of (6), which is

(9) |T (F, G)| ≤ c ‖F‖
Lq̃′

t Lr̃′
x
‖G‖

Lq′
t Lr′

x
,

where T (F, G) is the bilinear form

T (F, G) =
∫ +∞

−∞

∫ t

−∞

〈
e−iτ∆F (·, τ ), e−it∆G(·, t)

〉
L2

x
dτ dt.

Decomposing the operator T dyadically, it is enough to prove that

(10)
∑
j∈Z

|Tj(F, G)| ≤ c ‖F‖
Lq̃′

t Lr̃′
x
‖G‖

Lq′
t Lr′

x
,

where for j ∈ Z,

(11) Tj(F, G) =
∫ +∞

−∞

∫
t−2j+1<τ≤t−2j

〈
e−iτ∆F (·, τ ), e−it∆G(·, t)

〉
L2

x
dτ dt.

Step 2. In the next lemma we present a family of estimates for the operators Tj

that will allow us to add in (10).

Lemma 2.2. Let be r and r̃ such that 2 ≤ r, r̃ ≤ ∞ and

n − 2
n

(
1 − 1

r̃′

)
≤ 1

r
≤ n

n − 2

(
1 − 1

r̃′

)
, if n ≥ 3

(kite of vertices C, D, E and F in Figure 2). Then, for all q and q̃ verifying

0 ≤ 1
q
≤ 1

q̃′
< 1 − n

2

(
1
r̃′

+
1
r
− 1
)

, if
1
r̃′

+
1
r
≥ 1,

or

−n

2

(
1
r̃′

+
1
r
− 1
)

<
1
q
≤ 1

q̃′
≤ 1, if

1
r̃′

+
1
r
≤ 1,

the following estimates hold for all j ∈ Z :

(12) |Tj(F, G)| ≤ c 2−jβ(q̃,q,r̃,r)‖F‖
Lq̃′

t Lr̃′
x
‖G‖

Lq′
t Lr′

x
,

with Tj the operator defined in (11) and

β(q̃, q, r̃, r) =
(

1
q̃′

− 1
q

)
+

n

2

(
1
r̃′

− 1
r

)
− 1.
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Observe that if we take q̃, q, r̃ and r verifying (8), due to the scale of (5), (6) and
(7), β = 0, and then we cannot sum in (10) from inequalities (12). We solve this
problem, for a kind of function, in the next step.

Step 3. Let us prove (10) for model functions Fk and Gm defined for k, m ∈ Z

by

(13) Fk(x, τ) = 2−k/r̃′
f(τ )χIk(τ)(x), Gm(x, t) = 2−m/r′

g(t)χJm(t)(x),

with |Ik(τ )| = 2k ∀τ ∈ R and |Jm(t)| = 2m ∀t ∈ R.
Given a point (1/r̃′, 1/r) on the open segment AB (see Figure 2), and writing

Lemma 2.2 for these model functions, with r̃ = a and r = b, we have that

|Tj(Fk, Gm)| ≤ c 2(k−j n
2 )( 1

a′ − 1
r̃′ )+(m−j n

2 )( 1
r −

1
b )‖f‖

Lq̃′
t
‖g‖

Lq′
t

,

for all (1/a′, 1/b) in a neighborhood of the point (1/r̃′, 1/r). Therefore, we can
optimize in a and b to assert that there exists an ε = ε(r̃, r) > 0 such that

(14) |Tj(Fk, Gm)| ≤ c 2−ε(|k−j n
2 |+|m−j n

2 |)‖f‖
Lq̃′

t
‖g‖

Lq′
t

.

These estimates allow us to sum in (10), concluding the proof for model functions.
Step 4. Finally, we deal with arbitrary functions, decomposing them into sums

of model functions through the following lemma.

Lemma 2.3 (Atomic decomposition of Lp. See [10], e.g.). Let 1 < p < ∞. Then,
any f ∈ Lp can be written as

f =
∑
k∈Z

ckχk,

where χk is a function bounded by O(2−k/p) and supported on a set of measure
O(2k), and ck is a non-negative constant such that ‖ck‖�p ≤ c ‖f‖Lp .

For fixed τ and t, F (·, τ ) ∈ Lr̃′
and G(·, t) ∈ Lr′

, then, by the previous lemma,

F (x, τ) =
∑
k∈Z

Fk(x, τ) =
∑
k∈Z

fk(τ )χ̃k,τ (x) and

G(x, t) =
∑
m∈Z

Gm(x, t) =
∑
m∈Z

gm(t)χm,t(x), with

|χ̃k,τ | = O(2−k/r̃′
), |χm,t| = O(2−m/r′

), |Supp χ̃k,τ | = O(2k), |Supp χm,t| = O(2m),

(15)
∥∥∥‖fk(τ )‖�r̃′

k

∥∥∥
Lq̃′

τ

≤ c ‖F‖
Lq̃′

τ Lr̃′
x

and
∥∥∥‖gk(t)‖�r′

k

∥∥∥
Lq′

t

≤ c ‖G‖
Lq′

t Lr′
x

,

where Supp f denotes the support of a function f. Then, by Step 3, we have that∑
j∈Z

|Tj(F, G)| ≤ c
∑
j∈Z

∑
k∈Z

∑
m∈Z

|Tj(Fk, Gm)|

≤ c
∑
k∈Z

∑
m∈Z

(1 + |k − m|) 2−ε|k−m|‖fk‖Lq̃′
t
‖gm‖

Lq′
t

= c ‖f(h ∗ g)‖�1

where f(k) = ‖fk(t)‖
Lq̃′

t
, g(k) = ‖gk(t)‖

Lq′
t

and h(k) = (1 + |k|)2−ε|k|. Taking a

and b such that 1 + 1/a = 1/b + 1/c, with 1 ≤ a, b, c ≤ ∞, and using Hölder’s
inequality and Young’s inequality, we get that∑

j∈Z

|Tj(F, G)| ≤ c ‖f‖�a′ ‖g‖�b .
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We finish proving that, by Minkowski’s inequality and (15), ‖f‖�a′ ≤ ‖F‖
Lq̃′

τ Lr̃′
x

if
q̃′ ≤ a′ and r̃′ ≤ a′. Similarly, ‖g‖�b ≤ ‖G‖

Lq′
t Lr′

x
if b′ ≤ q and b′ ≤ r.

Because of the conditions that a and b must verify, we have the restrictions r̃′ ≤ q
and q̃′ ≤ r. The rest of restrictions for q or q̃′ given on the theorem are sharp, as
one can see from the identity (8) and Proposition 3.1 parts i) and ii). �

Proof of Lemma 2.2. Because of the scale, it is enough to prove (12) when j = 0;
since T0 is localized in time, if q̃′ ≤ q, we may assume that F and G are supported
on a time interval of length O(1).

We get the result by interpolation of the following cases (see Figure 2):

i) r = r̃ = ∞ and 1 ≤ q̃′ ≤ q ≤ ∞ (point F ),
ii) r = r̃ = 2 and 1 ≤ q̃′ ≤ q ≤ ∞ (point D),

iii) r = 2,

⎧⎨⎩ r̃ = ∞ and 2 ≤ q̃′ ≤ q ≤ ∞, if n = 1,
2 ≤ r̃ < ∞ and 2 < q̃′ ≤ q ≤ ∞, if n = 2,
r̃ = 2n/(n − 2) and 2 ≤ q̃′ ≤ q ≤ ∞, if n ≥ 3 (point C).

iv) r̃ = 2,

⎧⎨⎩ r = ∞ and 1 ≤ q̃′ ≤ q ≤ 2, if n = 1,
2 ≤ r < ∞ and 1 ≤ q̃′ ≤ q < 2, if n = 2,
r = 2n/(n − 2) and 1 ≤ q̃′ ≤ q ≤ 2, if n ≥ 3 (point E).

Writing the Schrödinger operator for t �= 0 as a convolution operator with kernel
(4πit)−n/2ei|·|2/4t, it is clear that ‖eit∆f‖L∞(Rn) ≤ c |t|−n/2 ‖f‖L1(Rn). Therefore,

|T0(F, G)| =
∣∣∣∣∫ +∞

−∞

∫
t−2<τ≤t−1

〈
ei(t−τ)∆F (·, τ ), G(·, t)

〉
L2

x

dτ dt

∣∣∣∣
≤ c

∫ +∞

−∞

∫
t−2<τ≤t−1

|t − τ |−n/2 ‖F (·, τ )‖L1
x
‖G(·, t)‖L1

x
dτ dt

≤ c ‖F‖L1
t L1

x
‖G‖L1

t L1
x
,

for all q, q̃ ≥ 1, by Hölder’s inequality.
On the other hand, as the Schrödinger operator is an isometry in L2(Rn), we

have that
|T0(F, G)| ≤ c ‖F‖L1

t L2
x
‖G‖L1

t L2
x
,

and we get ii) by Hölder’s inequality.
To prove iii) when n �= 2, we use the Cauchy-Schwartz inequality, the dual of

estimate (4) with q = 2, and Hölder’s inequality. For n ≥ 3 we get that

|T0(F, G)| ≤
∫ +∞

−∞

∥∥∥∥∫
t−2<τ≤t−1

e−iτ∆F (·, τ ) dτ

∥∥∥∥
L2

x

∥∥e−it∆G(·, t)
∥∥

L2
x

dt

≤ c sup
t∈R

‖χ(t−2,t−1](τ ) F (·, τ )‖
L2

tL
2n/(n+2)
x

‖G‖L1
t L2

x

≤ c ‖F‖
Lq̃′

t L
2n/(n+2)
x

‖G‖
Lq′

t L2
x
,

whenever q̃′ ≥ 2 and q ≥ 1. In the case n = 2, (4) is false for q = 2, but it is true
for q = 2 + ε with ε > 0 as small as we want, and then we can proceed in the same
way. A similar argument gives iv). �
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We finish this section with a result for the triangle B̂CP and its equivalent by
duality ÂEP (see Figure 2). The situation inside these triangles is better than the
situation on the borderline AB, and the result that we get is almost sharp in time,
in the sense that it is formulated for all possible q and q̃ except q = ∞ or q̃ = ∞,
as one can see from Proposition 3.1 parts i), ii) and iii).

Theorem 2.4. Let be n ≥ 3. The Strichartz estimates given in (5), (6) and (7)
hold when r̃, r, q̃ and q verify the identity

1
q̃′

− 1
q

+
n

2

(
1
r̃′

− 1
r

)
= 1,

due to the scale, and one of the following conditions:

i)
1
r̃′

≥ n + 2
2n

,
1
r̃′

− 2
n

<
1
r
≤ n

n − 2

(
1 − 1

r̃′

)
(triangle B̂CP )

and 0 <
1
q
≤ 1

q̃′
< 1 − n

2

(
1
r̃′

+
1
r
− 1
)

,

ii)
1
r
≤ n − 2

2n
, 1 −

(
n

n − 2

)
1
r
≤ 1

r̃′
<

1
r

+
2
n

(triangle ÂEP )

and −n

2

(
1
r̃′

+
1
r
− 1
)

<
1
q
≤ 1

q̃′
< 1.

The proof of this theorem is analogous to the proof of Theorem 2.1 except for
steps three and four, which are replaced by a bilinear interpolation argument that
we present in the next lemma, and that you can find in [1] (section 3.13, exercise
5(b)).

Lemma 2.5. If A0, A1, B0, B1, C0 and C1 are Banach spaces, and T is a bilinear
operator such that

T : A0 × B0 −→ C0,
T : A0 × B1 −→ C1,
T : A1 × B0 −→ C1,

then, whenever 0 < θ0, θ1 < θ = θ0 + θ1 < 1, 1 ≤ p, q, r ≤ ∞ and 1 ≤ 1
p + 1

q , we
have that

T : (A0, A1)θ0,pr × (B0, B1)θ1,qr −→ (C0, C1)θ,r.

Here (C0, C1)θ,r denotes the Banach space obtained from C0 and C1 by the real
interpolation method.

Proof of Theorem 2.4. Arguing as in Step 1 of the proof of Theorem 2.1, it is enough
to prove the estimate (10), which can be written in the form

‖T ‖�01(C) ≤ c ‖F‖
Lq̃′

t Lr̃′
x
‖G‖

Lq′
t Lr′

x
,

where T = {Tj}j∈Z is a vector-valued bilinear operator with Tj given in (11).
In general, for s ∈ R and 1 ≤ p ≤ ∞, �s

p(C) denotes the Banach space of
sequences x̄ = {xk}k∈Z such that

‖x̄‖�s
p

=

⎧⎪⎨⎪⎩
(∑

k∈Z

(
2ks|xk|

)p)1/p
< ∞, if p �= ∞,

sup
k∈Z

(
2ks|xk|

)
< ∞, if p = ∞.
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Fixed r̃ and r under the conditions of the theorem, by Lemma 2.2, we can take
certain q̃0, q0, q̃1 and q1 verifying the identity 1

q0
− 1

q1
= 1

q̃′
1
− 1

q̃′
0

such that

T : L
q̃′
0

t Lr̃′

x × L
q′
0

t Lr′

x −→ �β(q̃0,q0,r̃,r)
∞ (C) = �β0

∞(C),
T : L

q̃′
0

t Lr̃′

x × L
q′
1

t Lr′

x −→ �β(q̃0,q1,r̃,r)
∞ (C) = �β1

∞(C),
T : L

q̃′
1

t Lr̃′

x × L
q′
0

t Lr′

x −→ �β(q̃1,q0,r̃,r)
∞ (C) = �β1

∞(C).

Therefore, we can apply Lemma 2.5 with r = 1 to the operator T , obtaining that

T : (Lq̃′
0

t Lr̃′

x , L
q̃′
1

t Lr̃′

x )θ0,q̃′ × (Lq′
0

t Lr′

x , L
q′
1

t Lr′

x )θ1,q′ → (�β0
∞(C), �β1

∞(C))θ,1,

whenever 0 < θ0, θ1 < θ = θ0 + θ1 < 1 and 1 ≤ q̃′ ≤ q ≤ ∞. The proof follows using
the next real interpolation space identities (see [1], Theorems 5.6.1 and 5.2.1):

i) (�β0
∞(C), �β1

∞(C))θ,1 = �01(C) if q0 �= q1 and (1 − θ)β0 + θβ1 = 0.

ii) (Lq̃′
0

t Lr̃′

x , L
q̃′
1

t Lr̃′

x )θ0,q̃′ = Lq̃′

t Lr̃′

x and (Lq′
0

t Lr′

x , L
q′
1

t Lr′

x )θ1,q′ = Lq′

t Lr′

x , if

1
q̃′

=
(1 − θ0)

q̃′0
+

θ0

q̃′1
and

1
q

=
(1 − θ1)

q0
+

θ1

q1
,

respectively. �

Remark 2.6. In the previous proof, for r, r̃, q and q̃ fixed under the conditions of
Theorem 2.4, it is essential to have the family of estimates given by Lemma 2.2 in
a neighbourghood of the point (1/q̃′, 1/q). That is the reason why we do not get
the result for the critical cases q = ∞ or q̃ = ∞.

Remark 2.7. Theorem 2.4 holds even when (1/r̃′, 1/r) is inside the pentagon with
vertices A, B, C, D and E, but the result given is unknown just in the triangles
B̂CP and ÂEP.

Remark 2.8. In this paper we study Strichartz estimates for the Schrödinger equa-
tion, but similar results can be obtained for more general equations, where the
Laplacian is replaced by the operator ∆a/2

x with a > 0, which is defined by

(∆a/2
x f )̂ (ξ) = (−4π2|ξ|2)a/2.

3. Negative results

In this section we give some counterexamples which show that the Strichartz
estimates given in (5), (6) and (7) are false for some exponents.

Proposition 3.1. The estimates given in (5), (6) and (7) are false in the following
cases:

i) r < 2, or, r = 2 and q �= ∞, or, r > 2 and 1
q ≥ n

(
1
2 − 1

r

)
,

ii) r̃′ > 2, or, r̃′ = 2 and q̃ �= ∞, or, r̃′ < 2 and 1
q̃′ ≤ 1 − n

(
1
r̃′ − 1

2

)
,

iii) q < q̃′,
iv) 1

r̃′ − 1
r > 2

n ,

v) 1
r̃′ + 1

r > 1 + 1
n ,

vi) 1
r̃′ + 1

r < 1 − 1
n .

Proof. By duality, i) is equivalent to ii) and v) is equivalent to vi). On the other
hand, (6) implies (5) and (7), so it is enough to give counterexamples for (5) and
(7).
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The counterexample for (7) in case i) is a function F (x, t) with Fourier transform
in both variables given by F̂ x,t(ξ, τ) = ϕ(τ )e−π|ξ|2 , where ϕ ∈ C∞(R) is supported
in (−4π, 4π), 0 ≤ ϕ ≤ 1 and ϕ(r) = 1 in (−2π, 2π). If we denote the operator
in (7) by TT ∗, and starting from the expression of this operator via the Fourier
transform, we have that

TT ∗F (x, t) =
∫

Rn

e−4π2it|ξ|2ϕ(−2π|ξ|2)e−π|ξ|2e2πix·ξ dξ

= (1 + 4πit)−
n
2 e

−π|x|2
1+4πit + I,(16)

with
I =

∫
Rn

e−π|ξ|2(1+4πit)
[
ϕ(−2π|ξ|2) − 1

]
e2πix·ξ dξ.

Writing I in polar coordinates and using the behaviour of d̂σ at infinity, where dσ
is the measure over the unit sphere, it is easy to see that there exists a > 1 such
that if t > a and t < |x| < 2t, then |I| ≤ c |t|−(n+1)/2. Therefore, from (16) we have
that |TT ∗F (x, t)| ≥ c t−n/2, and the result follows from here. For estimate (5), just
replace ϕ by a function ψ ∈ C∞(R) supported in (1/2, 3/2) with 0 ≤ ψ ≤ 1 and
ψ(1) = 1, and everything works.

In case iii) take as a counterexample the function

H(x, t) =
N∑

j=0

Hj(x, t) =
N∑

j=0

F (x, t − tj),

with F defined as in case i) and tj = jN for j = 0, 1, . . . , N. Taking N large enough,
we have that ‖H‖

Lq̃′
t Lr̃′

x
≤ c N1/q̃′

. On the other hand, let

B =
N−1⋃
k=1

Bk with Bk = {t/1 < |t − tk| < 2}.

The result follows because for N large enough, we can write that

‖TT ∗H‖q
Lq

t Lr
x

≥
N−1∑
k=1

‖TT ∗H‖q
Lq(Bk)Lr

x

≥ c

N−1∑
k=1

⎛⎜⎝‖TT ∗Hk‖Lq(Bk)Lr
x
−

∥∥∥∥∥∥
∑
j �=k

TT ∗Hj

∥∥∥∥∥∥
Lq(Bk)Lr

x

⎞⎟⎠
q

≥ c

N∑
k=0

⎛⎝1 − N−n
2

∑
j �=k

|j − k|−n
2

⎞⎠q

≥ c N.

Case iv) is consequence of case iii) and the identity (8), due to the scale.
Finally, in case v) the counterexample for (7) is a function G(x, t) with Fourier

transform given by Ĝx,t(ξ, τ) = φ(|ξ|/2)φ(M(τ +2π)), where φ ∈ C∞(R) is an even
function supported in (−1, 1), 0 ≤ φ ≤ 1, and M is a constant as large as we need.
Using polar coordinates and the behaviour of d̂σ at infinity, we have that if |x| is
large enough, then |TT ∗G(x, t)| = 2|x|−(n−1)/2|I(x, t)|, with

I(x, t) =
∫ +∞

0

r
n−1

2 φ
(r

2

)
φ(2πM(r2 − 1))e−4π2itr2

cos
(
2πr|x| − (n − 1)

π

4

)
dr.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INHOMOGENEOUS STRICHARTZ ESTIMATES 2133

Taking M large enough, if 0 < t < M/2 and x ∈ A =
⋃

3M/2<m<2M Am with

(17) Am =

⎧⎪⎨⎪⎩x

/
m + n

8 − 1
24(

1 − M−1

2π

)1/2
< |x| <

m + n
8 + 1

24(
1 + M−1

2π

)1/2

⎫⎪⎬⎪⎭ (m ∈ N),

then |I(x, t)| ≥ c M−1 and therefore

‖TT ∗G‖Lq
t Lr

x
≥ ‖TT ∗G‖Lq

t (0,M/2)Lr
x(A) ≥ c M− (n+1)

2 + 1
q + n

r .

The result follows making M go to infinity, using the identity (8) and the fact that

‖G‖
Lq̃′

t Lr̃′
x

≤ c M
−1+ 1

q̃′ .

For estimate (5), we take Ĝx,t(ξ, τ) = ψ(|ξ|)φ(M(τ + 2π)), with ψ, φ as defined
before, and we denote the operator by U . Using the Fourier transform we write

UG(x, t) =
−1
2π

∫
R×Rn

1 − e−2πit(τ+2π|ξ|2)

τ + 2π|ξ|2 ψ(|ξ|)φ(M(τ + 2π))e2πitτ+2πix·ξ dτ dξ.

With a change of variable we have that

(18) UG(x, t) =
−1
2π

∫
R

I(τ )
φ(M(τ + 2π))

|τ |

(√
|τ |
2π

)n

e2πitτ dτ,

where

I(τ ) =
∫

Rn

1 − e−2πit|τ |(|ξ|2−1)

|ξ|2 − 1
ψ

(√
|τ |
2π

|ξ|
)

e2πix·
√

|τ|
2π ξ dξ.

Using polar coordinates we write

I(τ ) =
∫ ∞

0

rn−1 1 − e−2πit|τ |(r2−1)

r2 − 1
ψ

(√
|τ |
2π

r

)
d̂σ

(√
|τ |
2π

rx

)
dr.

In order to estimate I(τ ) we need the complete asymptotic expansion of dσ, that
is,

d̂σ(ξ) = |ξ|−(n−1)/2

⎛⎝e2πi|ξ|
∞∑

j=0

cj |ξ|−j + e−2πi|ξ|
∞∑

j=0

c̄j |ξ|−j

⎞⎠ , if |ξ| → ∞,

with the coefficient cj given by

cj =

⎧⎨⎩ (−1)
j
2 e−i (n−1)π

4 aj , if j is even,

(−1)
j+1
2 e−i (n+1)π

4 aj , if j is odd,

where aj =
(4π)−jΓ

(
n−1

2 +j
)

j!Γ
(

n−1
2 −j

) and Γ denotes the Gamma function (see [10]). If |x| is

large enough we can use this expansion to write

(19) I(τ ) = |x|−
(n−1)

2

(√
|τ |
2π

)− (n−1)
2 ∞∑

j=0

|x|−j

(√
|τ |
2π

)−j

(cj I1
j (τ ) + c̄j I2

j (τ )),
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where

I1
j (τ ) =

∫ +∞

−∞

1 − e−2πit|τ |(r2−1)

r − 1
gj(r) e2πi

√
|τ|
2π r|x| dr,

I2
j (τ ) =

∫ +∞

−∞

1 − e−2πit|τ |(r2−1)

r − 1
gj(r) e−2πi

√
|τ|
2π r|x| dr,

with

gj(r) =
|r|n−1

2 −jψ

(√
|τ |
2π r

)
r + 1

.

Now we write I1
j as the following sum:

(20) I1
j (τ ) = I1,a

j (τ ) + gj(1)(I1,b(τ ) − I1,c(τ )),

with

I1,a
j (τ ) =

∫ +∞

−∞

1 − e−2πit|τ |(r2−1)

r − 1
(gj(r) − gj(1)) e2πi

√
|τ|
2π r|x| dr,

I1,b(τ ) = p.v.

∫ +∞

−∞

e2πi
√

|τ|
2π r|x|

r − 1
dr,

I1,c(τ ) = p.v.

∫ +∞

−∞

e−2πit|τ |(r2−1)

r − 1
e2πi

√
|τ|
2π r|x| dr,

where p.v. denotes the principal value.
First of all, using the mean value theorem and integrating by parts we obtain,

as long as M(τ + 2π) ∈ Supp φ, that

(21) |I1,a
j (τ )| ≤ c M−1, if

M

12
< t <

M

6
,

M

16
< |x| <

M

8
.

On the other hand,

(22) I1,b(τ ) = iπ e2πi
√

|τ|
2π |x|sgn

(√
|τ |
2π

|x|
)

= iπ e2πi
√

|τ|
2π |x|.

Finally, if we put µ = |x|√
t
− 2

√
t|τ |
√

2π
|τ | , making a change of variable we can write

I1,c(τ ) = e2πi
√

|τ|
2π |x|ei µ2

4 p.v.

∫ +∞

−∞
e−i (µ−r)2

4
dr

r

= 2
√

πe2πi
√

|τ|
2π |x|ei µ2

4 e−i π
4 e−i∆

(
p.v.

1
r

)
(µ)

=
√

πei π
4 e2πi

√
|τ|
2π |x|

(
2
√

πei π
4 −

∫ µ

−∞
ei y2

4 dy

)
.

Integrating by parts we get that

(23) I1,c(τ ) = 2πie2πi
√

|τ|
2π |x| + O(M−1/2),

for the same τ, t, and x for which we obtained (21). Using (21), (22) and (23) in
(20) we have that

I1
j (τ ) = −i

π

2
ψ

(√
|τ |
2π

)
e2πi

√
|τ|
2π |x| + O(M−1/2),
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if M/12 < t < M/6, M/16 < |x| < M/8 and M(τ + 2π) ∈ Suppφ. In a similar way
and under the same conditions, you can prove that

I2
j (τ ) = −i

π

2
ψ

(√
|τ |
2π

)
e−2πi

√
|τ|
2π |x| + O(M−1/2).

With these two estimates, from (19) we have for t and x such that M/12 < t < M/6
and M/16 < |x| < M/8 with M large enough, that

I(τ ) = −iπ

(
|x|
√

|τ |
2π

)− (n−1)
2

ψ

(√
|τ |
2π

)
cos
(
|x|
√

2π|τ | − (n − 1)
π

4

)
+ O(M−n

2 ),

and therefore, from (18) we obtain that

|UG(x, t)|

≥ c M− (n−1)
2

∣∣∣∣∫
R

φ(M(τ + 2π) cos
(
|x|
√

2π|τ | − (n − 1)
π

4

)
cos(2πtτ ) dτ

∣∣∣∣
+ O

(
M− (n+2)

2

)
.

From here, if we take x ∈ A =
⋃

M
15 <m< M

10

Am and t ∈ B =
⋃

π
5 M<k< π

3 M

Bk, with Am

defined in (17) and

Bk =
{

t

/
k − 1

6

2π − M−1
< t <

k + 1
6

2π + M−1

}
(k ∈ N),

we have that |UG(x, t)| ≥ O
(
M−(n+1)/2

)
and therefore,

‖UF‖Lq
t Lr

x
≥ ‖UF‖Lq(B)Lr(A) ≥ c M− (n+1)

2 + 1
q + n

r .

We finish the proof as we did for the operator TT ∗. �
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