
Galaxies 2013, 1, 83-95; doi:10.3390/galaxies1020083
OPEN ACCESS

galaxies
ISSN 2075-4434

www.mdpi.com/journal/galaxies
Article

Inhomogeneous Viscous Fluids in a
Friedmann-Robertson-Walker (FRW) Universe
Ratbay Myrzakulov 1, Lorenzo Sebastiani 1 and Sergio Zerbini 2,*

1 Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics,
Eurasian National University, Astana 010008, Kazakhstan;
E-Mails: rmyrzakulov@gmail.com (R.M.); l.sebastiani@science.unitn.it (L.S.)

2 Department of Physics, University of Trento, Italy and Gruppo Collegato di Trento, Istituto Nazionale
di Fisica Nucleare, Sezione di Padova, Trento 38123, Italy

* Author to whom correspondence should be addressed; E-Mail: zerbini@science.unitn.it;
Tel.: +39-046-128-1527; Fax: +39-046-128-3934.

Received: 20 May 2013; in revised form: 26 June 2013 / Accepted: 27 June 2013 /
Published: 9 July 2013

Abstract: We give a brief review of some aspects of inhomogeneous viscous fluids in a
flat Friedmann-Robertson-Walker Universe. In general, it is pointed out that several fluid
models may bring the future Universe evolution to become singular, with the appearance of
the so-called Big Rip scenario. We investigate the effects of fluids coupled with dark matter
in a de Sitter Universe, by considering several cases. Due to this coupling, the coincidence
problem may be solved, and if the de Sitter solution is stable, the model is also protected
against the Big Rip singularity.
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1. Introduction

Since the discovery of the current cosmic acceleration [1–8], the dark energy issue has become
one of the most interesting fields of research in modern cosmology. It is well known that there exist
several descriptions of the current accelerated expansion of the Universe. The simplest one is the
introduction of a small positive Cosmological Constant in the framework of General Relativity, so that
one is dealing with a perfect fluid whose Equation of State parameter is ω = −1, and this fluid is
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able to describe the current cosmic acceleration, but also, the use of other forms of fluid (phantom,
quintessence, inhomogeneous fluids, etc.), satisfying a suitable Equation of State is not excluded. On the
other hand, the observed small value of the Cosmological Constant leads to several conceptual problems
(vacuum energy, coincidence problem, etc.), so that in the last few years, several different approaches
to the dark energy issue have been proposed. Among them, the modified theories of gravity [9–20]
represent an interesting extension of Einstein’s theory, but also supersymmetry and string theories have
been investigated.

In this short review, we will present some aspects of inhomogeneous viscous fluids in a flat
Friedmann-Robertson-Walker Universe. The fluid representation of dark energy possesses many
advantages. For example, besides the fact that we can still use the formalism of General Relativity
by means of Friedmann equations, almost any modification to General Relativity can be encoded in a
fluid-like form, so that the study of inhomogeneous viscous fluids is one of the easiest way to understand
some general features of such a kind of alternative theory.

The paper is organized as follows. In Section 2, we will introduce the formalism of inhomogeneous
viscous fluids in a flat Friedmann-Robertson-Walker Universe, and we will show how it is possible to
write a modification to gravity in the fluid-like form [specifically, we will consider F (R)-gravity]. Thus,
we will consider an inhomogeneous fluid model that reproduces a viable cosmology, but that brings the
future Universe evolution to become singular at a finite-future time. This is the Big Rip scenario. It is
present in a large class of fluids and some other examples will be mentioned. In Section 3, we will couple
inhomogeneous viscous fluids with dark matter. The reason for such a coupling consists in the attempt
to solve the coincidence problem in a de Sitter Universe, since the ratio between dark matter and fluid
energy will depend on the coupling constant, almost independently from initial conditions. Furthermore,
when the de Sitter solution is stable, it is possible to avoid the finite future-time singularities. In Section
4, as a new result, we consider a different case of coupling between dark matter and fluid, and we will
repeat the calculations of Section 3. Conclusions are given in Section 5.

We use units of kB = c = h̄ = 1 and denote the gravitational constant, GN , by κ2 ≡ 8πGN , such that
G
−1/2
N = MPl, MPl = 1.2× 1019 GeV being the Planck mass.

2. Inhomogeneous Viscous Fluids, Modified Gravity and the Big Rip

In this Section, we will briefly review the general form of inhomogeneous viscous fluids in
Friedmann-Robertson-Walker (FRW) space-time and we will see how such a kind of fluid may describe a
viable dark energy cosmology with some different final scenarios. As already mentioned, the fact that the
dark energy observed in our Universe has an Equation of State (EoS) parameter, ω, very close to minus
one, suggests that the introduction of a positive Cosmological Constant in Einstein’s equation is the most
realistic way to describe the current cosmic acceleration. However, other kinds of fluids (quintessence,
phantom, inhomogeneous, viscous fluids) are not excluded, and the modified theories of gravity have a
corresponding description in the fluid-like form. In fact, the equation of state of inhomogeneous viscous
fluid in a flat Friedmann-Robertson-Walker space-time described by the metric:

ds2 = −dt2 + a2(t)dx2 (1)
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where a(t) is the scale factor of the Universe, reads [21]:

pF = ω(ρF)ρF +B(ρF, a(t), H, Ḣ...) (2)

where pF and ρF are the pressure and energy density of fluid, the EoS parameter, ω(ρF), may depend on
the energy density and the bulk viscosity, B(ρF, a(t), H, Ḣ...), is a general function of the fluid energy
density, the scale factor, the Hubble parameter and its derivatives.

As we stated above, with this general form of time-dependent bulk viscosity, we can encode any
modification to gravity in the fluid-like form. For example, in F (R)-gravity, the action is given by:

I =

∫
M
d4x
√
−g
[
F (R)

2κ2
+ L(matter)

]
(3)

where g is the determinant of the metric tensor, gµν ,M is the space-time manifold, L(matter) is the matter
Lagrangian and F (R) is a function of the Ricci scalar, R. The FRW equations of motion (EOMs) can be
written in the form:

ρeff =
3

κ2
H2 , peff = − 1

κ2

(
2Ḣ + 3H2

)
(4)

where ρeff and peff are the effective energy density and pressure of the modified gravity model:

ρeff ≡ ρm +
1

2κ2

[
(F ′(R)R− F (R))− 6H2(F ′(R)− 1)− 6HḞ ′(R)

]
(5)

peff ≡ pm +
1

2κ2

[
− (F ′(R)R− F (R)) + (4Ḣ + 6H2)(F ′(R)− 1) + 4HF ′(R) + 2F̈ ′(R)

]
(6)

Here, the prime denotes the derivative with respect toR and the dot represents the derivative with respect
to cosmological time. Thus, we recover the Friedmann-like equations, and the modification to gravity
has a fluid EoS in the form of Equation (2). For example, we may take ω(ρF) = ω, where ω is the EoS
parameter of standard matter, and identify the effective bulk viscosity as:

B(ρF, a(t), H, Ḣ...) =
1

2κ2

{
(1 + ω)(F (R)−RF ′(R)) + (F ′(R)− 1)

[
6H2(1 + ω) + 4Ḣ

]
+HḞ ′(R)(4 + 6ω) + 2F̈ ′(R)

}
(7)

An interesting example of viable inhomogeneous fluid has been proposed in [22]. It is worth noting
that such fluid brings a realistic scenario of the Universe today, but provides a final evolution different
from the one associated with the ΛCDMmodel. The EoS is given by:

pF = −ρF + f(ρF) (8)

where: 
f(ρF) = +2ρF

3n

(
1− 4n

δ

(
3m̃2

κ2ρF

) 1
2

) 1
2

, t ≤ t0

f(ρF) = −2ρF
3n

(
1− 4n

δ

(
3m̃2

κ2ρF

) 1
2

) 1
2

, t > t0

(9)
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In the above expressions, n ≥ 1 and δ are constant positive parameters, m̃2 is a mass scale related with
the matter energy density today as ρm(0) = 3m̃2/κ2, and t0 is a fixed time. Moreover, at t = t0, the fluid
energy density has a minimum and f(ρF) = 0. The EoS parameter, ω(ρF), reads:

ω(ρF) ≡ pF

ρF

= −1 + σ(t)
2

3n

(
1− 4n

δ

(
3m̃2

κ2ρF

) 1
2

) 1
2

(10)

where σ(t) = 1, when t ≤ t0, and σ(t) = −1, when t > t0. In fact, t = t0 (f(ρF) = 0) is the
transition point between quintessence (−1 < ω(ρF) < −1/3) and phantom (ωF < −1) regions, such
that ω(ρF) = −1. More specifically, for t < t0, −1 < ω(ρF) < −1 + 2/(3n) ≤ −1/3, and for t > t0,
−5/3 ≤ −1 − 2/(3n) < ω(ρF) < −1. The present accelerated epoch can be set at the time, t = t0.
From the fluid energy conservation law:

ρ̇F + 3Hf(ρF) = 0 (11)

one has:

ρF =

3m̃2
(
a(t)
n

) 2
n

(
4n+ c

−( 1
2)

0

(
a(t)
n

)− 1
n

)4

c0

16δ2κ2
(12)

where c0 > 0 is an integration constant. We put a(t0) = 1 and impose the ratio between fluid energy
density [ρF(0)] and matter today as ρF(0)/ρm(0) = Λ/(3m̃2), Λ being the Cosmological Constant. From
ρ̇F(0) = 0 (namely, ω(ρF(0)) = −1), one obtains:

c0 = 1
16

(
n1− 1

n

)−2

16n2

δ2
= Λ

3m̃2

(13)

when t� t0, the matter energy density, ρm ∼ a(t)−3, grows up faster than the fluid energy density, and
we recover the matter era. However, since at t = t0, ρF(0) > ρm(0), the fluid energy density overtakes
the matter energy density in the recent past and an accelerated expansion takes place. The Friedmann
equation, 3H2/κ2 = ρF, and Equation (13) lead to:

H(t) =
n
(

δ√
m̃2

)
(ts − t)

(
t− ts + δ√

m̃2

) , t < ts (14)

where ts > 0 is a fixed time parameter and δ/
√
m̃2 > ts, in order to haveH(t) > 0 (expanding Universe).

As a consequence, the future Universe expansion becomes singular when t approaches ts and the Hubble
parameter diverges at finite time (Big Rip). Hence, ts corresponds to the lifetime of the Universe. The
fluid exits from the de Sitter phase evolving in a phantom region. Such a kind of realistic inhomogeneous
fluid is compatible with the ΛCDM description today, but provides a different future scenario.

Many fluids could bring the future Universe evolution to become singular. The simplest and
well-known case is represented by the phantom fluid with pF = ωFρF and ωF < −1. If ωF is close
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to minus one, this kind of fluid describes a viable current acceleration. However, it admits a finite-future
time singularity [23], namely, the Big Rip. In fact, the Equation of State with the Friedmann equation,
3H2/κ2 = ρF, lead to:

H(t) = − 2

3(1 + ωF)

1

(t0 − t)
(15)

where t0 is the time at which the singularity occurs in the expanding Universe, being the Hubble
parameter positively defined.

Future finite-time singularities may also appear in the presence of bulk viscosity [24–27], as in
Equation (2). For example, if ωF is a constant and B(ρF, a(t), H, Ḣ...) = −(3H)2τ , where τ is a
constant (as we will see, it means that the viscosity is proportional to the Hubble parameter), one has:

ρ̇F + 3HρF(1 + ωF) = (3H)3τ (16)

Thus:

ρF =
27h3

0τ

(2 + 3h0(1 + ωF))(t0 − t)2
(17)

is a solution with:
H =

h0

(t0 − t)
(18)

and the Friedmann equation leads to the requirement, h0 = 2/[3κ2τ − 3(1 + ωF))], with [3κ2τ − 3(1 +

ωF)] > 0 [25]. Also, in this case, one has the Big Rip at the finite time, t0.

3. Viscous Fluids Coupled with Dark Matter

In this Section, in an attempt to solve the coincidence problem [28,29], we consider the possibility
of coupling viscous fluids with dark matter (DM). In standard cosmology, the energy density of (dark)
matter decreases with the scale factor as ρDM = ρDM(0)a(t)−3, and why we observe dark matter today and
dark energy almost equal in amount is an open question. However, if we introduce a coupling between
dark fluid and dark matter, we will see that when fluid becomes dominant in the dynamics of an FRW
Universe, the de Sitter solution can be also realized with a constant energy contribution of fluid and dark
matter. The ratio between dark energy fluid and matter depends on the coupling constant and can be
set equal to the observed value. Furthermore, if the de Sitter solution is stable, we also may avoid any
singular future scenario.

As the first step, we assume pDM = 0. As a result, the conservation laws of fluid and dark matter in
FRW space-time is:

ρ̇F + 3H(ρF + pF) = −Q0ρF (19)

ρ̇DM + 3HρDM = Q0ρF (20)

Here, Q0 is the coupling constant, ρDM is the energy density of dark matter and ρF and pF are the energy
density and pressure of a viscous fluid. We consider the following form of fluid EoS:

pF = ω(ρF)ρF − 3Hζ(H) (21)

where ζ(H) is the bulk viscosity, and in our ansatz, it depends only on the Hubble parameter, H(t). In
general, also, the EoS parameter of fluid, ω(ρF), is not a constant and may depend on the energy density.
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On thermodynamical grounds, in order to obtain the positive sign of the entropy change in an irreversible
process, ζ(H) has to be positive [24–26]. The stress-energy tensor of fluid turns out to be:

T (fluid)
µν = ρFuµuν + (ω(ρF)ρ− 3Hζ(H)) (gµν + uµuν) (22)

where uµ = (1, 0, 0, 0) is the four velocity vector. The FRW-equations of motion read:

ρF + ρDM =
3

κ2
H2 , pF = − 1

κ2

(
2Ḣ + 3H2

)
(23)

In what follows, we will analyze two different cases, namely ω(ρF), constant, and ω(ρF), not a constant.

3.1. ω(ρF) Constant

Suppose we have the ω(ρF) = ωF constant and bulk viscosity in the form:

ζ(H) = τ(3H)n (24)

with τ > 0 and n being constants. The solution of Equation (19) is:

ρF = ρF(0)
e−Q0t−3ωF log a(t)

a(t)3
+
τ32+ne−Q0t−3ωF log a(t)

a(t)3

∫
eQ0t′+3ωF log a(t′)a(t′)ȧ(t′)2

(
ȧ(t′)

a(t′)

)n
dt′ (25)

where ρF(0) is a positive integration constant. The de Sitter solution is obtained by the choice, H = HdS,
where the Hubble parameter corresponds to the present value of the accelerated Universe, and one has:

ρF = ρF(0)e
−t(Q0+3HdS(1+ωF)) +

(3HdS)n+2τ

(Q0 + 3HdS(1 + ωF))
, ωF 6= −

(
Q0

3HdS

+ 1

)
(26)

As a consequence, the solution of Equation (20) for dark matter reads:

ρDM = ρDM(0)e
−3HdSt − ρF (0)

Q0

Q0 + 3HdSωF

e−t(Q0+3HdS(1+ωF)) +
(3HdS)n+1Q0τ

(Q0 + 3HdS(1 + ωF))
(27)

where ρDM(0) is a positive constant. It is important to note that when dark matter is dominant, we can
neglect the contribution of fluid in the matter EoS and ρDM ' ρDM(0)a(t)−3, such that we recover the
standard cosmology in the matter era [29]. However, on the de Sitter solution, if τ 6= 0, the EOMs
[Equation (23)] are satisfied only by putting ρF(0) = ρDM(0) = 0. Therefore, we require:

ρDM

ρF

=
Q0

3HdS

=
1

3
(28)

and the coincidence problem may be solved by setting:

Q0 = HdS (29)

The ratio of DM and fluid is approximately 1/3, almost independent from initial conditions. From the
second EOM of Equation (23), one derives the relation between ωF and τ :

ωF = −4

3
+ 4κ2(3HdS)n−1τ (30)
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Here, Equation (29) has been used. In this way, the fluid energy density [Equation (26)] turns out to be
positive. Furthermore, since τ > 0, we must require ωF > −4/3. For example, a viscous fluid with
ωF = −1 possesses the de Sitter solution, HdS, if its bulk viscosity is:

ζ(H) =
(3H)n

12κ2(3HdS)n−1

and the coupling constant with DM is given by Q0 = HdS.
If τ = 0 (non-viscous case), it is easy to see that Equations (26) and (27) are de Sitter solutions of the

EOMs only if Q0 = −3(1 + ωF)HdS and ρDM(0) = 0, such that the coincidence problem is solved by
requiring [28]:

ρDM

ρF

= −(1 + ωF) =
1

3
(31)

which leads to the phantom fluid:

ωF = −4

3
(32)

Let us come back to the general case of τ 6= 0. In order to investigate if the de Sitter solution is an
attractor or not, we write the perturbation as:

H(t) = HdS + ∆(t) (33)

Here, ∆(t) is a function of the cosmic time, t, and it is assumed to be small. The second EOM of
Equation (23) gives:

2∆̇(t) + 6HdS∆(t) ' 3HdS(n+ 1)∆(t) (34)

Here, some remarks are in order. Since the perturbed Equation (25) results are implicit, we have used
Equation (26) with Q = HdS (in fact, we say that at first approximation near the de Sitter solution,
ρF ∼ Hn+1

dS ). Furthermore, Equation (30) has been taken into account. By assuming ∆(t) = eλt,
we find:

λ+ 3HdS −
3

2
HdS(n+ 1) ' 0 (35)

that is:
λ ' 3

2
HdS(n− 1) (36)

We easily see that, if n < 1, the de Sitter solution is stable and the coupling of viscous fluid and dark
matter generates a stable accelerated Universe with a constant rate of DM and fluid energy, such that the
future singular scenario is avoided.

3.2. ω(ρF) Not a Constant

Let us consider a more general case, when the EoS parameter, ω(ρF), of viscous fluid is not a constant.
A simple example is given by:

ω(ρF) =
[
A0ρ

α−1
F − 1

]
(37)

where: A0 and α are constant parameters. From energy conservation law Equation (19), one has:

ρ̇F + 3HA0ρ
α
F +Q0ρF = (3H)n+2τ (38)
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We still suppose to deal with a bulk viscosity proportional to Hn as in Equation (24), τ > 0 and n being
constants. When α� 1, for the de Sitter solution, H = HdS, we obtain:

ρF '
(
τ(3HdS)n+1

A0

) 1
α

(39)

and the energy density of dark matter reads:

ρDM '
Q0

3HdS

ρF (40)

In order to solve the coincidence problem, we requireQ0 = HdS, again. If the fluid drives the accelerated
expansion of the Universe, it follows from the EOMs [Equation (23)] that we must put:

A0 ' τ(3HdS)n+1

(
κ2

3H2
dS

)α
(41)

and one has:
ω(ρF) ' −1 + 3(3HdS)n−1κ2τ (42)

By making a perturbation around the de Sitter solution as in Equation (33), the second EOM gives:

2∆̇(t) + 6HdS∆(t) ' HdS

(
n+ 1

α

)
∆(t) (43)

where we have used Equations (39) and (41). By assuming ∆(t) = eλt, we finally have:

λ+ 3HdS −
1

2
HdS

(
n+ 1

α

)
' 0 (44)

namely:

λ ' HdS

(
1

2

(
n+ 1

α

)
− 3

)
(45)

Then, if (n + 1)/α < 6, the de Sitter solution is a final attractor of the system, and we avoid future
time singularities.

4. Constant Coupling of Viscous Fluids with Dark Matter

In the previous section, we have reviewed some results following [28,29]. In this section, we will
present a new result generalizing the simplest case of a constant coupling between fluid and dark matter.
In this case, due to the coupling constant, it is still possible to keep constant the matter energy density
in the de Sitter Universe, in order to have a solution of the coincidence problem. Recall that the
FRW-conservation laws of fluid and dark matter can be written as:

ρ̇F + 3H(ρF + pF) = −Q0 (46)

ρ̇DM + 3HρDM = Q0 (47)

Q0 being the coupling constant between fluid and dark matter. In what follows, we will separately
analyze the non-viscous case and the viscous case.
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4.1. Non-Viscous Case

Let us start by considering the perfect fluid with pF = ωFρF, where ωF is a constant. From
Equation (46) one has:

ρF = ρF(0)a(t)−3(1+ωF) −Q0 a(t)−3(1+ωF)

∫
a(t′)3(1+ωF)dt′ (48)

Making use of the de Sitter solution, H = HdS, one finds:

ρF = − Q0

3HdS(1 + ωF)
+ ρF(0)e

−3HdSt(1+ωF) , ωF 6= −1 (49)

and for the matter density [Equation (47)], we obtain:

ρDM = ρDM(0)e
−3HdSt +

Q0

3HdS

(50)

In the above expressions, ρF(0) and ρDM(0) are constants. Thus, Equation (23) are satisfied for
ρF(0) = ρDM(0) = 0 and:

Q0 =
9H3

dS(1 + ωF)

ωFκ2
, ωF 6= 0 (51)

The coincidence problem may be solved by the choice:

ρDM

ρF

= −(1 + ωF) =
1

3
(52)

which leads to the same condition of Equation (32); namely, we have a phantom fluid with ωF = −4/3

and Q0 = 9H3
dS/4. Note that the fluid energy density turns out to be positive.

Furthermore, let us consider the inhomogeneous case in Equation (37), namely, ω(ρF) =(
A0ρ

α−1
F − 1

)
, A0 and α constants. When H = HdS, the solution of fluid conservation law

equation reads:

ρF =

(
− Q0

3A0HdS

) 1
α

(53)

Since, on the de Sitter solution, the energy density of matter is given by Equation (50), in order to satisfy
the EOMs, we must require ρDM(0) = 0 and:

A0 = − Q0

HdS

(
1

3

)(
− Q0

3HdS

+
3HdS2

κ2

)−α
(54)

Therefore, the coincidence problem is solved by setting:

Q0 =
9H3

dS

4κ2
(55)

such that A0 = −(4)α−1(3HdS)2(1−α)/(3(κ2)1−α), and the energy density of fluid and matter are
positive quantities.
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4.2. Viscous Case

Now, we introduce a non-zero viscosity in the fluid pressure as in Equation (24), namely,
ζ(H) = τ(3H)n, with τ > 0 and n constants. For the sake of simplicity, ω(ρF) = ωF is assumed
to be constant. The fluid conservation law equation leads to:

ρF = ρFa(t)−3(1+ωF) − a(t)−3(1+ωF)

∫
a(t′)−2+3(1+ωF)

[
Q0a(t′)2 − 3n+2τ ȧ(t′)2

(
ȧ(t′)

a(t′)

)n]
dt′ (56)

and for the de Sitter case, H = HdS, one gets:

ρF =
−Q0 + (3HdS)n+2τ

3HdS(1 + ωF)
+ ρF(0)e

−3HdSt(1+ωF) , ωF 6= −1 (57)

For the matter density, we have:

ρDM =
Q0

3HdS

+ ρDM(0)e
−3HdSt (58)

Thus, the EOMs [Equation (23)] are satisfied if ρF(0) = ρDM(0) = 0 and with the choice:

τ =
(3HdS)−n−2 [−Q0κ

2ωF + 9H3
dS(1 + ωF)]

κ2
(59)

By imposing the ratio between dark matter and viscous fluid equal to 1/3, we find, again, the condition
[Equation (55)], namely, Q0 = 9H3

dS/(4κ
2). As a consequence, Equation (59) reads:

τ =
(3HdS)1−n(4 + 3ωF)

12κ2
(60)

and in order to have τ > 0, we must require ωF > −3/4. Note that the energy density of fluid and dark
matter again turns out positive.

If ωF = −1, the solution of Equation (56) for H = HdS is:

ρF = ρF(0) + t
[
−Q0 + (3HdS)2+nτ

]
(61)

which is a solution of the EOMs only if:

Q = (3H)2+nτ (62)

namely, ρF = ρF(0), where ρF(0) is a constant energy density. In this case, ρDM = (3HdS)n+1τ and
Equation (23) are satisfied for:

τ =
(3HdS)−n−1(3H2

dS − ρF(0)κ
2)

κ2
(63)

Finally, the coincidence problem is solved by requiring:

ρF(0) =
9H2

dS

4κ2
(64)

such that τ = (3HdS)1−n/(12κ2) and Q0 = 9H3
dS/4κ

2.
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5. Conclusions

In this short review, we have revisited some aspects of inhomogeneous viscous fluids in a flat FRW
Universe. In principle, any modification of gravity may be written in the form of such a kind of fluid. As
a result, one may make use of the framework of General Relativity, namely, the Friedmann equations,
and the analysis turns out simplified. A large number of inhomogeneous fluids is compatible with the
observed current accelerated expansion of the Universe, but they may produce different future scenarios
with respect to the stable de Sitter solution of the ΛCDM model. In particular, a finite-time future
singularity, namely the Big Rip, could appear. In the second part of the paper, we have made use of
the conservation laws in which a coupling of fluid and dark matter was present. Two different possible
couplings have been investigated. By a coupling of inhomogeneous viscous fluid with dark matter,
the coincidence problem may be solved, and if the de Sitter solution is stable, one may avoid future
singularities. In fact, the coupling between fluid and dark matter may change the behavior of dark
matter in expanding the Universe when fluid becomes dominant in the Friedmann equations, rendering
it constant. As a consequence, the ratio between dark matter and fluid is determined by the constant
coupling, and it is independent of the initial conditions.

Other studies of inhomogeneous viscous fluids and the dark energy problem have been presented
in [30–35].
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