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ABSTRACT OF THESIS

INITIAL ASSESSMENT OF THE “COMPRESSIBLE POOR MAN’S

NAVIER–STOKES (CPMNS) EQUATION” FOR SUBGRID-SCALE
MODELS IN LARGE-EDDY SIMULATION

Large-eddy simulation is rapidly becoming the preferred method for calculations involv-
ing turbulent phenomena. However, filtering equations as performed in traditional LES
procedures leads to significant problems. In this work we present some key components in
the construction of a novel LES solver for compressible turbulent flow, designed to overcome
most of the problems faced by traditional LES procedures. We describe the construction of
the large-scale algorithm, which employs fairly standard numerical techniques to solve the
Navier–Stokes equations. We validate the algorithm for both transonic and supersonic flow
scenarios. We further explicitly show that the solver is capable of capturing boundary layer
effects. We present a detailed derivation of the chaotic map termed the “compressible poor
man’s Navier–Stokes (CPMNS) equation” starting from the Navier–Stokes equations them-
selves via a Galerkin procedure, which we propose to use as the fluctuating component in the
SGS model. We provide computational results to show that the chaotic map can produce
a wide range of temporal behaviors when the bifurcation parameters are varied over their
ranges of stable behaviors. Investigations of the overall dynamics of the CPMNS equation
demonstrates that its use increases the potential realism of the corresponding SGS model.

KEYWORDS: LES, Turbulence, Compressible Flow, Discrete Dynamical Systems, Shock-
tube problem
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Chapter 1

INTRODUCTION

Feynman said turbulence is the last unsolved problem in classical physics. Nearly a
hundred years have come and gone, but turbulence still remains far from being “solved.”
Advances in computing power over the last 50 years (teraflops clock time and terabyte storage
now available) have led to another branch of turbulence study apart from theoretical and
experimental, that of computer simulations of turbulence. The computational approach to
turbulence is based on the Navier–Stokes (N.–S.) equations, the governing equations for fluid
flow. Well-established computational techniques such as direct numerical simulation (DNS),
large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) are available at
the present day. Even with such advances in computing power and numerical techniques,
application of such techniques to compressible turbulent flow have been significantly fewer
when compared to its incompressible counterpart. This is in part because of the coupling
of the energy equation with the momentum and continuity equations in a compressible
fluid flow, which increases storage and complexity especially if 3-D simulations have to be
performed. LES is rapidly becoming the preferred approach for turbulent flow calculations,
as witnessed by the fact that many commercial CFD code vendors are now incorporating
versions of this into their software suites. However, one should recognize that filtering of
equations as done in traditional LES results in two main problems: lack of commutativity
of filter with differential operators and action of the filter on nonlinear terms producing
correlations (statistics) which must be modeled. By trying to model statistics, we are, in
fact, trying to invert the mapping between physics and statistics, which is not one-to-one;
i.e., many different physical flows can give rise to the same statistics. In this research effort
we have developed some key components for the construction of a novel LES solver for
compressible flow based on a new LES formalism which allows us to circumvent most of the
problems arising from filtering the governing equations. The new LES formalism is based
on filtering solutions rather than equations, while keeping the formal LES decomposition
of resolved and unresolved scales. In order to account for the unresolved scales we have
developed a subgrid-scale model based on deconvolution, Kolmogorov’s theories and discrete
dynamical systems, with which the subgrid-scale dependent variables are modeled directly
(model physics not statistics).

In this chapter, a brief overview of turbulence is given. Included is a historical perspec-
tive on turbulence research over the past century. We also present the governing equations
for incompressible and compressible flow, and indicate the complexities one encounters while
trying to solve the full compressible N.–S. equations. A brief overview on studies of com-
pressible turbulence is also given. We then present the objective of our research effort, which
has consummated into this thesis. Following this the framework of thesis will be discussed
briefly.

1.1 Introduction to Turbulence

Turbulence is a complex phenomenon that goes largely unnoticed despite frequent en-
counters in daily life (flow of water from a faucet for example). As a matter of fact it is
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the most common state of fluid motion, and more often than not, turbulence dominates all
the important physics of the flow. It is of extreme importance in real life and in most sci-
entific and engineering disciplines: in aeronautics, ship building, oceanography, combustion,
geophysics, meteorology, mixing of pollutants (environmental), astrophysics, cosmology and
even the structure of the universe. The problem of turbulence is so difficult that is has even
defied the formulation of a consistent and rigorous definition. Turbulence has had many
colorful descriptions over the years, from Lamb’s [1] scholarly “chief outstanding difficulty
of our subject” to Bradshaw’s [2] inspired “invention of the devil on the seventh day of cre-
ation.” This apparent frustration results largely from the mixture of chaos, order, and the
wide range of length and time scales that a turbulent flow possesses. In order to visualize
a turbulent flow with a spectrum of scales one can think of what are known as turbulent
eddies. A turbulent eddy can be thought of as a local swirling motion in a fluid flow whose
characteristic dimension would be the local turbulence length scale. There can be eddies of
varying sizes in a turbulent fluid flow, but the sizes of these eddies are bounded above by the
characteristic length scale of the flow under consideration and below by the molecular length
scale. Turbulence features a cascade of energy whereby, as turbulence decays, its kinetic
energy is transferred from larger eddies to the smaller ones. Ultimately, the smallest eddies
dissipate the kinetic energy into heat through the action of molecular viscosity.

Mankind has noticed turbulence in fluid flow as early as the 15th century. Leonardo
Da Vinci’s sketches (see e.g., Richter [3]) of chaotic whirlpools—eddies as in Fig. 1.1, are
believed by most to be the first attempt at describing turbulence. Such phenomena were
termed “turbolenza” by da Vinci, based probably on the Latin root words, turba, meaning

Figure 1.1 Whirpool sketch by Leonardo Da Vinci.

disturbance or turbo, meaning whirl. The modern scientific study of turbulence as noted by
Frisch [4] dates back to the late 1800s in the works of Saint-Venant, Boussinesq [5] and the
seminal work of Osborne Reynolds [6]. Since then, it has attracted the attention of some of
the best minds in fields of mathematics, physics and engineering. By now, in the 21st century
all researchers accept that the Navier–Stokes (N.–S.) equations for both compressible and
incompressible flows provide the exact description of turbulence, or indeed any nonrelativistic

2



motion of a Newtonian fluid. Even the smallest length scales occurring in a turbulent flow
are large compared to the mean free path between molecular collisions in most flows; so the
continuum hypothesis holds, and hence the constitutive equations are not in doubt.

To discern between a compressible and incompressible fluid we now introduce the formal
definition of compressibility τ ,

τ =
1

ρ

∂ρ

∂p
, (1.1)

where ρ is density, and p is the pressure. Fluids that require very large changes in pressure
to cause even minor changes in density are termed incompressible. In a mathematical sense
we can say that an incompressible flow occurs when τ → 0, so that ∆ρ = ρτ∆p → 0.
We note that this would imply that motion in “stratified” media such as the ocean or
atmosphere, whose densities vary with depth and height, respectively, should be classified
as “compressible.” This, however, is incorrect; probably a better practical definition of
compressible flow is high Mach number (M) flow, where Mach number is the ratio of flow
speed U to the speed of sound a:

M =
U

a
. (1.2)

This is a far better indicator of compressibility, and is satisfactory for most practical appli-
cations.

We now present the N.–S. equations for a compressible flow:

∂ρ

∂t
+
∂ρuj

∂xj

= 0 , (continuity −mass conservation) (1.3a)

∂ρui

∂t
+
∂ρui

∂xj

= −
∂p

∂xj

+
∂τij
∂xj

, (momentum) (1.3b)

∂ρE

∂t
+
∂ρujE

∂xj

= −
∂puj

∂xj

+
∂qj
∂xj

+
∂ujτij
∂xj

. (energy) (1.3c)

In Eq. (1.3) the Einstein summation convention is used. For a Newtonian fluid, the viscous
shear stress tensor is of the form

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ λδij

∂uk

∂xk
, (1.4)

where δij is the Kronecker delta, and µ and λ are two coefficients which are to be determined
empirically. From Newton’s law of viscosity, the proportionality factor between the shear
stress and the velocity gradients is the dynamic viscosity. Hence the quantity µ appearing
in Eq. (1.4) is the dynamic viscosity. The coefficient λ is usually referred to as the second
viscosity. We note that the difference between the thermodynamic pressure and the mechan-
ical pressure is proportional to the divergence of the velocity vector. The proportionality
factor is usually referred to as the bulk viscosity and is denoted by K, where K = λ + 2

3
µ

(the reader is referred to the text by Currie [7] for details). If the fluid is a monoatomic gas,
the mechanical pressure and thermodynamic pressure are the same; hence K is zero. This
implies that λ = −2

3
µ, which is called the Stokes’ relation. Even for polyatomic gases and

for liquids the departure from K = 0 is frequently small, and many researchers incorporate
the Stokes’ relation.
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The shear stress tensor can now be written as

τij = 2µSij . (1.5)

Here, the viscous strain-rate tensor Sij is defined by

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
−

1

3

∂uk

∂xk

δij . (1.6)

The heat flux, qj , is given by Fourier’s Law

qj = −k
∂T

∂xj
. (1.7)

In Eqs. (1.3–1.7) ρ, p and T are the usual density, pressure and temperature; u ≡ (u1, u2, u3) =
(u, v, w)T is the velocity vector; the quantity E ≡ (e+ u2\2), corresponds to total energy
with u2 denoting u · u. Finally, k is thermal conductivity.

We will also need an equation of state for the fluid to relate the various thermodynamic
properties. At temperatures and pressures characteristic of many compressible flow applica-
tions, the gas particles are, on the average, widely separated. The average distance between
particles is usually more than 10 molecular diameters, which corresponds to a weak attractive
force. As a result, for a large number of engineering applications, the effect of intermolecular
forces on the gas properties is negligible. By definition, a perfect gas is one in which inter-
molecular forces can be neglected. By ignoring intermolecular forces, the equation of state
for a perfect gas can be derived from theoretical concepts of modern statistical mechanics
or kinetic theory. However, historically it was synthesized from laboratory measurements by
Robert Boyle in the 17th century, Jacques Charles in the 18th century, Joseph Gay-Lussac
and John Dalton around 1800 (Anderson [8]). The empirical result which unfolded from
these observations is the well-known equation of state for a perfect gas

p = ρRT , (1.8)

where R is the specific gas constant.
In the incompressibility (very low Mach number) limit, Eq. (1.3) can be reduced to give

the governing equations for an incompressible flow:

∂ui

∂xi
= 0 , (1.9a)

ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj
= −

∂p

∂xi
+
∂τij
∂xj

, (1.9b)

ρ
∂E

∂t
+ ρ

∂ujE

∂xj
= −

∂puj

∂xj
+
∂qj
∂xj

+
∂ujτij
∂xj

. (1.9c)

The shear stress tensor is again given by

τij = 2µSij ; (1.10)
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however, in the case of an incompressible flow, as a result of the divergence-free condition
Eq. (1.9a), the strain rate tensor Sij is defined as

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
. (1.11)

The heat flux qj is again given by Fourier’s law.
It should be noted that in the case of a cold (without any heat transfer) incompressible

flow the energy equation Eq. (1.9c) is uncoupled from the momentum equations. Hence, in
such a flow there is no need to solve the energy equation. Even in cases where heat transfer
has to be included, Eq. (1.9c) can be reduced to a simpler equation in terms of temperature
when compared with Eq. (1.3c) using the divergence-free condition. On the other hand,
in the case of a compressible flow, the energy equation is coupled with the other equations
via the equation of state, thus adding one more equation to the already complex system of
equations. Therein lies the complexity of trying to solve or analyze the N.–S. equations for a
compressible flow. This complexity is further amplified if turbulence and three dimensionality
have to be taken into consideration. We further comment that from a numerical standpoint
the incompressible equations are much more problematic than the compressible equations,
since numerical algorithms have to satisfy the divergence-free constraint.

Given any flow configuration, a nondimensional parameter known as the Reynolds number
(Re) provides a good representation of the qualitative behavior of the flow. This parameter
is given by

Re =
ρUL

µ
, (1.12)

where ρ is the fluid density; U is the characteristic flow speed; L is the characteristic length
scale, and µ is the dynamic viscosity. Re defines the relative role of inertia effects (arising
due to the nonlinear terms) and dissipative effects (arising from the diffusion terms) in the
equations of motion. In the case of low-Re flows, the viscosity has a considerable effect on
the entire flow, smoothing all existing small-scale irregularities; such flows with low-Re are
termed laminar. In the case of high-Re flows, the dominant role is played by inertia effects
whose action leads to transfer of energy from large-scale components of motion to small-
scale components, and consequently to the formation of local irregularities. Moreover, as the
value of the Re increases, flows typically progress from a steady state to a time-dependent
one (usually first a periodic flow as seen in the famous Karman vortex street for flow past
a cylinder at moderate Re; see Van Dyke [9]). Eventually, with further increase in Re, the
flow becomes erratic (chaotic), and this state is generally associated with turbulence.

A good review on the history of turbulence research starting with the work of O. Reynolds
in 1894 to the then present time in 1985 can be found in Chapman and Tobak [10]. They
identify three overlapping “movements” characterized by a definite viewpoint of turbulence,
and a reasonably well-defined beginning into what they term statistical, structural and de-
terministic movements.

Reynolds’ observation of transition to turbulence in pipe flow, and his subsequent an-
alyzes led him to decompose the velocity field into a mean and fluctuating component (a
perturbation). Considering the perturbation flow too complicated or unpredictable (non-
deterministic) he spatially averaged the N.–S. equations. However subsequent researchers
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chose to time average the N.–S. equations—in retrospect probably not the best thing to
do—which led to what we now call the Reynolds-averaged Navier–Stokes equations. This
viewpoint, which is formalized in a statistical theory of random perturbations, was also
bolstered by advances in kinetic theory of gases using statistical mechanics, and also by
the success achieved in theoretical physics by quantum mechanics. There is an extensive
body of literature on the study of turbulence within the statistical framework. Some of the
major contributions have come from von Karman [11], Taylor [12], Kolmogorov [13], [14],
[15], [16]—his celebrated K41 and K62 theories for incompressible turbulence, Obukhov [17],
Prandtl [18]—his mixing-length model, Kraichnan [19], [20], among many others. A much
more detailed summary can be found in Monin and Yaglom [21] and Pouquet [22].

The fact that a turbulent flow contains a great deal of organization was probably first ar-
ticulated by Liepmann [23]. This was, in fact, preceded by observation of Tollmien-Schlicting
waves in transitional flow by Schubauer and Skramstad [24]. Many experimentalists exploited
this idea, both from the point of observing structures and analyzing turbulent flows, notably
Townsend [25] in his book in 1956, and Lumley ([26], [27]) among numerous others. The idea
of coherent structures in a turbulent flow proliferated in the 1970s with improvements made
in experimental measurement techniques. This brought deeper understanding and additional
structures to light (see, e.g., Grass [28]). Structures in turbulent free shear flows were studied
extensively by Roshko [29]. The interested reader is referred to Cantwell [30] and references
therein for a good review of organized motion in a turbulent flow. Computer simulations
have also aided analysis and visualization of structures over the last three decades. Examples
are results of Rogallo [31] for homogeneous turbulence, and those of Moin and Kim [32] for
turbulent channel flow, again among numerous others.

In the last 15 to 25 years, the techniques of dynamical systems theory have been applied
to study turbulence, and literature has been inundated with talk of chaos, strange attrac-
tors, fractals, bifurcation theory and so on, but these have been criticized for not having
produced practically useful results. Discussion of such techniques will be taken up in an
entire subsection in Chapter II.

Over the past 100 years, by applying every tool and technique available to the prob-
lem of turbulence there has been some progress in our understanding of low-speed flows
which are essentially incompressible. Efforts to study compressible turbulent flow have been
significantly fewer due its greater complexity.

1.2 Compressible Turbulence

Swedish engineer Carl G. P. de Laval’s single-stage steam turbine with a convergent-
divergent nozzle in 1889 probably opened the door to the study of compressible flow. The
possibility of supersonic (greater than the speed of sound, M > 1) movement through air
brought about fundamental research in this area. For a good overview on the beginnings
of research on compressible flow, the interested reader is referred to Busemann [33]. Al-
though Chuck Yeager achieved supersonic flight in his small but beautiful Bell XS-1 (named
Glamorous Glennis after his wife) in 1947, since the 1950s interest in high-speed civilian and
military aircraft, ramjets, supersonic combustion ramjets (scramjets), interest in propulsion
systems and most recently pulse-detonation engines has invigorated fundamental research in
compressible turbulence.
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In a compressible fluid, density fluctuates together with the velocity and pressure; and
the turbulent field when Fourier analyzed includes longitudinal (parallel) and transverse (or-
thogonal) components to the wavenumber vector. The longitudinal components unlike the
transverse components, propagate in all directions as sound waves. The transverse com-
ponents are known as shear turbulence, and the longitudinal components may be called
compression turbulence. Moreover, the structure of compression turbulence itself is sensitive
to M . So long as M is small, compression turbulence takes the form of an assembly of or-
dinary sound waves. At M of finite magnitude of unity or larger, however, the compression
sides of sound waves rapidly steepen and become shock fronts, while the expansion sides be-
come less and less steep. The spectral representation of homogeneous, isotropic turbulence
in a compressible fluid was first studied by Moyal [34]. He decomposed the velocity field in
spectral space into a longitudinal component, and a transverse component to the wavenum-
ber vector. This is, in fact, equivalent in physical space to the Helmholtz decomposition,
which states that any vector field, meeting certain criteria (of decay towards infinity) can
be resolved into irrotational (curl-free) and solenoidal (divergence-free) components (note
that in physical space the decomposition is generally performed with respect to the flow
direction). The longitudinal component in physical space is also known as the acoustic com-
ponent or compression turbulence, and the transverse component is known as the solenoidal
component.

Moyal showed that for small values of M the governing equations can be broken up into
two distinct groups, one referring to the transverse velocity spectrum, and the other to the
longitudinal spectra, which includes the longitudinal velocity components, the density and
the temperature. The broad conclusion of this work was that the interaction between these
two groups is exclusively due to the nonlinear terms, and such interactions are strongest at
high Re. In order to explain the dynamics of weakly compressible turbulence, Carrier and
Carlson [35] and Kovàsznay [36] decomposed the turbulent flow field into three modes—
the vorticity mode, the entropy mode and the acoustic mode—that evolve independently
of each other. For details regarding this decomposition the reader is referred to [21]. Chu
and Kovàsznay [37] then analyzed the mutual interactions of these three basic modes and
found that the combination of any two modes generates higher-order ones even for a weakly
compressible turbulent field. For homogeneous compressible turbulence, Sarkar et al. [38]
have performed an asymptotic analysis of the N.–S. equations that is formally valid in the
limit of small turbulent Mach numbers (Mt). Their analysis shows that for moderate Mt,
the compressible component of turbulence evolves on a fast time scale, and it is in near
equilibrium with respect to the incompressible component. Sarkar [39] has also studied the
effects of the presssure-dilatational term which appears explicitly as a compressibility term
in the equation for mean temperature and turbulence kinetic energy. In recent years, the
method of Eddy-Damped-Quasi-Normal-Markovian (EDQNM) models of Orszag [40] are
being used to study energy transfer and triadic interactions of compressible turbulence (e.g.,
Bataille et al. [41]). This has proved to give insights into the energy transfer process among
different modes in compressible turbulence.

Over the years with the development of supersonic wind tunnels, a large volume of
useful data has been accumulated through experiments. Good reviews on compressible
shear layers can be found in Bradshaw [42] and references therein, and in Morkovin [43];
supersonic turbulent boundary layers are considered by Spina et al. [44] and [43]. Issues
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regarding interactions of shocks and turbulent boundary layers can be found in Green [45] and
Adamson and Messiter [46]. A detailed review of the effects of compressibility on turbulence
may be found in Lele [47] and references therein.

Advances in computing power have led to another branch in studying turbulence, that
of computer simulations of turbulence. All computational approaches are based on the
Navier–Stokes equations. Numerous computational methods such as direct numerical simu-
lation (DNS), large-eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS),
to name a few important techniques, are available at the present day, all having their own
advantages and disadvantages. We will discuss in fair detail the various numerical procedures
for simulating/modeling turbulence in Chapter II.

1.3 Objective

It is widely accepted that LES in some form will soon become the method of choice for
industrial and environmental applications involving computations of turbulent flow. Direct
numerical simulation is good for theoretical studies at low Re number; however, even for
simple cold incompressible flows the required amount of arithmetic scales at least as Re3,
Piomelli [48]. Therefore calculations using DNS are not feasible for compressible flow at
supersonic and hypersonic Mach numbers on current or even near-term foreseeable machines.
These problems are exacerbated if 3-D simulations are required, which is generally the case
for turbulence-related phenomena. RANS methods on the other hand are known to have
fundamental flaws (see, e.g., McDonough [49]) especially if unsteady phenomena are to be
modeled; and it is only the lack of viable alternatives that has led to their widespread
utilization.

LES provides a compromise between DNS and RANS by not resolving all the physical
scales. As a consequence the required arithmetic is roughly proportional to Re2 [48]; this is
an acceptable level to permit solutions to a wide range of practical problems in a realistic
time frame. The separation of scales in LES is peformed by the use of a low-pass filter
which eliminates fluctuations at scales smaller than the mesh size h. Due to the very nature
of LES the effects at the subgrid-scales (scales smaller than the grid size h) must be mod-
eled. There are a number of excellent reviews on the theory and practice of SGS modeling
in the traditional framework, especially for incompressible flows: Lesieur and Mètias [50],
Meneveau and Katz [51] and Piomelli [52]. However, applications of LES to compressible
flow have been significantly fewer owing to increased complexity introduced by the need to
solve an additional energy equation (usually expressed in terms of total energy), which in
the traditional framework results in extra unclosed terms that must be modeled in addition
to the usual SGS stresses that must be modeled even in incompressible flows (see Martin et
al. [53]).

It has been known since its very inception that the filtering process in LES leads to
significant problems. Filtering equations, as is done in usual LES, results in two main
problems. First, if the governing equations are nonlinear, the action of the filter on the
nonlinear terms produces correlations (statistical, rather than physical quantities) which
must be modeled. Second, if non-uniform gridding is employed, the filter will no longer
commute with the differential operators; so errors arise from this source even if the equations
are linear. Moreover, the traditional SGS models tend to model correlations (statistics)

8



rather than primitive variables (physics) at the small scale, thus removing any possibility
of accounting for interactions between turbulence and other physics on the sub-grid scale.
These shortcomings of traditional LES have resulted in an increasing interest in so called
“synthetic-velocity” SGS models wherein the unresolved primitive variables are computed as
secondary quantities directly from the resolved-scale results (see Domaradzski and Adams
[54] for a review). Experiments, both numerical—Guzmàn and Amon [55], Pulliman and
Vastano [56] and physical—Gollub and Benson [57], Wulf et al. [58] (see the subsection
‘Routes to chaos: Experiments’ in [59]) have provided support for the “strange-attractor”
theory of turbulence. This has resulted in a dynamical systems approach to turbulence
especially in the context of what are known as shell models of turbulence (see Bohr et al.
[60] and references therein for theory and applications), and it has been our contention that
since deterministic chaotic solutions to the Navier–Stokes (N.–S.) equations are known to
exist (mathematically proven by Ruelle and Takens [61] in 1971), it is reasonable to use this
knowledge in SGS models. McDonough et al. [62] introduced what could be called a new
approach to LES in 1995. This is based on three key ideas: 1) filter solutions, not equations;
2) model primitive variables (physics), not correlations (statistics), and 3) do not discard
subgrid-scale model results; instead use them to augment the resolved scale. However, the
approach retains the usual LES decomposition of the dependent variable vector into resolved
and unresolved scales,

Q(x, t) = q(x, t) + q∗(x, t) , (1.13)

where q(x, t) corresponds to the resolved (large) scale and q∗(x, t) corresponds to the un-
resolved (small) scale. Moreover, in this approach the large-scale dependent variables are
calculated on the given grid and each component of the small-scale dependent variable vector
are modeled directly. It is evident that such an approach to LES would eliminate most of
the problems caused by filtering the equations of motion, and moreover it would retain the
physics on the sub-grid scale. In this thesis we have developed a subgrid-scale model for
compressible turbulent flow based on deconvolution, Kolmogorov’s theories and discrete dy-
namical systems (DDS) for such an approach to LES, which accounts for the the unresolved
scales q∗(x, t). We have also developed a large-scale solver to calculate q(x, t) on the given
grid. An initial assessment of the subgrid-scale model has also been performed by supplying
it with a large-scale data set. However, we have not investigated the effect of the small-scale
field on the large-scale. This would require an implementation of the complete multi-scale
approach proposed above, which has not been achieved in this work.

1.4 Framework of Thesis

In Chapter II, we present overviews on current state-of-the art numerical procedures
in turbulence. Included are discussions on DNS, RANS, LES, detached-eddy simulation
(DES) and implicit large-eddy simulation (ILES). Following this, applications of nonlinear
dynamical systems theory to turbulence simulations will be discussed briefly. We will also
discuss the new generation of SGS models known as synthetic-velocity models.

Once a solid framework for the study is laid, we proceed with specific discussions on the
solution procedures developed in this research for unsteady, three-dimensional compressible
Navier–Stokes turbulence. We begin, in Chapter III, with a detailed solution procedure for
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the large-scale part of the calculations in 3-D. Included is the predictor-corrector methodol-
ogy employed to solve the compressible N.–S. equations, the linearization procedure adopted
to linearize the equations of motion, and the δ-form Douglas–Gunn time splitting algorithm
[63] employed to dimensionally split the N.–S. equations and subsequently solve them effi-
ciently. We end Chapter III by validating our 3-D solver with standard test problems, the
1-D shock-tube problem described by Sod in [64] and the 3-D blast-wave problem [65].

In Chapter IV, we describe the construction of the novel subgrid-scale (SGS) model
developed in this work. We begin with a detailed derivation of a discrete dynamical system
termed the “compressible ‘poor man’s Navier–Stokes (CPMNS) equation” from the 3-D
compressible N.–S. equations, which provides small-scale fluctuations for the small-scale
dependent variables. To familiarize the reader with general behaviors produced by such a
discrete dynamical system studied here, we employ tools such as time series, power spectra,
phase portraits, and regime maps (bifurcation diagrams) among others. Special attention
will be paid to the physics retained by the CPMNS equation and the generic relationship
between bifurcation parameters and the true physical variables. The approach employed to
construct the amplitude factors which forms an important part of the proposed model is also
discussed. We end Chapter IV with an initial assessment of the SGS model.

We conclude in Chapter VI with a summary of our findings and conclusions drawn from
the various studies presented, along with proposals for future studies.

Copyright c© Chetan B. Velkur 2006
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Chapter 2

PREVIOUS WORK

2.1 Numerical Procedures in Turbulence

Since the 1970s computer capacity has increased significantly, and so have the number
of workers in the field. At first, researchers turned, naturally, to the most well known
and earliest treatment of the N.–S. equations—time averaging—resulting in the Reynolds
Averaged Navier–Stokes (RANS) procedures. In time, improvement in computer resources
allowed one to solve the full N.–S. equations. The inherent property of turbulent flows, whose
range of scales increases rapidly with Reynolds number, restricts the use of such solvers only
to low Re, whereas typical industrial applications require much higher Re. When the scale
range exceeds that allowed by computer capacity, some scales must be discarded and the
influence of the discarded scales modeled. We shall distinguish between completely resolved
and partly resolved simulations by referring to these as direct numerical simulation (DNS)
and large-eddy simulation (LES), respectively.

In the following sections we will briefly discuss each of the above mentioned procedures
in turn. Emphasis will be laid on LES due to reasons alluded to in Chapter I, and subgrid-
scale modeling techniques will also be discussed. We also present two fairly recent numerical
approaches, detached-eddy simulation (DES) and implicit large-eddy simulation (ILES).
Current trends including applications of discrete dynamical systems theory to turbulence
simulation and a new generation of SGS models known as synthetic-velocity models are
presented towards the latter half of the chapter.

2.1.1 Reynolds–averaged Navier–Stokes (RANS) procedures

Traditionally, it was thought that turbulence consists of random fluctuations of the var-
ious flow variables; hence statistical approaches were used. Such an approach was formally
first presented by Reynolds [6] in which all quantities are expressed as a sum of a mean and
a fluctuating part. Time averaging as considered by many early researchers is appropriate
for stationary turbulence, i.e., a turbulent flow that, on an average, does not vary with time.
Let a flow variable Φ(x, t) be well defined in a domain Ω ⊂ Rd , d = 1, 2, 3 and for t ∈ [ 0, tf ],
then the Reynolds decomposition of Φ(x, t) is

Φ(x, t) = Φ(x) + Φ′(x, t) , (2.1)

where the mean Φ(x) is defined as

Φ(x) = lim
T→∞

∫ T

0

Φ(x, t)dt ; (2.2)

this allows the fluctuating part to be expressed as

Φ′(x, t) = Φ(x, t) − Φ(x) . (2.3)

It is clear from the definition of the time average that the Reynolds decomposition possesses
the following two properties:

Φ(x) = Φ(x) and Φ′(x, t) = 0. (2.4)
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Substituting the Reynolds decomposition into the continuity equation and performing the
time average yields:

∂ρ

∂t
+

∂

∂xj

(
ρ uj + ρ′u′j

)
= 0 . (2.5)

This suggests that the use of the primitive–variable form of the Reynolds decomposition for
the compressible N.–S. equations leads to triple correlations involving ρ′, u′i and u′j when
averaging the product ρuiuj that appears in the convective acceleration. Clearly, this in-
creases the complexity of establishing closure approximations for the unknown fluctuating
components. The problem of establishing the appropriate form of the time-averaged equa-
tions for compressible flow can be simplified dramatically by using the density-weighted
averaging procedure suggested by Favre [66]. In Favre averaging an instantaneous flow vari-

able is decomposed into a mass-averaged part, Φ̃(x, t) and a fluctuating part Φ′′(x, t). The

mass-averaged quantity, Φ̃(x, t), is defined by

Φ̃(x) =
1

ρ
lim

T→∞

∫ T

0

ρ(x, t)Φ(x, t)dt =
ρΦ

ρ
, (2.6)

where ρ is the conventional Reynolds-averaged density. Note that with the above definition
Φ′′ 6= 0.

In order to mass average the conservation equations, we now decompose the various flow
variables as follows:

ρ = ρ+ ρ′ ,

p = P + p′ ,

qj = qLj + q′j

, ui = ũi + u′′i ,

h = h̃+ h′′ , (2.7)

e = ẽ+ e′′ ,

T = T̃ + T ′′ .

Note that we decompose p, ρ, and qj in terms of the conventional mean and fluctuating
parts. Substituting Eqs. (2.7) into Eq. (1.3) and performing the mass-averaging operations
(see, Wilcox [67] for details), we arrive at what are referred to as the Favre (mass)-averaged
mean conservation equations:

∂

∂t
(ρũi) +

∂

∂xi
(ρũi) = 0 , (2.8a)

∂

∂t
(ρũi) +

∂

∂xj
(ρũjũi) = −

∂P

∂xj
+

∂

∂xj

(
τji + τ turb

ji

)
, (2.8b)

∂

∂t
(ρE) +

∂

∂xj
(ρũjH) =

∂

∂xj

(
−qLj − qTj + τjiu

′′
i − ρu′′j

1

2
u′′i u

′′
i

)

+
∂

∂xj

[
ũi

(
τij + τ turb

ij

)]
, (2.8c)

P = ρRT̃ , (2.8d)
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where i, j = 1, 2, 3 , τ turb
ij = −ρu′′i u

′′
j and qTj = ρu′′jh

′′. The quantities E and H are total
energy and total enthalpy respectively.

The decomposition of the variables into mean and fluctuating components has isolated
the effect of fluctuations on the mean flow. However, the equations for the mean flow now
contain six components of τ turb

ij (τ turb
ij is a symmetric tensor) and three components of qTj as

unknowns additional to the mean density, three components of velocity, pressure and energy.
We thus obtain a total of 15 unknowns with only six mean conservation equations, plus an
equation of state to specify them. This illustrates the so-called “turbulence closure problem”
which has led to extensive modeling efforts form the early part of the 20th century to the
present day. We notice that in order to close the system of mean-flow equations, we need a
prescription for computing τ turb

ij , the Reynolds-stress tensor and qTj, the turbulent heat flux
vector.

As noted by Wilcox [67] there are four main categories of turbulence models which provide
approximations for the Reynolds stress tensor and the turbulent heat flux vector: algebraic
(zero-equation) models, one-equation models, two-equation models and second-order closure
models. Turbulence models are termed algebraic if they do not use any additional ODEs or
PDEs to provide closure approximations. One- and two-equation models use one and two
additional PDEs, respectively, to provide closure approximations. The second-order closure
models are so named because they include equations for each of the second-order statistical
quantities comprising the Reynolds stress tensor and the turbulent heat flux vector. A good
review on each of these classes of models can be found in Speziale [68]. For zero-, one-, and
two-equation models nearly all researchers use the Boussinesq eddy-viscosity hypothesis with
suitable generalizations for compressible flows [67]. Denoting the turbulent eddy-viscosity
by µT , the following form is generally assumed for the Reynolds stress:

τ turb
ij = −ρu′′i u

′′
j = 2µT

(
Sij −

1

3
δij
∂ũk

∂xk

)
−

2

3
ρkδij , (2.9)

where Sij is the mean strain rate tensor, k is the turbulence kinetic energy, and δij is the
kronecker delta. Note that the second term on the right-hand side of the above equation is
needed to obtain the proper trace of τ turb

ij , i.e., τ turb
ii = −2 ρk. Further this means that the

“second eddy viscosity” must be −2/3µT . We should also recognize that the construction of
Eq. (2.9) is somewhat similar in construction to the Newton’s law of viscosity given by

τ = µ
∂u

∂y
. (2.10)

But it is important to bear in mind that the physical situation is very different for the two
cases. In the laminar flow case, Eq. (2.10) is an empirical relationship, and moreover viscosity
µ is a property of the fluid. However, in the turbulent flow case, Eq. (2.9) is not a empirically-
supported physical result and µT is not a property of the fluid. The most commonly used
approximation for the turbulent heat-flux vector, qTj , follows from appealing to the classical
analogy between momentum and heat transfer, i.e., turbulent motions transfer heat in much
the same way as transporting momentum. It is thus assumed to be proportional to the mean
temperature gradient; hence

qTj = ρu′′jh
′′ = −

µT cp
PrT

∂T̃

∂xj

, (2.11)
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where PrT is the turbulent Prandtl number usually set to a constant value, and cp is specific
heat at constant pressure.

Some of the popular models are zero-equation models—Baldwin–Lomax [69], one-equation
models—Spalart–Allmaras model [70] which uses one PDE to model the turbulent kinetic
energy, two-equation models, which are by far the most widely used models: k− ε model of
Jones and Launder [71], k − ε model of Rubesin [72]—the same model as Jones and Laun-
der but with compressibility corrections, k − ω of Wilcox [67] uses two PDEs to model the
turbulence quantities. Here k, ε, and ω represent turbulence kinetic energy, the dissipation
rate of turbulence kinetic energy, and the dissipation per unit turbulence kinetic energy re-
spectively. We note that a partitioning of the isotropic dissipation rate can be performed by
assimilating the deviatoric part of the tensor dissipation rate into the pressure-strain corre-
lation (see Zeman [73], Sarkar et al. [38] for details) to account explicitly for compressibility
effects. For a review on the use of the above mentioned models for compressible high-speed
flows the reader is referred to Barre et al. [74], Wilcox [67] and references therein.

Although use of the above-mentioned models does provide fairly accurate results in cer-
tain situations, there are many situations of practical interest for which these models will
fail due to the underlying assumptions in their construction—most notably the Boussinessq
eddy-viscosity hypothesis. Wilcox [67] provides a fairly detailed discussion of the Boussinessq
hypothesis, emphasizing its shortcomings. Generally speaking, models using the Boussinesq
hypothesis fail in the following physical situations: flows with sudden changes in mean-strain
rate, flow over curved surfaces, flows with boundary-layer separation, among others (see, e.g.,
[67] for further listings). We further mention a difficulty arising from the Boussinesq hypoth-
esis that is of a more mathematical nature. Recall that the source of the Reynolds stresses
was averaging the nonlinear advective terms in the N.–S. equations. But, the Boussinesq
hypothesis leads to replacing these with linear diffusive terms. While this is obviously good
for numerical computation, it is bad physics, and in the context of the modern view of
N.–S. equations it will alter bifurcation sequences. This essentially precludes any chance of
predicting transition to turbulence using RANS models; separate, ad hoc models must be
implemented to account for this. On the other hand, second-order closure models do not
explicitly use the Boussinessq eddy-viscosity hypothesis, but instead model the six individual
components of the Reynolds stress using six additional transport equations. Even though
such models naturally include effects of stream line curvature, sudden changes in strain rate,
etc., a significant price is paid in complexity and computational cost for these gains, and
hence these models are not widely used.

Finally, we comment that strictly speaking, from the definition of the time-average, the
RANS equations should not contain the temporal term (i.e., we would have to consider only
steady state flows). However, in practice it is present in essentially all formulations. Although
Wilcox [67] provides arguments for retaining the temporal term in certain cases (flows for
which the mean flow varies slowly with time), he also recognizes that very few unsteady flows
of engineering interest actually satisfy this condition. He further recommends using rigorous
approaches like LES for such flows.

It is also interesting to consider the mathematics of the Reynolds decomposition. A
simple Fourier series representation of a flow variable, followed by time-averaging the Fourier
representation allows us to determine that the fluctuating component φ′ represents all of the
solution (a very wide range of scales) except the zeroth temporal modes. As a consequence,
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we should expect that it would be quite difficult to model. But at least in principle this
is precisely what must be modeled in RANS formulations; that is, essentially the entire
solution must be modeled. While the small-scales tend to depend only on viscosity, and may
be somewhat universal, the large ones are affected very strongly by the boundary conditions.
Thus, it does not seem possible to model the effect of the large-scales of turbulence in the
same way in flows that are very different. Not surprisingly, it has been shown by McDonough
[49] that intrinsic errors are present in RANS formulations. In particular, he shows the
inequality of RANS solutions to the time-averaged N.–S. solutions.

2.1.2 Direct numerical simulation (DNS)

The main purpose of a DNS is to solve for the velocity field and scalars of a turbulent flow
without the use of a “turbulence model,” thus avoiding the curse of closure which comes up
in almost every modeling procedure. To do so, one has to resolve the entire range of scales
in a turbulent flow. The largest scales are generally determined by physical parameters
such as channel width, boundary layer thickness, mixing layer thickness and so on. The
physics (e.g., dissipation spectrum) dictates the smallest scale that needs to be resolved,
and the accuracy with which it needs to be represented. Generally the Kolmogorov length
scale η = (ν/ε)1/4, where ν is the dynamic viscosity and ε is the kinetic energy dissipation
rate, is the smallest scale that needs to be resolved. This wide range of scales compounded
by accuracy requirements which are determined by the numerical method chosen to solve
the N.–S. equations give DNS its two obvious problems: memory and computational speed
requirements (amount of arithmetic). For cold incompressible flow the required arithmetic for
a DNS scales at least as O(Re3). The range of scales in a turbulent flow increases rapidly with
Re, thus rendering DNS impractical for applications of engineering interest. For compressible
flows, this low Re restriction is compounded by several additional factors: (1) at least one
additional thermodynamic variable, e.g., mass density, must be retained and time advanced,
and this increases the storage problem; (2) as Mach number increases, the average diagonal
component of the Taylor microscale decreases, which implies the requirement of more refined
discretization as the Mach number increases (see Zang et al. [75]). All these drawbacks
are further exacerbated if 3-D simulations are to be performed. However, DNS should be
regarded as the best research tool available to the fluids community, and in this context the
capabilities of this tool are impressive.

The earliest DNS can be traced back to Orszag and Patterson [76] in 1972. They per-
formed a 323 computation of isotropic turbulence at a Reλ (based on Taylor microscale
length) of 35. As we should expect, in contrast to its incompressible counterpart, DNS
of compressible turbulence has been fairly recent. The DNS of homogeneous compressible
turbulent flow was initiated in 1981 by Feiereisen et al. [77].

Shock waves and related phenomena which feature prominently in compressible flows
have been studied in fair detail. Lee et al. [78] conducted 3-D simulations of isotropic
turbulence in order to investigate the existence of eddy shocklets. Results were reported
for 643 and 1283 grids with a peak turbulent Mach number Mt = q/c (q is a velocity scale
characteristic of the turbulence and c is a representative speed of sound) of 0.6 (subsonic)
and Reλ of 50. Their results substantiate the existence of eddy shocklets, that were found to
satisfy the same properties of shock waves. Furthermore, those authors have demonstrated
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that shocklets are more likely to occur as Mt and Re are increased. Ravi Samtaney et
al. [79] conducted simulations of decaying compressible, isotropic turbulence at fluctuating
Mach numbers 0.1–0.5 and a Reλ O (50−100) on 1283 and 2563 grids and quantified shocklet
statistics. In particular, they found the shock thickness statistics to scale on the Kolmogorov
length scale rather than on that of the mean free path in a gas.

Direct simulations of compressible shear layers have also been performed to understand
fundamental aspects of compressibility effects on turbulence. Perhaps the most significant
effect of compressibility on a free shear flow is a suppressed growth rate, which has important
implications for applications such as scramjet engines and abatement of supersonic jet noise.
Identification of the mechanisms responsible for the inhibited shear layer growth at high Mach
number may also be used to derive insights into possible mixing enhancement strategies.
Freund et al. [80] performed simulations of time evolving annular mixing layers. They
conducted an extensive study involving nine cases with convective Mach number Mc =
(U1 − U2) /c (where U1 and U2 are the velocities of the two flows forming the mixing layer
and c is the average sound velocity between the two layers—in general Mc is a Mach number
defined on a moving frame of reference) ranging from 0.1 − 0.8 and Mt reaching as high as
0.8. They offer an acoustic timescale limitation of deforming eddies as a possible explanation
for decrease in transverse length scale. Direct simulations of fully developed turbulent shear
layers was performed by Pantano and Sarkar [81]. In agreement with previous studies they
found the thickness growth rate of the shear layer to exhibit a large reduction with increase
in convective Mach number. However, they also found that all components of turbulence
intensities decrease with increase in Mc (for further details the reader is referred to [81]).

A good review related to numerical issues such as boundary conditions, spatial and
temporal discretizations can be found in Moin and Mahesh [82] and references therein. For
discussions on consistent initial conditions for DNS of compressible turbulence, the reader is
referred to Ristorcelli and Blaisdell [83].

We remark that although the complexity of flows that are being computed by DNS
today has considerably increased, the Reynolds number is still low. Another development
has been the increased investigation of turbulence physics by computing idealized flows that
cannot be produced in the laboratory. Moreover, availability of raw DNS data has allowed
scientists to develop new ideas and theories that can be readily tested. In this context DNS
is becoming an invaluable tool to provide reliable data for model validation and development
(for both LES and RANS). Perhaps the most significant contribution of DNS to date has
been the identification of turbulent structures. In particular, we mention the classical results
by Rogallo [31] for homogeneous turbulence, and those of Moin and Kim [32] for turbulent
channel flow among numerous others.

2.1.3 Large-eddy simulation

Large-eddy simulation is a technique intermediate between the direct simulation of tur-
bulent flows and the solution of the Reynolds-averaged equations. In LES the contribution of
the large, energy-carrying structures to momentum and energy transfer is computed exactly,
and only the effect of the smallest scales of turbulence is modeled. Since the small scales
tend to be more homogeneous and universal, and less affected by boundary conditions than
the large ones, there is hope that their models can be simpler and require fewer adjustments
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when applied to different flows than similar models for the RANS equations.
LES is similar to DNS; in fact, it can be shown that as the grid spacing is decreased

a correctly-implemented LES converges to a DNS. LES also provides three-dimensional,
time dependent solutions to the N.–S. equations. Thus, its use still requires fairly fine
meshes. However, LES can be used at much higher Reynolds numbers than DNS. Among
the objectives of LES is to study more complex physics than can be addressed by DNS, in
configurations closer to that of engineering interest.

To separate the large from the small scales, LES uses a filtering operation. If f(x) is a
function containing all the scales we define, the large-scale or resolved-scale component of f ,
denoted as f is given by a convolution of f with a filter function G(x) (Leonard [84])

f(x) =

∫

D

f(x′)G
(
x,x′; ∆

)
dx′ , (2.12)

where D is the entire domain, G is the filter function, and ∆ is the filter-width associated
with the wavelength of the smallest scale retained by the filtering operation. Thus, the
filter function implicitly sets the size and structure of the small scales. These small scales
(subgrid-scales) should be modeled in some fashion to overcome the problem of closure. For
some commonly used filters in LES see Piomelli [85].

In compressible flows it is convenient to use Favre-filtering [66] to avoid the introduction
of subgrid-scale (SGS) terms in the continuity equation. A Favre-filtered variable is defined

as f̃ = ρf/ρ. Applying the Favre-filtering operation to Eqs. (1.3a–1.3c) we obtain the
resolved scale equations:

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0 , (2.13a)

∂ρũi

∂t
+

∂

∂xj
(ρũiũj) = −

∂

∂xj
( pδij) +

∂

∂xj
(σji) +

∂

∂xj
(τji) , (2.13b)

∂ρẼ

∂t
+

∂

∂xj

(
ρẼũj

)
= −

∂

∂xj
(pũj) −

∂

∂xj
(q̃j) +

∂

∂xj
(σ̃ij ũi) (2.13c)

−
∂

∂xj

(
γcvQj +

1

2
ℑj −Dj

)
. (2.13d)

Here E is the total energy per unit mass, and the diffusive fluxes are given by

σ̃ij = 2µ̃S̃ij −
2

3
ν̃δijS̃kk , (2.14)

q̃j = −k̃
∂T̃

∂xj
. (2.15)

The effect of the subgrid-scale terms appears on the right-hand side of the governing
equations through the SGS stresses τij , SGS heat flux Qj, and SGS viscous diffusion ∂Dj/∂xj .
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These quantities are defined as

τij = ρ (ũiuj − ũiũj) , (2.16)

Qj = ρ
(
ũjT − ũjT̃

)
, (2.17)

ℑj = ρ
(
ũjukuk − ũjũkuk

)
, (2.18)

Dj = σijui − σ̃ij ũi . (2.19)

For solving the energy equation, one can choose from formulations based on internal energy
or enthalpy apart from total energy that we have considered. For such formulations the
interested reader is referred to [53].

In order for the dynamics of the resolved scales to remain correct, the subgrid terms
have to be taken into consideration, and thus have to be modeled. The modeling consists
of approximating the subgrid-scale terms on the basis of the information contained in the
resolved scales.

The first LES dates back to the mid to late 1960s and early 1970s with the pioneering
work on incompressible flows by Smagorinsky [86], Lilly [87] and Deardorff [88]. Since
then, subgrid-scale modeling has matured considerably and can be broadly classified into
three general categories (among many other possible classifications): eddy-viscosity models,
scale-similarity models, and so called mixed models which combine eddy-viscosity and scale-
similarity expressions. There are a number of excellent reviews on the theory and practice of
SGS modeling in the traditional framework, especially for incompressible flows, e.g., Lesieur
and Mètias [50], Meneveau and Katz [51] and Piomelli [52].

Eddy-viscosity models rely on the assumption that the subgrid-scale stress is propor-
tional to the resolved-scale strain rate tensor, the proportionality factor being referred to as
the eddy-viscosity—again, the Bousinessq hypothesis. Eddy-viscosity models try to repro-
duce the global exchange of energy between resolved and unresolved stresses by mimicking
the drain of energy associated with the turbulence energy cascade. The most famous eddy-
viscosity model was proposed by Smagorinsky [86] and was motivated by meteorological
applications. Yoshizawa [89] proposed an eddy-viscosity model for weakly compressible tur-
bulent flows using a multiscale direct-interaction approximation method. The anisotropic
part of the SGS stresses is parametrized using the Smagorinsky (1963) model, while its trace
τkk is modeled separately:

τij −
δij
3
τkk = −C2

s 2∆
2
ρ|S̃|

(
S̃ij −

δij
3
S̃kk

)
, (2.20)

τkk = CI2∆
2
ρ|S̃|2 . (2.21)

with Cs = 0.16, CI = 0.09 and |S̃| =
(
2S̃ijS̃ij

)1/2

.

We see from this, that the subgrid-scale stress tensor is now completely specified; but we
should expect that from the simplicity of the above model that it is not likely to be very
accurate except for homogeneous turbulence. Moreover, the model is completely dissipative,
and it is due to this that it performs very badly for wall-bounded flows. In particular, it
is now known that for such flows as much of one third of the turbulence kinetic energy
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cascaded to the small scales returns to the large scales without being dissipated. This is
termed “backscatter,” and the above model is unable to produce such behavior.

Moin et al. [90] generalized the dynamic subgrid-scale model of Germano et al. [91] for
the LES of compressible flow, in which the two model coefficients Cs and CI are determined
dynamically, rather than input a priori. To accomplish this, additional information is needed,
and Germano et al. obtain this by means of a second filtering operation. This second filter
is usually known as a test filter. The Germano identity [91] Lij = Tij − τ̂ij , relates the
SGS stresses τij to the “resolved scale stresses.” For the compressible equations Lij =(

̂ρui ρuj/ρ
)
− ρ̂ui ρ̂uj/ρ, and the subset stress Tij = ρ̂ ˘̃uiuj − ρ̂ ˘̃ui

˘̃uj (where
˘̃
f = ρ̂f/ρ̂, and

the hat represents the application of the test filter Ĝ of typical width ∆̂ = 2∆). Moin et
al. determined the model coefficients by substituting Eq. (2.20) and Eq. (2.21) into the

Germano identity and contracting with S̃ij. However, the contraction with the strain rate

tensor S̃ij leads to difficulties at flow field locations where the strain rate is very small (or
zero). To overcome this difficulty Lilly [92], proposed a contraction with the error itself, which
results in a least-squares problem of minimizing error with respect to the model constants.
Accordingly, the two model coefficients for the dynamic eddy-viscosity model will be given
by:

C = C2
s =

〈LijMij〉

〈MklMkl〉
, (2.22)

CI =
〈Lkk〉

〈β − α̂〉
, (2.23)

where βij = −2∆̂2 ρ̂|
˘̃
S|
(

˘̃
Sij − δij

˘̃
Skk/3

)
, Mij = βij − α̂ij , and β = 2∆̂2 ρ̂|

˘̃
S|2. We note that

〈 〉 indicates an averaging procedure.
As noted in Sagaut [93], the coefficient C (without the averaging) has the following

two properties. The constant can take negative values, so the model can have an anti-
dissipative effect—in fact, the PDE problem is ill-posed. This is a characteristic that is often
interpreted as a model of the backward energy cascade mechanism—“backscatter.” The
second property is that C can become unbounded, since in principle the denominator can
become zero. These two properties have important practical consequences on the numerical
solution because they are both potentially destructive of the stability of the simulation.
Numerical experiments have shown that the constant can remain negative over long time
intervals, causing an exponential growth in the high-frequency fluctuations of the resolved
field. The constant therefore needs an ad hoc process to ensure the model’s good numerical
properties. This is generally achieved by averaging, typically in directions in which the flow
exhibits homogeneity—if such directions exist (see [93] for various options). Thus, while
dynamic models tend to seemingly reproduce physics better than do the simple Smagorinsky
type models, especially for wall-bounded shear flows, the underlying reasons are not well
founded, leaving open the question whether such models, or any others based on eddy-
viscosity, could be truly predictive.

Scale-similar models are based on the scale similarity hypothesis as proposed by Bardina
et al. [94], who assume that the statistical structure of the tensors constructed on the subgrid-
scales is similar to that of their equivalents evaluated on the smallest resolved scales. This
amounts to saying that the most active SGSs are those closer to the cutoff, and that the scales
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with which they interact are those immediately above the cutoff wavenumber. Thus, scale
similar models employ multiple operations to identify the smallest resolved scales and use the
smallest “resolved” stresses to represent SGS stresses. Although these models account for
the local energy events, they underestimate the dissipation. Indeed, they generally produce
far too much backscatter and as a consequence are numerically unstable.

Speziale et al. [95] proposed the addition of a scale-similar part to the eddy-viscosity
model of Yoshizawa introducing the “mixed” model. In this way, the eddy-viscosity contri-
bution provides the dissipation that is underestimated by purely scale-similar models. This
model was used by Erlebacher et al. [96] and Zang et al. [97], and is given by

τij −
δij
3
τkk = Csαij + Aij −

δij
3
Akk , (2.24)

τkk = CIα + Akk , (2.25)

where Aij = ρ
(
˜̃uiũj − ˜̃ui

˜̃uj

)
. Erlebacher et al. tested the model a priori by comparing

DNS and LES results of compressible isotropic turbulence and found good agreement in
the dilatational statistics of the flow, as well as a high correlation between the exact and
modeled stresses. Zang et al. compared the DNS and LES results of isotropic turbulence
with various initial ratios of compressible to total kinetic energy. They obtained good agree-
ment for the evolution of quantities such as compressible kinetic energy and fluctuations of
thermodynamic variables.

It should also be noted that dynamic model adjustment can also be applied to mixed
models Eqs. (2.24) and (2.25), to yield dynamic mixed models. We remark that the com-
bination of Boussinesq-based eddy-viscosity models and scale-similarity models presents a
fundamental contradiction. Any eddy-viscosity method implicitly relies on scale separation
since such models incorporate the notion that eddy viscosity “acts like” molecular viscosity.
The former plus the latter appear in the diffusion terms of the governing equations, and
this physical molecular behavior takes place on scales that are not directly influenced by the
macroscopic scales of motion. In contrast to this, the scale-similarity approaches attempt
to bridge this gap near the cutoff wavenumber, and in particular require resolution well into
the inertial subrange to be effective.

2.1.4 Detached-eddy simulation (DES)

Detached-eddy simulation (DES) is a hybrid technique first proposed by Spalart et al.
[98] for prediction of turbulent flows at high Reynolds numbers (see, also Spalart [99]). Devel-
opment of this technique was motivated by estimates which indicate that the computational
cost of applying LES to simulate flow over complete configurations such as an airplane,
submarine, or road vehicles is prohibitive. The high cost of LES when applied to complete
configurations at high Reynolds number arises because of the resolution requirements in the
boundary layers, an issue that remains even with fully successful wall-layer modeling. On the
other hand, RANS models tend to be able to predict attached flows with a low computational
cost. However, RANS (statistical) models are not capable of predicting massively separated
flows. The advantages then offered by LES provide strong motivation for its application, i.e.,
direct resolution of the dominant unsteady structures though at a higher computational cost
than RANS. In DES, the aim is to combine the most favorable aspects of the two techniques,
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i.e., application of RANS models for predicting attached boundary layers and LES for res-
olution of time-dependent, three-dimensional large eddies. The cost scaling of the method
is then favorable since LES is not required to resolve the relatively smaller structures that
populate the boundary layer. In natural applications of this method, the entire boundary
layer is treated by RANS, with an LES treatment of the separated regions.

The base model employed in a majority of DES applications to date is the Spalart–
Allmaras one-equation model [70] (henceforth referred to as S–A). The S–A model solves
a single partial differential equation for a variable ν̃ which is the turbulent viscosity. The
differential equation is derived “using empiricism and arguments of dimensional analysis,
Galilean invariance and selected dependence on molecular viscosity.” The model includes
a wall-destruction term that reduces the turbulent viscosity in the log layer and laminar
sub-layer, and trip terms that are supposed to provide a smooth transition from laminar to
turbulent states. For compressible flow Spalart suggested using the compressibility correction
proposed by Secundov [100]. This amounts to adding an extra destruction term to the right-
hand side of the S–A model equation:

−C5ν̃
2UijUij/a

2 , (2.26)

where a is the speed of sound, and C5 is an empirically determined constant.
The wall-destruction term in the S–A model is proportional to (ν̃/d)2, where d is the

distance to the closest wall. When this term is balanced with the production term, the
eddy-viscosity becomes proportional to Sd2 ( ν̃ ∝ Sd2), where S is the local strain rate.
Recall that the Smagorinsky LES model varies its subgrid-scale turbulent viscosity with
the local strain rate and the grid spacing ∆. If, therefore, d is replaced by ∆ in the wall
destruction term, the S–A model will act as a Smagorinsky model.

To exhibit both RANS and LES behavior, d in the S–A model is replaced by

d̃ = min (d, CDES∆) , (2.27)

where CDES is a model constant. When d ≪ ∆, the model acts as a RANS model. When
d≫ ∆, the model acts as a Smagorinsky LES model.

Strelets [101] introduced a DES model based on Menter’s shear stress transport model
(SST) (see Menter [102], and [103] for details). The SST model is a combination of k − ε
and k − ω models, utilizing the best features of each model. Wilcox’s k − ω model is well-
behaved in the near-wall region, where low Reynolds number corrections are not required.
However, the model is generally sensitive to freestream values of ω. On the other hand, k−ε
equations are relatively insensitive to freestream values of ε, but behave poorly in near wall
regions. The SST model uses a parameter F1 to switch from k − ω to k − ε in the wake
region to prevent the model from being sensitive to freestream conditions. Menter did not
include compressibility corrections in his model. Suzen and Hoffmann [104], however, added
compressible dissipation and dilatation terms to the k−ε portion of Menter’s SST model. In
the SST model, the turbulent length scale is given by lk−ω = k1/2/β∗ω (see [102] for details).

The DES modification replaces the length scale by l̃ = min (lk−ω, CDES∆) in the dissipation
term of the k-transport equation.

Most applications of DES have been for flows with separation. Constantinescu and
Squires [105] applied DES to turbulent flow over a sphere at several Reynolds numbers.
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Strelets [101] presented numerous cases using DES: a cylinder, airfoil, backstep, triangle in
channel, raised runaway section, and landing gear. Some cases showed very little improve-
ment over RANS calculations; but none performed worse than RANS, and many performed
better. Forsythe et al. [106] performed a DES of an axisymmetric base flow at supersonic
conditions. Their work incorporated compressible shear layer corrections in both S–A and
SST models. They also tested the sensitivity of the models to grid-refinement, and even grid
type (structured and unstructured). They found that all the results looked similar when
comparing S–A based DES to SST based DES and the fine structured vs unstructured grid
for this particular flow scenario.

As we should expect, applications of DES have been successful only in flow scenarios
where there is a clear demarcation between the RANS and LES regions. For other scenarios
one of the issues confronting DES is the “grey area” in which a shear layer, after separation,
must generate “LES content” which it did not possess in the boundary layer upstream.
Moreover, in general, a Smagorinsky type model is used as the subgrid-scale model in a DES;
hence, one should expect all the disadvantages of using eddy-viscosity assumptions to also
occur for a DES. We also note, on the other hand, that disadvantages of using eddy-viscosity
models are somewhat alleviated, since they are not used at the wall. In DES, the turbulence
is treated by RANS in the boundary layer and slightly beyond separation. Therefore the
accuracy in RANS mode in a DES is no more than it is in pure RANS. We further emphasize
that RANS and LES procedures are fundamentally different. In particular, the Reynolds
decomposition results in having to model the entire range of length scales of the flow, whereas
in a LES decomposition the modeling is confined only to the small-scales—hence we should
expect that it should be difficult to combine them.

2.1.5 Implicit large-eddy simulation (ILES)

As alluded to throughout this material, large-eddy simulation was developed within the
framework of spatial filtering. In particular, virtually all developments of large-eddy sim-
ulation consider spatial filters with constant filter width, e.g., convolution filters. Though
the LES approach promises to be a relevant engineering simulation strategy, in order to
efficiently extend the capabilities of LES to turbulent flows with complex geometries, one
must allow for filters whose properties vary in space, time or both space and time. We note
that the advantages of local refining or coarsening of the filter width shows some similarity
to those exhibited by the use of non-uniform grids.

The introduction of a spatially non-uniform filter or the use of an uniform filter on a
non-uniform grid, complicates the development of the corresponding large-eddy approach
since additional closure terms emerge. In particular, these terms are generally referred
to as commutator-error terms and originate from the fact that non-uniform filtering and
differentiation do not commute. Fedderik et al. [107] have analyzed the large-eddy simulation
equations that are obtained from the application of a spatially non-uniform filter to the
incompressible N.–S. equations. They show that the turbulent stress contributions and the
commutator-errors display the same scaling behavior on the filter width and its derivative.
The authors conclude from the order of magnitude of the commutator-error terms that it is
necessary to explicitly model the commutator-error terms along with traditional subgrid-scale
modeling. They further propose models for the error terms (see [107] for further details).
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This is nothing but a headache when considering LES of compressible turbulence.
Furthermore, difficulties with conventional LES arise from modeling of the SGS term itself

and the (possible) masking of the SGS terms by the truncation error. This suggests that
we must understand how numerical methods contribute implicitly to turbulence modeling;
otherwise we may end up double-counting the effects of turbulence through the explicit
turbulence model as well as through the properties of the numerical method. Moreover, the
under-resolution of a LES will also result in “aliasing errors.” A relatively large-amount of
filtering (smoothing) is needed to ensure that the short wavelength does not contribute very
much to the error. This filtering in some formulations can have a significant dissipative effect
even on scales that can be resolved well.

The above properties of conventional LES has provided a rationale for using high-
resolution methods (for definition of high-resolution methods see Harten [108]), without
any explicit filtering of the governing equations for simulating turbulent flows. These meth-
ods appear to have many of the properties of subgrid-scale models due to their numerical
analytic properties. The idea to use these methods as an implicit way to numerically model
turbulent flows is referred to as monotonically integrated LES (MILES), implicit large-eddy
simulation (ILES), or embedded turbulence modeling.

Reynolds [109] discussed the notion of LES being performed without explicit subgrid-scale
models, but he did not address the interpretation that monotone schemes may already have
a minimal built-in subgrid model. Boris et al. [110] provided the first detailed discussion
regarding the use of high-resolution monotone computational fluid dynamic algorithms such
as flux-corrected transport (FCT) [111] or piecewise parabolic methods (PPM) [112] as alter-
natives to conventional LES. They recognized that these algorithms, which were designed to
satisfy the physical requirements of positivity and causality, have a minimal nonlinear LES
filter and hence, a matching SGS model. In particular, they provide evidence to substantiate
their notion of a “built-in” subgrid model (see, [110] for further details). Over the past one
and a half decades a number of such algorithms have been used by various researchers over a
wide range of problems, especially at high Re involving compressible phenomena. A recent
extensive review on the use of high resolution methods for such simulations is presented in
Drikakis [113]. Moreover, most of these algorithms were designed for compressible flow sim-
ulations, and hence this kind of interpretation of LES blends almost perfectly for simulating
compressible Navier–Stokes turbulence.

All this being said, the use of high-resolution methods as an implicit way to model and
compute turbulent flows is indeed an evolving area of research. In particular, there is a need
for better understanding of the physics encompassed by such numerical methods. Though
there has been significant progress in the theory of high-resolution methods for one-space
dimension, there is a need to understand the nonlinear behavior of the schemes in multi-
dimensional problems (where we are lacking in theory). This nonlinear behavior is also
closely related to the numerical mechanisms leading to the formation of spurious solutions
in under-resolved simulations [113]. In particular, the question “why certain schemes evince
spurious solutions while others do not” [113], still eludes a scholastic answer. Such questions
in turn lead to dilemmas regarding the fidelity of the use of a particular scheme over a wide
range of flow scenarios.
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2.2 Current Trends

While involved in the Statistical Forecasting project at MIT, Lorenz [114] exhibited
that a simple deterministic dynamical model of a fluid system can yield flow properties
having bounded aperiodic behavior in time, of a form apparently so chaotic, that in current
terminology is said to indicate the presence of a “strange attractor.” This (re)discovery by
Lorenz of deterministic systems that are long term unpredictable led to a class of systems that
have come to be known as “chaotic dynamical systems.” These systems are characterized
by sensitivity to initial conditions, that is, exponential separation of nearby trajectories in
phase space, which is considered by many to be the hallmark of a strange attractor.

Although Poincare [115] studied “nonlinear dynamical systems” in the 19th century, the
discovery by Lorenz provided an impetus to researchers to draw parallels between mathe-
matics and physical systems that were previously beyond description. Since then, one of the
main goals for the development of theory of chaotic dynamical systems has been to make
progress in the understanding of turbulence. For a complete review on the history of dynam-
ical systems and chaos, the interested reader is referred to Aubin and Dalmedico [116]. Here
we will give special attention to the relationship between turbulence and chaotic phenomena.
We also consider a new generation of turbulence models known as synthetic-velocity models.

2.2.1 Dynamical systems, chaos and turbulence

One of the goals of science is to predict how a system will evolve as time progresses.
The theory of dynamical systems allows one to do just that. In fluid dynamics a general
evolution equation can be written down as follows

dx

dt
= F (x(t), λ) , (2.28)

where x(t) is the velocity field, and λ is a parameter (e.g., Reynolds number, angle of attack,
Mach number). As λ varies, particular equilibrium solutions, periodic orbits, or other more
complicated invariant sets, may appear or their stability may change. These are considered
to be what are called bifurcations. There are two ways in which the stability of an equilibrium
can change: an eigenvalue of its linearization can pass through zero, or a pair of nonzero
eigenvalues may cross the imaginary axis. In the first case, the simplest bifurcation is called
a saddle-node or limit-point bifurcation. It describes the birth or collapse of two equilibria (of
different stability) as a parameter is varied. The second process, in which nonzero eigenvalues
cross the imaginary axis, is called Hopf bifurcation and involves a family of periodic orbits
that grow from equilibrium. So, as the parameter λ is varied, a viscous fluid progresses
through a collection of increasingly complicated flow patterns. Often, primary interest is
directed towards the asymptotic behavior of the system. Then it is necessary to study the
dynamics of the attractor (a set in phase space to which the system evolves after a long
enough time) to describe the asymptotic behavior of the system.

Originally, Landau [117] and Hopf [118] (see, Landau and Lifschitz [119]) proposed that
the time evolution of a turbulent fluid flow is asymptotically given by

X(t) = fk(ω1t, ω2t, ..........., ωkt) , (2.29)
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where fk is a periodic function of period 2π in each of its arguments, and ω1, ....., ωk are
independent frequencies. A function of the form of Eq. (2.29) is called quasiperiodic (the
corresponding quasiperiodic attractor is a k-dimensional torus) if two, or more, of the ωk are
incommensurate. A quasiperiodic function has a non-periodic, irregular aspect, suggestive
of turbulence, but it is not sensitive to initial conditions. In their seminal paper Ruelle and
Takens [61] mathematically proved that by a small perturbation of Eq. (2.28), one can destroy
a quasiperiodic attractor and if k ≥ 3 obtain a strange attractor (an attractor with chaotic
dynamics). This new progression from steady to turbulent states was termed as the Ruelle–
Takens–Newhouse (RTN) scenario—where a system starting from a steady state undergoes
Hopf bifurcations leading to a quasiperiodic trajectory, which, if made of more than two
incommensurate frequencies, needs only to be perturbed to become attracted by a strange
attractor. We note that if the time evolution is governed by a strange attractor one may
obtain a continuous frequency spectrum (the function giving the square of the amplitude
versus the frequency is called frequency spectrum). It is well known that the frequency
spectrum of a turbulent fluid flow is continuous. However, until the mathematical discovery
by Ruelle and Takens and the direct experimental evidence presented by Swinney and Gollub
[120], Fenstermacher et al. [121], and Gollub and Benson [57], nearly everyone attributed
this fact to the accumulation of a large number of independent frequencies simulating, in the
limit, a continuous spectrum. The RTN scenario for the first time proved otherwise; if one
increases the parameter λ describing the system, the transition to the continuous spectrum
is rapid. There is no progressive accumulation of many independent discrete frequencies.
This discovery established what we now call the “strange attractor theory of turbulence.”
In addition, the modern mathematical theory of turbulence also incorporates the Feignbaum
scenario [122]—where a turbulent state is reached through a series of pitchfork bifurcations
and the Pomeau–Manneville scenario [123]—through intermittency.

Laboratory experiments, Gollub and Benson [57], Wulf et al., and [58] Guckenheimer [59]
(see the subsection ‘Routes to chaos: Experiments’ and references therein) have provided
support for the strange attractor theory in turbulence. Numerical simulations (e.g., turbulent
channel flow [55] and open unforced 2-D flow [56]) have demonstrated the transition to low-
dimensional chaos. For further reading on chaos and dynamical systems, the interested
reader is referred to the text by Alligood et al. [124].

Progress in the utilization of these theories as models for simulating turbulence has been
slow. However, there has been an increasing interest in the so called “shell models” of
turbulence (see Bohr et al. [60] and references therein for theory and applications) which
have been developed based on the dynamical systems approach to turbulence. There has
also been some success in modeling the large-scales of wall-bounded turbulent flow by low-
dimensional dynamical systems (see, e.g., Aubry et al. [125]). We comment that the tools
which have been developed mostly for low-order dynamical systems (Lyapunov exponents,
dimensions of attractors etc.) are not very useful for fully developed turbulence, which
has very large number of degrees of freedom. We are of the belief that the attempts to
oversimplify turbulence by analogy with low-dimensional nonlinear systems that have been
shown to be chaotic is not entirely correct. Here, we take the position of McDonough and
coworkers (see, e.g., [126], [127]) that a subspace of fully developed turbulence, the small
scales, may be effectively described locally in space and time by lower-order dynamical
systems without belying the complexity of fully-developed turbulence.
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2.2.2 Synthetic-velocity models

In all the SGS models discussed in Section 2.1.3 we notice the failure of the models to
incorporate more detailed information about the SGS interactions, and this has been one of
their major shortcomings. To gain information about SGS interactions one has to explicitly
evaluate the subgrid-scales. Models which explicitly evaluate the dependent variables at
the subgrid-scale are sometimes termed “synthetic-velocity models.” Such models not only
improve the quality of the SGS model, but also provide us with the opportunity to study
small-scale turbulence, which would not be possible if traditional SGS models are used.
There now exist several possible formulations of this type. For more on the methodology
behind such models, the reader is referred to the review article by Domaradzki and Adams
[128], and the text by Sagaut [93]. We will now discuss some prominent models in brief.

In Scotti and Meneveau’s fractal interpolation model [129] the sub-grid velocity is recon-
structed by using two pieces of information: 1) the resolved velocity field, which is known
on the finest grid and 2) the fractality of the velocity field. The fluctuations on the small
scale are evaluated by interpolating the resolved velocity field on the fine grid using a fractal
interpolation technique (see [129] for details). This model is based on geometric considera-
tions only, and does not take into account any information dealing with the flow dynamics,
which clearly is a major drawback. As a result of lack of flow dynamics information and high
computational cost associated with model implementation, the model has not been widely
used.

Kerstein et al. [130] developed what they call the one-dimensional turbulence (ODT)
model. The essence of ODT is to represent a three-dimensional turbulent field through a
one-dimensional line of data which in LES would extend across a volume determined by
neighboring mesh points. The fields defined on the one-dimensional domain evolve by two
mechanisms, molecular evolution and a stochastic process representing (replacing) advection.
The stochastic process consists of a sequence of events, each of which involves an instanta-
neous transformation of velocity and scalar fields. During the time interval between each
event and its successor, molecular evolution occurs, governed by the equations

(
∂t − ν∂2

y

)
vi(y, t) = 0 , (2.30)(

∂t − κ∂2
y

)
θi(y, t) = 0 , (2.31)

where vi(y, t) is a three-component vector velocity field defined on a one-dimensional do-
main (parametrized by the spatial coordinate y), θi(y, t) is a scalar field, ν is the kinematic
viscosity, and κ is the scalar diffusivity.

The advection submodel is specified by defining the mathematical operations performed
during an “eddy event” and by formulating the rules that govern the random selection of
such events. An eddy event consists of two mathematical operations. One is a measure-
preserving map representing the fluid motions associated with a notional turbulent eddy.
The other is a modification of the velocity profiles in order to implement energy transfers
prescribed by dynamical rules. These operations are represented symbolically as

vi(y) → vi (f(y) + ciK(y)) , θ → θ (f(y)) , (2.32)

where f(y) is the measure preserving triplet map (see Kerstein [131] for further details
regarding the triplet map and also for other options). The mapping takes a line segment
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[y0, y0 + l], and shrinks it into an interval of a third of its original length and adds two
identical copies rearranged such that the continuity of the advected fields is maintained.
This simulates the process of decreasing length scale and increasing gradients during the
(hypothesized) turbulent energy cascade. Eddy sizes of length l, and the times and locations
of their occurrence for mapping events, are chosen at random from a specified probability
distribution function based on the turbulence production mechanisms. The modeled SGS
quantities are then used to provide SGS fluxes needed to advance in time the LES equations.

The SGS estimation model of Domaradzki and Saiki [132], and Domaradzki and Loh [133],
provides an estimate of the unfiltered fluctuating velocity field appearing in the definition of
the SGS stress tensor and consists of two steps. In the first (kinematic) step, an approximate
inversion of the filter operator is performed, providing the value of the defiltered velocity
field ũ0

i on an auxiliary grid. It is assumed in the procedure that the filter width ∆ is
twice the LES mesh size ∆LES. This “deconvolution” is followed by the second (nonlinear
dynamic) step, which generates scales twice smaller than the smallest scales resolved on the
original LES mesh. In order to capture these scales a finer mesh is required. The fine mesh is
constructed by halving the LES mesh in each Cartesian direction, i.e., the fine mesh spacing
is ∆LES\2. The previously computed ũ0

i is first interpolated from the coarse LES mesh to the
fine mesh. Next, the small scales are produced as a result of nonlinear interactions among
large scales resulting in a perturbation velocity ũ′

i is given by

ũ′i = θN ′
i . (2.33)

Here, N ′
i is the growth rate of sub-grid scale velocities due to nonlinear interactions among

resolved scales. It is computed as

N ′
i = N0

i −N0
i , (2.34)

where N0
i is the nonlinear term from which the advection effects by the large scales are

removed:

N0
i = −

(
ũ0

j − u0
j

) ∂

∂xj
ũ0

i . (2.35)

The timescale θ can be interpreted as large-eddy turnover time, and its value may vary
with the position in a flow to reflect local conditions of turbulence. The estimated velocity
ũi = ũ′i + ũ0

i is given on the fine mesh and is used to compute the SGS stress on the coarse
LES mesh directly from the definition.

We note that both the ODT of Kerstein and SGS estimation model of Domaradzki et al.
have been applied to simulate turbulence in compressible flows.

Copyright c© Chetan B. Velkur 2006
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Chapter 3

LARGE-SCALE SOLUTION PROCEDURE

In this chapter, the solution procedure employed to solve the unsteady, 3-D compressible
N.–S. equations will be discussed. This constitutes the large-scale part of the overall multi-
scale LES algorithm. Shocks and other phenomena unique to compressible flows are also
captured in this part of the algorithm. Various schemes that have been developed to solve
the compressible N.–S. equations will also be discussed in brief. We will further present
results and validate the solver with standard test problems, the 1-D shock-tube problem
described by Sod in [64] and the 3-D blast-wave problem [65].

3.1 Background

It is well-known that solutions to the compressible N.–S. equations admit discontinuities
(shock waves). Therefore any numerical algorithm designed to solve the compressible N.–S.
equations must also be capable of admitting such solutions. If the concept of the derivative
is generalized in the spirit of distribution theory, it has been shown by Lax [134] in 1954
that the governing equations in PDE form admit “weak solutions” (that is, solutions not
sufficiently regular to satisfy the PDE—e.g., solutions containing discontinuities) and that
such jumps appear in the right places.

To compute flows with shocks one can proceed along two different lines of thought result-
ing in two different methods/approaches. The first, which are known as “shock capturing”
methods, relies on the proven mathematical legitimacy of weak solutions. These methods
are designed to have shock waves appear naturally within the computational domain as a
direct result of the overall flow field solution, i.e., as a direct result of the general algorithm,
without any special treatment to take care of the position of the shocks themselves. This
is in contrast to the “shock fitting” approach, where shock waves are explicitly introduced
into the flow field solution; the exact Rankine–Hugoniot relations for changes across a shock
are used to relate the flow immediately ahead of and behind the shock, and the governing
equations are used to calculate the remainder of the flow field. Although both these methods
have inherent advantages and disadvantages, shock capturing methods are best suited for
complex flow problems involving shock waves for which we do not know either the location
or number of shocks—a typical scenario for engineering applications. The interested reader
is referred to the text by Anderson [135], and the review by Moretti [136] for further details
regarding these two classes of methods.

Shock capturing methods

Use of shock capturing methods allows us to develop algorithms to solve only the gov-
erning system of PDEs over the entire domain. Generally time-dependent PDEs are solved
using time-marching procedures. Such procedures fall into one of two different classes or
categories, explicit or implicit. The time step size in an explicit scheme is governed by the
Courant number for high-Re problems, which must not be greater than unity for stable
calculations. For low-Re problems the time step size is set by the viscous stress terms. The
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stability limit for explicit schemes is set by regions in the domain where wave speeds are high.
These regions drastically reduce the time step possible for explicit schemes. Implicit schemes,
on the other hand, can maintain stability with much larger time steps when compared to
their explicit counterparts. For coupled nonlinear PDEs, such as the compressible N.–S.
equations, the use of implicit schemes results in having to iteratively solve a coupled system
of linearized equations at each time step. Hence, a reduction in the number of time steps
may be outweighed by increase in the number of arithmetic operations at each time step.
Hybrid schemes containing both implicit and explicit approaches have also been developed
to abate the disadvantages of the above mentioned approaches.

Numerical solutions to the N.–S. equations at high Re rely largely on methods developed
for the Euler equations—the governing equations for inviscid flows. Most of the schemes
applied to the Euler equations can be used for the N.–S. equations by applying centered
discretizations of the viscous and heat conduction terms. Generally, such schemes employ
a cell-centered unstaggered grid arrangement. In such a grid arrangement, the dependent
variables are computed at cell centers, and the fluxes needed for these calculations are ob-
tained at the cell walls (see, e.g., the text by Hirsch [137]). Numerical algorithms designed
to obtain solutions to the Euler equations can be categorized into two broad categories based
on their ability to use wave propagation information.

Space-centered algorithms for the Euler equations were historically the first to be de-
rived and still form the basis and reference for all other schemes derived since then. These
schemes generally have centered spatial discretizations, and they do not distinguish up-
stream from downstream influences. Hence, the physical propagation of perturbations along
characteristics, typical of all hyperbolic equations, is not considered in the definition of the
numerical model. The entire Lax–Wendroff family of space-centered schemes and MacCor-
mak’s schemes fall under this category (see the texts by Hirsch [137] and Anderson [135]
for derivations and analysis of such schemes). All second-order, three-point schemes gen-
erate oscillations in the vicinity of discontinuities due to the Gibbs phenomenon (see, e.g.,
the relatively recent review by Gottlieb and Shu [138] for further details regarding this
phenomenon). In order to remove the unavoidable oscillations around discontinuities in
second-order centered schemes, Von Neumann and Richtmeyer [139] introduced the concept
of artificial viscosity (artificial dissipation), wherein additional terms are added to smooth
out oscillations. These additional artificial dissipation terms simulate the effects of physical
viscosity on the scale of the mesh locally around discontinuities, and the effects are negligible
(that of an order equal to or higher than the dominant truncation error) in smooth regions
of the flow. Several formulations of this type are possible, and the interested reader is re-
ferred to [137] for different options. First-order schemes have dominant truncation errors
proportional to the second-derivative which acts as a numerical viscosity. Therefore, these
schemes will damp out high-frequency oscillations. However, even second-order implementa-
tions of space-centered schemes still appear to be unsatisfactory to achieve the best possible
resolution of discontinuities. In order to capture the discontinuities to the sharpest possible
extent, one needs to make use of wave propagation information embedded in the governing
equations. Such schemes are known as upwind schemes to which we now turn.

Since the 1970s numerical analysts have focused their attention on a variety of schemes
that can all be categorized as belonging to the same family because all are based on the theory
of characteristics. The concept itself is far from being new, and an application using finite-
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difference techniques had been proposed long ago by Courant et al. [140] in 1952. The related
scheme is known as the CIR scheme (an acronym on the authors’ names). Their procedure
consists of tracing back from a solution at (i∆x, (n + 1)∆t) all three of the characteristic
paths. Since the governing equations are nonlinear, the directions of these paths are not
known exactly, but to a first approximation they can be taken equal to their known directions
at (i∆x, n∆t). Then each characteristic equation is solved using interpolated data at time
n∆t in an interval to the left of i for characteristics with positive speed and in an interval
to the right of i for characteristics with negative speed. A major drawback of this method
is that it is only first-order accurate.

In 1959, Godunov [141] suggested an approach for the numerical solution of the Euler
equations that was philosophically different from the methods invented until then. Instead
of solving for a general flow field by directy implementing a numerical method to solve the
Euler equations written in PDE form, he suggested that the exact solutions to the Euler
equations for a local region of the flow be pieced together to synthesize the overall flow field.
In Godunov’s method the solution is considered as a piecewise constant over each mesh cell
at a fixed time, and the evolution of the flow to the next time results from solving a Riemann
problem at the cell boundaries. A Riemann problem consists of finding the flow at t + ∆t
if a flow consisting of two semi-infinite states is given at time t. If the Riemann problem is
solved exactly in each interval, assuming that the two initial states are defined by the values
at its end points, the slopes of all the characteristics, contact discontinuities, and shock
waves are defined, and all the fluxes across boundaries are computable. The new piecewise
constant at time (n + 1)∆t is then obtained by averaging the fluid states over each cell.
However, Godunov’s original method was only first-order accurate—which led to smearing
of discontinuities; but it had the important property of monotonicity. Monotonicity is crucial
when dealing with compression waves; it ensures that the only shock waves which develop
result from the local collapse of continuous compressions, and it excludes any spurious shocks
resulting from the numerical scheme (e.g., “expansion” shocks). A detailed description of
the method and applications to numerous flow problems as analyzed by Godunov and his
co-workers over a time span of nearly twenty years are given in Godonov et al. [142].

Extension of Godonov-type methods to second-order accuracy was undertaken by van
Leer. Passage from first-order to second-order accuracy in line with the Godunov method
is accomplished in the representation of the state-variables in each cell. Van Leer’s MUSCL
approach (monotonic upstream-centered scheme for conservation laws) [143] generalized the
Godunov method to second-order accuracy. As in Godunov’s method the gas is divided
into cells, and the interaction of these cells at their interfaces (boundaries) is considered in
detail. Whereas in Godonov’s method the distribution of the state quantities inside the cell
are taken to be uniform, in the MUSCL approach the distributions are taken to be linear.
The information contained in the slopes of these distributions makes it possible to attain
second-order accuracy.

Higher-order geometrical approaches such as the piecewise parabolic method (PPM) [112]
of Colella and Woodward have also been proposed. In the PPM method, the average value
of the state variable in each cell is first interpolated using a piecewise parabolic distribution.
With these interpolation functions a first guess is produced for the initial left and right states
for the Riemann problem. These initial guesses for the left and right states are then corrected
by solving the Riemann problem iteratively. The left and right states (values of the state
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variables at the cell walls) are then used to construct fluxes. The solution now can be time
advanced by conservative differencing. A review of some important second-order Godonov
methods such as the PPM of Collela and Woodward, MUSCL approach of van Leer and the
characteristic-based scheme of Roe, including explicit formulae to compute the fluxes, are
discussed at length in Holt [144].

The disadvantage of higher-order extensions of Godunov’s method is the difficulty of
exactly solving the nonlinear Riemann problem at each interface. The exact solution of the
Riemann problem requires an iterative procedure, which leads to relatively complex and
time consuming numerical codes. Since computational efficiency is a major requirement for
applied numerical methods, this results in restricted the use of such methods.

To overcome this drawback, several approximations to the Riemann problem have been
developed. The most important approximate Riemann solvers have been developed by Roe
[145], Osher [146], and Osher and Solomon [147]. A review on characteristic-based schemes
for the Euler equations such as approximate Riemann solvers of Roe, flux-vector splitting of
Steger and Warming [148] and other nonconservative schemes is given by Roe in [149]. We
comment that even these schemes generate oscillations in the vicinity of discontinuities; they
are designed to obtain second-order accuracy by representing the state variables in each cell
as piecewise linear, thereby adding the slope of the linear variation as an additional variable
to be determined. However, oscillations will be created when the slope in a cell becomes
larger than the difference of adjacent mean values (see, e.g., [137] for further details).

The motivation for the development of so called high-resolution methods which attempt
to provide both high-order of accuracy and absence of oscillations in the vicinity of large
gradients emerges from the efforts of numerical analysts to circumvent Godunov’s theorem
which states: There are no monotone, linear schemes for the linear advection equation of
second or higher-order accuracy.. In other words, second-order accuracy and monotonicity
are contradictory requirements (within the framework of linear methods).

This represents a severe limitation since first-order accurate schemes are too diffusive for
practical applications. Hence, conditions less severe than monotonicity have been defined,
allowing schemes with an accuracy higher than one, which generate entropy-satisfying solu-
tions (i.e., absence of spurious expansion shocks) without overshoots at shocks and contact
discontinuities. Schemes of this type are called “high-resolution schemes.” The development
of such schemes started with the work of Boris and Book on flux corrected transport (FCT)
methods [111], and van Leer on MUSCL schemes [143]. The introduction of the concept of
total variation nonincreasing (TVNI) (now referred to as total variation diminishing, or more
popularly as TVD) by Harten [108] proved to be a major step forward in the development
of such procedures.

Intuitively, one can think of total variation as a measure of the overall amount of oscil-
lation in a function over some prescribed interval; it is defined as:

TV (u(·, t)) = sup
P

∞∑

i=−∞

|u(xi+1, t) − u(xi, t)|

for each fixed time t, with the supremum running over all partitions P = {x1, . . . , xn} of the
interval. The supremum of a bounded set S, sup(S), is defined as the the smallest upper
bound of the set S. We note that TVD implies monotonicity preservation. To see this,
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consider a monotone function; then the total variation has a particular value. If the function
does not remain monotone, say as t increases, and instead develops new maxima and minima
(oscillations), the total variation increases. However, of course, the total variation cannot
increase in a TVD method, and thus the solution must remain monotone.

Harten [108] proved that any linear TVD scheme is monotone and hence only first-order
accurate. This restriction does not apply to nonlinear schemes, which can be made TVD
while having second-order accuracy. This possibility explains the importance of the TVD
concept in the generation of high-resolution methods.

Despite their excellent stability and high-resolution properties, TVD schemes have a
serious deficiency in that they degenerate to first order at smooth extrema of a solution
[150]. In [151] Harten and Osher relaxed the TVD restriction and replaced it by a UNO
(uniformly nonoscillatory) restriction; in this context the total number of numerical extrema
does not increase, and their amplitudes could be allowed to increase slightly. It was soon
realized that even the UNO restriction was still too strong since it excluded schemes of higher
than second-order accuracy. Thus, the concept of essentially nonoscillatory (ENO) schemes
was first given by Harten et al. [152] in 1987. Any ENO scheme uses an adaptive stencil
which is chosen based on the local smoothness of the solution—measured by the Newton
divided differences of the numerical solution. Thus the accuracy of the scheme is never
reduced, but the local stencil automatically avoids crossing discontinuities. Such schemes
allow both the number of numerical extrema and their amplitudes to increase; however, such
additional oscillations are controlled to the level of truncation errors even if the solution
is not smooth. ENO schemes have been extremely successful in applications because they
allow arbitrary orders of accuracy and generate sharp (nearly) monotone shock transitions.
The ENO scheme described in [152] is a finite-volume scheme; Shu and Osher ([153], [154])
have also developed finite-difference based ENO schemes in conservation form. Analysis of
ENO schemes is given in Harten et al. [152], and applications of ENO schemes to 2-D and
3-D compressible turbulent flow calculations are given in Shu et al. [155].

An improvement over the ENO scheme is the WENO (weighted ENO) scheme, which
was first developed by Liu et al. [156]. Like ENO, WENO uses adaptive stencils based on
local smoothness of the numerical solution to automatically achieve high-order accuracy and
nonoscillatory properties near discontinuities. While ENO uses just one (optimal in some
sense) out of many candidate stencils when doing the reconstruction, WENO uses a convex
combination of all candidate stencils, each being assigned a nonlinear weight that depends
on the local smoothness of the numerical solution based on that stencil.

Hybrid schemes

In 1981 MacCormack [157] presented an explicit-implicit predictor-corrector method that
involved the “inversion” of bi-diagonal matrices in an effort to reduce computer time. The
algorithm was formally second-order accurate in space and time. While marching in time,
the direction of the one-sided finite differencing was switched between predictor and correc-
tor steps. Implicit steps were taken as forward differencing in the predictor and backward
differencing in the corrector. Fourth-order artificial dissipation, expressed in terms of pres-
sure, was used in the explicit part. Implicit damping was also added to prevent oscillations
around sharp discontinuities, such as shocks (see [157] for further details).
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An implicit-explicit hybrid scheme which extended Godonov schemes to the implicit
regime was developed by Fryxell et al. [158]. Dai et al. [159] implemented an iterative
version of the scheme developed in [158] for solving the Euler equations. This scheme is
of Godunov type in both the implicit and explicit regimes, is conservative, is accurate to
second order in both space and time for all Courant numbers, and is able to switch smoothly
between the implicit and explicit calculations. These switches are determined based on
the Courant number: if the Courant number is less than unity, the equations are solved
explicitly; if it is greater than unity, the equations are solved implicitly since the domain of
dependence extends beyond a cell interface (see [159] for further details). We have by no
means attempted a comprehensive discussion of the various types of schemes developed for
the Euler equations. There is an overwhelming amount of literature on such schemes built
up over a period of more than 60 years, and the ambitious reader is referred to texts by
Laney [160] and Hirsch [137] for a comprehensive review.

Our solver is based on a predictor-corrector methodology. The predictor part of the
scheme consists of a half time step explicit forward Euler time integration of the Euler equa-
tions followed by a full time step implicit backward Euler time integration of the complete
N.–S. equations. Spatial discretization is second-order centered for both predictor and cor-
rector parts of the scheme with dependent variables being evaluated at cell centers and fluxes
evaluated at cell walls. The nonlinearities in the N.–S. equations are handled iteratively by
δ-form quasilinearization; and δ-form Douglas–Gunn time-splitting [63] is used to solve the
linearized equations at each time step. Shocks are captured by using MacCormack and
Baldwin higher-order artificial viscosity as given in [137]. The classic shock-tube problem
described by Sod [64] and the three-dimensional blast wave problem as given in Toro [65]
are employed to validate the solver.

The rest of this chapter is organized as follows. In the next section we provide an overview
of the governing equations in conservation form and the mathematical formulation of the
hybrid scheme based on δ-form Douglas–Gunn time splitting. An overview of the test cases
(shock tube problem and 3-D blast-wave problem) and the pseudo-language algorithm is
presented in the third section. We then present results to validate the solver using the above
test cases in the last section.

3.2 Mathematical Formulation

3.2.1 Governing equations

We begin by presenting the compressible N.–S. equations in their generic form:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 . (3.1)
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Equation (3.1) represents the entire system of governing equations in conservation form if
U, F, G, H are interpreted as column vectors given by

U =




ρ
ρu
ρv
ρw
ρE



, (3.2a)

F (U) =




ρu
ρu2 + p− τxx

ρuv − τxy

ρuw − τxz

ρEu+ pu− k ∂T
∂x

− uτxx − vτxy − wτxz



, (3.2b)

G(U) =




ρv
ρvu− τyx

ρv2 + p− τyy

ρvw − τyz

ρEv + pv − k ∂T
∂y

− uτyx − vτyy − wτyz



, (3.2c)

H(U) =




ρw
ρwu− τzx

ρwv − τzy

ρw2 + p− τzz

ρEw + pw − k ∂T
∂z

− uτzx − vτzy − wτzz



. (3.2d)

Elements of the stress tensor are given in Cartesian tensor notation by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ δijλ

∂uk

∂xk

, i, j = 1, 2, 3 , (3.3)

and the equation of state for a perfect gas is used:

p = ρRT . (3.4)

To relate Eq. (3.3) to the subscript notation of (3.2) note that, e.g., i=1 and j=2 in
the shear stress tensor corresponds to the shear stress component τxy. Further the first
subscript, e.g, the x subscript implies that we are considering a component acting on a
face perpendicular to the x axis, and the y subscript indicates that this stress is in the
y direction. In Eq. (3.2) ρ, p and T are the usual density, pressure and temperature;
u ≡ (u1, u2, u3) = (u, v, w)T is the velocity vector; the quantity E ≡ (e+ u2/2), corre-
sponds to total energy (per unit mass) with u2 denoting u · u, and e is internal energy.
Finally, k is thermal conductivity; µ is dynamic viscosity; λ is second viscosity, and δij is the
Kronecker delta. The corresponding Euler equations are obtained by setting µ, λ, k ≡ 0.

The column vectors F, G, H in Eq. (3.2) are called the flux terms (or flux vectors). The
column vector U is the solution vector, and its elements are conserved variables. This is in
contrast with u, v, w and E which by themselves are examples of primitive variables. The
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primitive variables are obtained from the flux variables via the following relationships

ρ = ρ ,

u =
ρu

ρ
,

v =
ρv

ρ
, (3.5)

w =
ρw

ρ
,

E =
ρE

ρ
.

3.2.2 Predictor stage

We first present the standard cell-centered unstaggered grid arrangement employed. In

(i−1, j, k) (i, j, k) (i+1, j, k) (i+2, j, k)

(i−1/2, j, k) (i+1/2, j, k)

Figure 3.1 Schematic of computational Grid.

Fig. 3.1 full grid point indices (e.g., i, j , k ) correspond to cell-centers, and half grid point
indices (e.g., i + 1

2
, j , k) correspond to cell walls. Horizontal fluxes F are evaluated on

vertical cell walls; vertical fluxes G are evaluated on horizontal cell walls; transverse fluxes
H are evaluated on transverse cell walls. These are evaluated using

F i+ 1

2

= 1
2
(F i−1, j ,k + F i, j ,k) , (3.6)

Gj+ 1

2

= 1
2
(Gi, j−1 ,k + Gi, j ,k) , (3.7)

Hk+ 1

2

= 1
2
(H i, j ,k−1 + H i,j ,k) . (3.8)

The predictor stage consists of a half time step forward time integration of the Euler
equations with a centered discretization in space. On discretizing Eq. (3.1) with appropriate
definitions for F , G, and H we obtain a discrete formula for the unknown U i,j,k as

U
n+1/2
i,j,k = Un

i,j,k − ∆td0,xF
n
i,j,k − ∆td0,yG

n
i,j,k − ∆td0,zH

n
i,j,k . (3.9)
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The difference operator d0,x is defined as d0,x (ui,j,k) = (ui+1,j,k − ui,j,k) /∆x with correspond-
ing definitions for d0,y and d0,z. We also note that the time-step ∆t = ∆t/2, i.e., time

advancement in the predictor is performed only for half a time-step. The value of U
n+ 1

2

i,j,k now
serves as an initial guess for the corrector step.

3.2.3 Corrector stage

In the corrector stage of the algorithm we implicitly solve the complete N.–S. equations;
hence, there is a need to linearize the nonlinear terms in the equations. This is achieved
by employing the Newton–Kantorovich procedure (see, e.g., Kantorovich and Akilov [161]).
The form that we shall employ here is often termed quasilinearization (even though it is
actually linearization and not quasilinearization). The simplest form of quasilinearization
from a conceptual standpoint was introduced by Bellman and Kalaba [162] whereby the
dependent variables, as well as their derivatives, are viewed as independent variables in a
Fréchet–Taylor expansion of any nonlinear terms present in the problem. We comment that,
though this formulation is a very general and effective way to treat nonlinear PDEs, there is
considerable arithmetic involved in evaluating the resulting equations. We therefore consider
an alternative (and equivalently accurate) formulation, often called δ-form quasilinearization,
to which we now proceed.

Quasilinearization

Notice that the fluxes are nonlinear functionals of the solution vector U . We first linearize
the fluxes by constructing Fréchet–Taylor expansions in δ-form. For the general mth iteration
we have

F (U)(m+1) = F (U )(m) +

(
∂F

∂U

)(m)

δU ,

G(U)(m+1) = G(U)(m) +

(
∂G

∂U

)(m)

δU , (3.10)

H(U)(m+1) = H(U)(m) +

(
∂H

∂U

)(m)

δU ,

where δU = U (m+1) −U (m) is the difference between two successive iterates. In general, for
a time-dependent calculation we have δU = Un+1(m+1) − Un+1(m). Substituting Eq. (3.10)
into Eq. (3.1) and discretizing the resulting linearized system, leads to

Un+1(m+1) = Un − ∆td0,x(F
(m)) − ∆td0,y(G

(m)) − ∆td0,z(H
(m)) − ∆tD0,x

(
∂F (m)

∂U
δU

)

− ∆tD0,y

(
∂G(m)

∂U
δU

)
− ∆tD0,z

(
∂H (m)

∂U
δU

)
. (3.11)

The centered-difference operator D0,x is defined as D0,x (ui,j,k) = (ui+1,j,k − ui−1,j,k) /2∆x
with corresponding definitions for D0,y and D0,z.
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We now observe that the unknown time level n+1 solution occurs in two different ways in
the above equation, namely both as Un+1 and as δU . We need the expression to be entirely
in terms of δU so we write Un+1 as U (m+1) = δU + U (m) and substitute into Eq. (3.11) to
obtain

δUn+1(m+1) = Un − Un+1(m) − ∆td0,x(F
(m)) − ∆td0,y(G

(m)) − ∆td0,z(H
(m))

− ∆tD0,x

(
∂F

∂U
δU

)
− ∆tD0,y

(
∂G

∂U
δU

)
− ∆tD0,z

(
∂H

∂U
δU

)
. (3.12)

The solution vector now becomes δU instead of U . ∂F /∂U , ∂G/∂U , and ∂H/∂U result in
three 5×5 matrices which are the Jacobian matrices for the 3-D compressible N.–S. equations.
We next rearrange Eq. 3.12as

{
I + ∆tD0,x

(
∂Fℓ

∂Uℓ
·

)(m)

+ ∆tD0,y

(
∂Gℓ

∂Uℓ
·

)(m)

+ ∆tD0,z

(
∂Hℓ

∂Uℓ
·

)(m)
}
δUℓ

= Un
ℓ − U

n+1(m)
ℓ − ∆td0,x(F

(m)
ℓ ) − ∆td0,y(G

(m)
ℓ ) − ∆td0,z(H

(m)
ℓ )

− ∆tD0,x

(
∂Fκ

∂Uκ
δUκ

)(m)

− ∆tD0,y

(
∂Gκ

∂Uκ
δUκ

)(m)

− ∆tD0,z

(
∂Hκ

∂Uκ
δUκ

)(m)

,

∀ ℓ, κ ∈ {1, 2, 3, 4, 5}, κ 6= i . (3.13)

There are several remarks to be made regarding Eq. (3.13). The obvious one is that it
contains five unknowns: δU1, . . . , δU5. We further note that, the δUs have been arranged
such that the unknown corresponding to the equation under consideration appears on the
left-hand side and all other unknowns appear on the right-hand side. As an example, if we
were solving the continuity equation (which corresponds to ℓ=1) only δU1=δρ appears on
the LHS, and the other unknowns such as δρu, δρv, δρw and δρE appear on the RHS. In
particular, the equations are now decoupled and will be solved sequentially. We should also
observe that as U

n+1(m)
ℓ → Un+1

ℓ , δUℓ → 0. Thus, if the Newton–Kantorovich iterations
converge, they converge to a solution of the original nonlinear problem. Moreover, in the
context of using time-splitting methods within this solution process, the splitting errors are
automatically removed because it is the convergence of the unsplit equations that is tested.

Using compact notation, Eq. (3.13) can be rewritten as

[I + A1ℓ
+ A2ℓ

+ A3ℓ
] δUℓ = S(m) ℓ = 1, . . . , 5 , (3.14)

with obvious definitions for A1ℓ
, A2ℓ

, A3ℓ
, and Sm. An important consequence of the above

rearrangement is that we obtain a form to which time-splitting procedures can be directly
applied; this is considered in the sequel.

δ-form Douglas–Gunn time splitting

We comment at the outset that the reason for choosing a time-splitting method such
as Douglas–Gunn is its efficiency in solving multi-dimensional problems. This is achieved
by decomposing multi-dimensional problems into sequences of 1-D problems. We begin by
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recalling that the standard form for any two-level difference scheme applied to a δ-form
equation is given by [

I + A(n+1)
]
δu+Bu(n) = s(n) , (3.15)

where in 3-D, typically, A = A1 + A2 + A3 corresponding to the three spatial directions,
modulo treatment of mixed derivatives. Once we arrive at this form for any problem that
we may wish to solve, splitting can be done in the usual way. In general, we have

[I + Ap] δu
(p) +

p−1∑

r=1

Arδu
(r) +

q∑

r=p+1

Arδu
(n) +Bu(n) = s(n) , p = 1, 2, 3 . (3.16)

We note that the index q corresponds to the number of the split steps per equation. If
iterations have been carried to convergence in the preceding time step, then δu(n) ∼= 0. Then
for the first split step it follows that

[I + A1] δu
(1) = s(n) − Bu(n) , (3.17)

and in general,

[I + Ap] δu
(p) +

p−1∑

r=1

Arδu
(r) = s(n) − Bu(n) . (3.18)

Similarly,

[I + Ap−1] δu
(p−1) +

p−2∑

r=1

Arδu
(r) = s(n) − Bu(n) , (3.19)

and subtracting this from Eq. (3.18) yields

[I + Ap] δu
(p) − [I + Ap−1] δu

(p−1) + Ap−1δu
(p−1) = 0 . (3.20)

Thus,
[I + Ap] δu

(p) = δu(p−1) ∀ p = 2, . . . , q , (3.21)

with
δu ≡ δu(q) . (3.22)

Then
un+1(m+1) = un+1(m) + δu . (3.23)

Now recall from Eq. (3.14) that the δ-form quasilinearization of the equations of motion gave
us the standard form to which the δ-form time-splitting procedure can be applied. For the
first split step we obtain

[I + Apℓ
] δU

(1)
ℓ = Sm p = 1 ; (3.24)

and the second split step is

[I + Apℓ
] δU

(2)
ℓ = δU

(1)
ℓ p = 2 , (3.25)

and the third split step is

[I + Apℓ
] δU

(3)
ℓ = δU

(2)
ℓ p = 3 . (3.26)

38



The update formula
U

(m+1)
ℓ = δU

(3)
ℓ + U

(m)
ℓ , (3.27)

provides the new approximation to the solution. We further notice that the time-splitting
along with the second-order centered discretization employed herein leads to a tri-diagonal
system, that can be solved efficiently using LU decomposition at each split step. Further,
the dimensional splitting of the equations leads to an algorithm that is easily parallelized.

Artificial dissipation and filtering

As alluded to in the Background section, all second-order schemes generate oscillations
around sharp discontinuities. In order to remove the unavoidable high-frequency oscillations,
we use the concept of artificial viscosity. We apply a third-order artificial viscosity developed
by MacCormack and Baldwin. We will follow [137] for the formulation of the dissipation
term D. This term is made proportional to a second derivative of the pressure field in order
to enhance the effects of dissipation in the presence of strong pressure gradients (shocks,
expansion waves) and to reduce it in smooth flow regions. The factor D is defined as

D = ǫ∆x2 |u| + c

p


∂2p

∂x2

 .

The modified numerical flux denoted by f now becomes (in 1D)

f ∗
i+ 1

2

= fi+ 1

2

− ǫ∆x3 |u| + c

p


∂2p

∂x2


∂U

∂x
.

This is generally computed as

f ∗
i+ 1

2

= fi+ 1

2

− ǫ∆x2 (|u| + c)i+ 1

2

|pi+1 − 2pi + pi−1|

pi+1 + 2pi + pi−1
(Ui+1 − Ui) , (3.28)

with direct extension to multi-dimensions. We note that the parameter ǫ in the above
equations has to be prescribed apriori by the user at the time of the simulation. In our case,
in three dimensions we end up with five such parameters (one for each equation) which have
to be assigned values.

Since solutions to the compressible N.–S. equations are nonsmooth, we take explicit mea-
sures to treat the effects of “aliasing.” It is well known that since aliasing arises from an
inability to represent high-wavenumber components of a solution in its numerical approxi-
mation (which is inherent in a LES methodology), the remedy must always be some kind of
smoothing or mollification that introduces additional dissipation into the numerical scheme,
thus damping higher-wavenumber effects. Although artificial dissipation methods discussed
previously provide additional dissipation (which handles aliasing effects to some extent),
they are specifically designed to mitigate the Gibbs phenomenon oscillations in the presence
of shocks (a rather different problem). To treat the “aliasing” problem we take the filter-
ing approach, i.e., use of post-processing filters as is routinely done in essentially all signal
processing by the electrical engineering community. A collection of numbers comprising a
discrete solution can be easily interpreted as a “signal.” The simple linear filter to be used
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herein was probably first introduced by Shuman [163] in the context of smoothing meteoro-
logical measurements and analyzed in detail by Shapiro [164]. In particular, we make use of
the Shuman filter as our post-processing filter. The Shuman filter is very simple; it employs
dependent variable values in a small neighborhood of grid points in “physical” space to re-
move the effects of aliasing. The mathematical formula for the Shuman filter is as follows in
1D (see Shuman [163]):

ui =
ui+1 + βui + ui+1

2 + β
, i = 2, . . . , N − 1, (3.29)

where β is a filter parameter, and uN
i=1 is the grid function. Yang and McDonough [165] have

demonstrated the effectiveness of the filtering approach involving a Burgers’ equation model
of turbulence. They compared the performance of the Shuman filter with two other filters
that are widely used in LES. They found that the Shuman filter provided results that were
superior to those of either a Gaussian filter or a Fourier sharp cut-off filter. Investigations
involving the influence of the parameter value was also undertaken; it was discovered through
numerical experiments that proper choice of the value is important; but once it is in the
correct range the quantitative features of the computed results are not extremely sensitive
to this value.

3.2.4 Pseudo-language algorithm

In this subsection we will present the pseudo-language algorithm corresponding to the
foregoing treatment of the mathematical formulation of the large-scale solution procedure.
Algorithm 1: Suppose n time steps have been completed. To advance the solution to time
level n+1, perform the following steps.

1 Calculate Euler cell-wall fluxes from their definitions.

2 Add artificial dissipation to the fluxes to obtain modified fluxes.

3 Obtain an initial guess for solving the N.–S. equations by first solving the Euler equations,
i.e., solve the discrete system Eq. (3.9).

4 Do m=1,nlitr

i Calculate N.–S. fluxes from their definitions.

ii Add artificial dissipation to the fluxes to obtain modified fluxes to be used in evaluating
the solution vector.

iii Solve discrete continuity, momentum and energy equations, i.e., solve Eq. (3.14) i=1,
. . .,5 by following the time splitting procedure Eq. (3.24)–Eq. (3.27) for each equation
separately (sequentially)

iv Test convergence: If max (||δU ||) ≤ ǫ, then goto 6

v If m > nlitr then
Write error message
stop
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5 Repeat m

6 Filter solution using the Shuman filter

7 Calculate primitive variables from Eqs. (3.5)

3.3 Test Cases

To validate our solver we have chosen the shock-tube problem described by Sod [64] and
the 3-D blast-wave problem described by Toro [65]. The two test cases serve two distinct
purposes for evaluating the performance of our solver. The shock-tube problem provides
us with an opportunity to evaluate the capability of the solver to simulate the boundary
layer; however, this test case is inherently one-dimensional. The 3-D blast-wave problem
on the other hand provides us with a scenario to generally assess the 3-D capability of
the solver. Towards the end of this section we will also specify values for the transport
properties, artificial dissipation parameters, and Shuman filter parameters employed in these
simulations.

3.3.1 Shock tube problem

The shock-tube problem is an interesting test case because the exact time-dependent
solution is known for the Euler equations in 1-D, and, hence, we can compare our computed
viscous solution at least qualitatively to the exact inviscid solution. The initial data for
the shock-tube problem are composed of two uniform states (generally known as left and
right states) separated by a discontinuity, physically a diaphragm. When the diaphragm is
broken, two pressure waves appear (a shock wave and an expansion fan) and propagate into
the initial fluid states, resulting in two uniform states 2 and 3 as shown in Fig. 3.2. The final

4 3 2 1

Expansion Fan     Contact Surface     Normal Shock     

Figure 3.2 Schematic of a shock tube.

states 2 and 3 are separated by a contact discontinuity (discontinuity in first derivatives),
implying that the pressure and the velocity of these states are equal, but density jumps
across the discontinuity. The governing equations Eq. (3.1) are solved on a domain Ω (a
rectangular tube) with dimensions L×H ×W ≡ 1 × 0.2 × 0.2 in x-y-z space, respectively,
with boundary conditions consisting of the no-slip condition imposed at y = 0, y = H , z = 0,
and z = W , an inflow condition ∂U/∂n = 0, and outflow condition ∂U/∂n = 0 applied at
x = 0 and x = L, respectively.

We validate the solver in a shock tube set up for three different pressure ratios across the
initial discontinuity at time t0. Test 1 is the popular Sod’s test with an initial pressure ratio
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of 10, whereas Test 2 employs a much stronger initial pressure ratio of 100. In the first case
the shock (more appropriately a strong gradient) is of moderate strength, while the second
case corresponds to a strong shock and supersonic Mach numbers after the expansion. Test
3 is designed to assess the robustness of the numerical method—it has a pressure ratio of
100000; its solution consists of a strong right traveling shock wave, a contact surface and a
left rarefaction wave. The initial conditions in the left and right sections of the shock tube
are given in Table 3.1.

Table 3.1 Initial conditions for shock-tube problem.

Test ρl ul pl ρr ur pr

1 1.0 0 1.0 0.125 0 0.1
2 1.0 0 1.0 0.01 0 0.01
3 1.0 0 1000.0 1 0 0.01

3.3.2 Blast-wave problem

The 3-D blast wave problem is like a three-dimensional extension of the shock-tube
problem described above. The initial conditions consist of a cube Ω = 2 × 2 × 2 in x-y-

ins

0

1

out

1

0

Figure 3.3 Schematic of initial condition for spherical explosion; red circular zone has high
pressure and density.

z space, inside which there is a sphere of radius R = 0.4 centered at (0, 0, 0) with high
pressure and density. The flow variables take constant values in each of these regions (inside
and outside the sphere) and are joined by a spherical discontinuity at time t = 0. This is
represented in Fig. 3.3. The two constant states are given in Table 3.2.
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Table 3.2 Initial conditions for blast-wave problem.

Test ρins uins pins ρout uout pout

4 1.0 0 1.0 0.125 0 0.1

3.3.3 Transport properties, artificial dissipation parameters and other con-
stants

In this subsection we will give values for the transport properties, artificial dissipation
parameters, and Shuman filter parameters, which are employed in obtaining numerical solu-
tions to the test cases described in the previous subsection.

We note that the code was developed within the framework of incorporating constant
transport properties. For solving the four test cases whose initial data are dimensionless,
the values of these properties were nondimensionalized by a reference value of unity with
corresponding SI units. In particular, the dynamic viscosity of air µ was taken to be 1.73e−5
(viscosity of air at standard conditions). The second viscosity λ is related to µ via the Stokes
relation given by λ = −2

3
µ. The thermal conductivity k of air is given by 0.03 (thermal

conductivity of air at standard conditions). Consistent with our assumption that we are
dealing with perfect gases, the ratio of specific heats for air at standard conditions is given
by γ = 1.4, and the specific gas constant R = 287.

Recall that the dissipation term D in the MacCormack and Baldwin artificial viscosity
incorporates a parameter ǫ in its construction, which has to be assigned a value a priori in
the simulation. For solving the 3-D N.–S. equations we have to assign values for five such
parameters (one for each equation). This process of assigning multiple values immediately
suggests that it would take a concentrated effort to obtain optimal values for these parameters
for each problem over a wide range of test cases employed herein. Hence, we tuned the
artificial dissipation parameters only for Test Case 1 and employed the same values for Test
Cases 2 and 3. Since Test Case 4 is a three-dimensional extension of Test Case 1, we used
some of the values from Test Case 1, but we set the parameter values to be identical in the
three momentum equations due to the symmetry present in Test Case 4. In particular, the
artificial dissipation parameter values used in simulations of Test Cases 1 to 3 are: ǫρ = 2.0,
ǫρu = 2.0, ǫρv = 28.0, ǫρw = 28.0, ǫE = 4.0. The values assigned to the parameters for Test
Case 4 are: ǫρ = 2.0, ǫρu = 4.0, ǫρv = 4.0, ǫρw = 4.0, ǫE = 4.0.

Also, in the context of implementing the Shuman filter to handle aliasing errors we have
to assign values to the filter parameter β for each component of the solution vector. We
conducted numerical tests to choose the values of these filter parameters. In particular, the
values of these parameters were chosen such that the large-scale solution did not blow up,
and smearing of the large-scale solution was not considerable. We remark that the same kind
of conflict arises even in traditional LES procedures where the user has to specify a filter
width ∆. The filter parameters for the test cases were chosen to be: βρ = 10000, βρu = 7000,
βρv = 7000, βρw = 7000, and βρE = 10000.

43



3.4 Results and Discussions

Most 1-D and 2-D results presented in this section are extracted from positions in the
domain as shown in Fig. 3.4 unless noted otherwise. The 3-D calculations were performed
on a grid consisting of 201 × 81 × 81 points in the x, y and z directions for the shock-
tube problem. We further note that the shock wave will be represented by ‘1’, the contact
discontinuity by ‘2’, the head of the rarefaction fan by ‘3’ and the tail of the rarefaction by
‘4’ throughout the discussions in this section.

Plane on which data is
extracted for 2−D plots

Line on which data is
extracted for 1−D plotsxy

z

Figure 3.4 Schematic of positions in the computational domain for presenting results.

3.4.1 Test Case 1

We begin by providing an overall three-dimensional qualitative view of the flow field inside
the shock tube. We then display two-dimensional contour plots associated with specific slices
of the overall 3-D domain to provide better insight into the distribution of the flow variables.
Finally, we present comparisons of computed results with the exact 1-D, inviscid solution in
the form of 1-D plots. Data for the 1-D plots is extracted from a region, which would be the
1-D case if the 3-D aspect were neglected, as suggested from Fig. 3.4.

In Fig. 3.5 we present a 3-D visualization of the flow field after a time interval of 0.2 units
from the initial breaking of the diaphragm. As alluded to previously, the pressure difference
across the diaphragm induces a pressure wave to propagate into the quiescent gas to the
right. The speed at which the pressure wave propagates depends on the initial pressure
ratio across the diaphragm. Along with the initial condition this pressure ratio uniquely
determines the strength of the incident shock wave and expansion wave that are set up after
the diaphragm is ruptured. In particular, for this test case, the diaphragm pressure ratio is
10 (see Table 3.1). If this pressure ratio is high enough, then the resulting pressure wave is
propagated at speeds comparable to the speed of sound in the medium. This results in a
wave steepening effect since the speed at which disturbances can be transmitted is limited
by the sound speed. As time evolves the compressive region generated by propagation of
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Figure 3.5 Test Case 1: 3-D visualization of flow field. Contours colored with velocity magni-
tude.

the pressure wave tends to become steeper and narrower, thus forming a normal shock wave.
This compressive motion to the right of the tube also results in an expansion or rarefaction
wave propagating into the quiescent gas to the left. To understand why this happens, think
of the initial discontinuity as a piston. To produce the shock front the piston has to move
to the right. Once the piston moves to the right, the gas to the left of the piston also moves
to the right to fill up the space previously occupied by the piston resulting in an expansion
(feels like withdrawal of the piston).

Figure 3.5 shows the shock wave, which moves to the right and the rarefaction fan which
moves to the left. Distribution of the velocity magnitude at cross sections of the tube
corresponding to the positions of the shock wave and the head and tail of the rarefaction
are also shown. The contour plots at the cross sections of the tube demonstrate the nearly
one-dimensional nature of the solution. In the inset we present the velocity contour, which
displays the development of the boundary-layer on the tube walls. Variation of the velocity
magnitude along a 2-D slice running the length of the tube is also shown to make the jumps
more evident.

In Fig. 3.6 we present 2-D contour plots of certain dependent variables at time t = 0.2
units. For a compressive shock wave, the kind produced in this shock tube setup, the
magnitudes of dependent variables are always greater behind the shock front than ahead of
it (from a laboratory frame of reference). The degree of this increase can be used in various
ways to measure the strength of the corresponding shock wave. Based on the ratio of the
pressure immediately behind and ahead of the shock, the strength of the shock for Test
Case 1 is 3. We comment that this shock is not very strong. The jumps in magnitude of the
dependent variables from a quiescent zone at the right end of the tube to a region behind the
shock wave can be deduced from Fig. 3.6. As the normal shock wave propagates to the right,
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Figure 3.6 Test Case 1: 2-D contour plots at t = 0.2 units; (a) density, (b) u-velocity, (c)
pressure, (d) temperature.

it begins to envelope more and more of the quiet gas, which, after being overtaken, follows
the shock front at a constant velocity. This results in a column of fluid (region between 1
and 2 of Fig. 3.6(b)) moving to the right at constant velocity. Careful observation of the
density and temperature contours within the same interval reveals the contact discontinuity
which the separates two zones of different density and temperature. Figure. 3.6(b) suggests
that the contact discontinuity follows the shock wave at a constant velocity. Across the
contact discontinuity, pressure and velocity are preserved, but density and temperature vary
discontinuously. The plots in Fig. 3.6 clearly indicate the presence of these features. The
rarefaction wave propagates to the left, and it smoothly and continuously decreases the
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pressure of the fluid at the head of the rarefaction to a lower pressure behind the rarefaction.
This phenomenon is clearly observed in part(c) of the figure and further suggests that the
gas particles move at increasing speeds from the rarefaction wave head, towards the tail.
This increase can be inferred from Fig. 3.6(b). Furthermore, the Gibbs oscillations behind
the shock front are also visible in the contour plots presented above.

1.131

0.000

0.566

Figure 3.7 Test Case 1: Boundary layer profile.

In Fig. 3.7 we display a zoomed vector plot of the computed boundary-layer profile. It is
clear that the solver is able to capture the boundary-layer profile with reasonable accuracy.
Due to constraints regarding grid-sizes in 3D, we were able to put only three gridpoints
within the boundary-layer. Even with such a coarse grid spacing the solver was able to
capture the general shape of the boundary layer, which is particularly encouraging.

In Fig. 3.8 we present comparisons between computed and exact solutions, again at
time t = 0.2 units. It should be noted that although the inviscid discontinuities are now
transformed to sharp but continuous variations due to physical viscosity and heat conduction
effects, these cannot be resolved using typical gridding; hence, artificial dissipation still must
be used to capture these discontinuities. We notice from the u-velocity profile (part (a) of
the figure) that the computed results are in agreement with the exact solution with respect
to predicting the position of the shock front. However, the solver overpredicts the velocity
at the contact surface. A grid function convergence study, which is considered in the sequel,
shows that the overshoot decreases as we decrease grid spacing. Furthermore, the presence of
Gibbs oscillations in the immediate vicinity of the shock wave is evident. Although one could
mitigate these oscillations to a greater extent by using high-resolution methods, considering
the complexities involved in implementing such schemes in 3D, we chose to use artificial
dissipation. Post-processing filters like digital total variation (DTV) filtering (see Chan et
al. [166]) are also being used to provide sharper shock capturing. However, implementation of
such filters is not straightforward even in one-dimensional cases. Moreover, the effectiveness
of these filters in 3D has also not been studied. In part(b) of the figure we notice that
there is a visible smearing at the contact discontinuity. The resolution of the rarefaction is
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Figure 3.8 Test Case 1: Comparison of numerical with exact solution at t = 0.2 units; (a)
u-velocity, (b) density, (c) pressure, (d) Mach number.

satisfactory, but there is still some smearing at the head and tail of the rarefaction. The
agreement of the computed pressure profile (part(c)) with the exact solution is generally
good, but again we see the smearing at the head and tail of the rarefaction. From the Mach
number profile (part(d)) it is evident that the maximum Mach number of the fluid in the
tube is 0.95; this corresponds to a transonic case. This is to be expected considering the
strength of the shock wave in this test case. The Gibbs oscillations and the effects of the
overshoot of velocity at the contact discontinuity in the velocity profile has also fed into
inaccuracies of the Mach number profile as should be expected.
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Grid function convergence study

To determine the convergence rate of the method we perform convergence tests on the
grid functions as the discretization step sizes are decreased. In particular, we use three grids
denoted as Hc, Hm and Hf—coarse, medium and fine, respectively. Discretization step sizes
are sequentially reduced by a factor of two in each separate direction in going from one grid
to the next finer one. With a grid spacing of ∆x = 0.02, ∆y = 0.01, and ∆z = 0.01, Hc is
the coarsest grid, corresponding to 51 × 21 × 21 points in x-,y- and z coordinate directions,
respectively. With a grid spacing of ∆x = 0.01, ∆y = 0.005, and ∆z = 0.005, Hm is the
medium grid containing 101 × 41 × 41 points. Finally, ∆x = 0.005, ∆y = 0.0025, and
∆z = 0.0025 for Hf , the finest grid with 201 × 81 × 81 points.

In Fig. 3.9 we present one-dimensional plots comparing the solutions computed on the
three grids with the exact solution. The u-velocity plot is displayed in Fig. 3.9(a), density in
Fig. 3.9(b), pressure in Fig. 3.9(c) and Mach number in Fig. 3.9(d). Figure 3.9 indicates that
the computed solutions approach the exact solution as grid spacing is decreased, indicating
the convergence of the solution in a qualitative sense. But, of importance to us in the u-
velocity profile (part(a)) is the overprediction of the velocity at the contact surface. A blow
up presented as an inset in Fig. 3.9(a) indicates the decrease in the overshoot with decreasing
grid spacing. Moreover, with the decrease in overshoot the u-velocity profile approaches the
exact solution. This further suggests that our grid spacing even on our finest grid is not
fine enough so as to match the exact solution. However, with the resources at our disposal
this is the best that could be achieved. Moreover, an exact viscous solution is not available.
From the blow up in part (b) of the figure it is evident that the solution computed on the
Hf grid captures the shock front much more sharply than the solutions computed on the Hm

and Hc grids. Comparison of the amplitudes of Gibbs oscillations present behind the shock
front in the density profiles computed on the three grids reveals that the amplitude of the
oscillations is somewhat lower on the Hf grid (seen clearly in zoomed view in Fig. 3.9(b)),
but the frequency is higher. Also, both the pressure and Mach number profiles illustrate
that decreasing grid spacing provides superior results in tracking the profile of the expansion
fan.

Even though the above plots illustrate that the computed solution appears to converge to
the exact solution as the discretization step size is decreased, it is also important to determine
the rate at which error is reduced. For grid functions, we generally have available qualitative
information, derived from the numerical method itself about the theoretical convergence rate
of the grid functions generated by the method. In particular, we always have the truncation
error at our disposal. In our case, since we have used second-order discretizations, the leading
truncation error is O(h2), i.e., the order of convergence is 2. Hence, a reduction in the step
size by a factor of two should reduce the error by a factor of four.

For finite-difference approximations, even for PDEs, the formal convergence rate of the
method should be achieved, provided the solutions to the problem are smooth. However, in
general, the solutions to the compressible N.–S. equations involve shock waves, and hence, the
solutions are inherently nonsmooth. Finite-difference approximations to such solutions are
dominated by O(1) errors, which are introduced in a few cells in the vicinity of discontinuities
(contact discontinuity and shocks). Engquist and Sjögreen [167] have shown that this error
can affect even the smooth part of the solution away from the shock such that only O(h)
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Figure 3.9 Test Case 1: Comparison of numerical solution on three different grids with exact
solution at t = 0.2 units; (a) u-velocity, (b) density, (c) pressure, (d) Mach number.

accuracy be achieved even for formally higher-order methods. They further give a theorem
that proves for scalar problems (1-D cases) that one can expect the formal order of accuracy.
But for a system of equations, or problems with source terms, or both, the order of accuracy
for even formally higher-order methods is at the most O(h). The interested reader is referred
to [167] for further details. We will show that, this is in fact the case for the 3-D system of
equations that we solve.

The L2 error, which was calculated based on the results obtained on the three grids is
presented in Table. 3.3. We note we have used the strong L2 norm for our calculations,

i.e., with the L2 norm of a variable φ defined as ||φ ||2 =
[∫ W

0

∫ H

0

∫ L

0
|φ|2 dx dy dz

]1/2

, the

50



corresponding order of convergence p is given by the formula:

p =

||φh−φh/2||

||φh/2−φh/4||

log(2)
(3.30)

Table 3.3 Test Case 1: Results from grid function convergence tests.

φ ||φh − φh/2|| ||φh/2 − φh/4||
||φh−φh/2||

||φh/2−φh/4||
p

ρ 1.633e− 3 1.52e− 3 1.41759 0.50344
ρu 2.33103e− 3 1.48494e− 3 1.56977 0.65055
ρv 2.51795e− 4 1.55105e− 4 1.62338 0.699
ρw 2.51782e− 4 1.55101e− 4 1.62334 0.68896
ρe 4.8756e− 3 2.81203e− 4 1.73381 0.79395
u 5.30295e− 3 3.3059e− 3 1.60405 0.68172
v 6.51714e− 4 4.19e− 4 1.551441 0.63636
w 6.51714e− 4 4.19271e− 4 1.55439 0.63635
p 1.62789e− 3 9.84054e− 4 1.65427 0.72619
T 1.15398e− 5 9.32563e− 6 1.23742 0.30734

As mentioned earlier, the obtained order of convergence p is what should be expected
for such kinds of problems. In particular, we observe that the order of convergence varies
from 0.30734—0.79395 for the various dependent variables. These values for p imply that
nearly only O(h) convergence is achieved. We further comment that the artificial dissipation
parameters were tuned for this particular test case.

3.4.2 Test Case 2

The pressure ratio across the diaphragm for this test case is a 100. Figure 3.10 displays
a three-dimensional visualization of the flow field at a time t = 0.1 units after the initial
rupturing of the diaphragm. The normal shock front and the head and tail of the rarefaction
are also displayed. Velocity vectors colored with velocity magnitude are also shown to
emphasize that the flow is from left to right. This information allows us to discern that
the shock wave propagates to the right into the low pressure section of the tube and the
rarefaction fan propagates to the left into the high pressure section. We further present the
velocity contours, which displays the development of the boundary-layer profile at a specific
cross section of the shock tube.

Two-dimensional contour plots of density, u-velocity, pressure, and temperature are pre-
sented in Fig. 3.11. The discontinuous jumps in the values of the dependent variables across
the shock and contact discontinuity, and the continuous variation in the profile of the de-
pendent variables across the rarefaction fan are evident even for this test case. We further
note that for this case we did not attempt to tune the artificial dissipation parameters; they
were set to the same values as those used for Test Case 1.
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Figure 3.10 Test Case 2: 3-D visualization of flow field. Contours colored with velocity
magnitude.

As done earlier, the positions of the different waves generated as part of the solution are
shown in Fig. 3.11(a). We comment that in the density (part(a)) and pressure (part(c)) con-
tours the shock front is not actually visible. This is because in this test case the magnitudes
of density and pressure are low (0.01 in the present case). Therefore, even after the jump
across the shock front they attain magnitudes that are still relatively low when compared
to their maxima, thus leading to the difficulty of these jumps being distinguishable in the
color table. However, the shock front is easily distinguished in the u-velocity (part(b)) and
temperature contours (part(d)). From the u-velocity plot we observe that the the column
of fluid between the shock wave and the tail of the rarefaction that follows the shock wave
moves at supersonic velocity. In comparison to Test Case 1 the fluid follows the shock front
at about double the speed. This is due to an increase in the initial pressure ratio across the
diaphragm, which is 100 for this test case. Correspondingly, there is an increase in strength
of the incident shock wave as well. In particular, the shock strength for the present test case
is 6, as compared to 3 for the first test case. The increase in pressure across the shock front
can be seen clearly in the 1-D plots which are presented in the sequel.

From Figs. 3.11(a), (b) and (c), we notice that there is a visible steepening of the rarefac-
tion fan when compared to Test Case 1. Visually, this effect can be seen much more clearly
in the line plots presented below, but we will attempt to explain the rationale behind the
steepening here, as we have a larger data set. Even though the shock strength in the present
test case is twice that of Test Case 1, the initial pressure distribution in the right section of
the tube is an order of magnitude lower. So, even after the pressure jump across the shock,
the magnitude of the pressure behind the shock is much lower when compared to that of
Test Case 1. In particular, the magnitude of the pressure behind the shock is around 0.06 for
Test Case 2, whereas it is 0.3 for Test Case 1. This implies that the gas at the left section of
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Figure 3.11 Test Case 2: 2-D contour plots at t = 0.1 units; (a) density, (b) u-velocity, (c)
pressure, (d) temperature.

the tube should expand to a much lower pressure after the expansion when compared to Test
Case 1. Therefore, we observe a steepening in the profile of the rarefaction. We remark that
even though there is a steepening effect, the variation of the dependent variables across the
rarefaction fan is still continuous. We further comment that, although it would seem intuitive
to attribute the increase in the velocity of the contact surface to supersonic velocities due
the steeping in the pressure profile (increase in pressure gradient), both these phenomena
occur simultaneously, and hence, it would not be appropriate to attribute a cause-and-effect
relationship. Figures 3.11(a) and (d) illustrate that the jump in density and temperature
across the contact discontinuity also increases when compared to Test Case 1. Artifacts of
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the Gibbs oscillation can also be seen clearly in all the contour plots displayed in the figure.
A zoomed plot, displaying the velocity vectors of the computed boundary-layer profile,

is presented in Fig. 3.12. The plot demonstrates the capability of the solver to capture the
boundary layer even at supersonic Mach numbers.

2.519

1.260

0.000

Figure 3.12 Test Case 2: Boundary layer profile.

Results for u-velocity, density, pressure, and Mach number plotted as a function of the
x-coordinate at a time t=0.1 units are presented in Fig. 3.13. The exact 1-D, inviscid
solution is shown by a red continuous line and the computed solution by a green line. At
the outset we would again like to bring to the attention of the reader that although the
density and pressure plots displayed suggest that these variables have a magnitude equal to
0 at the right section of the tube, this is not true. In particular, the magnitudes in both the
cases are 0.01 (see Table 3.1). From Fig. 3.13 we observe that we are able to capture the
position of the shock front and rarefaction fan with fairly good accuracy except in the case
of density. Again, we observe the overprediction of the computed u-velocity profile at the
contact surface (see part(a) of the figure). In the density profile (Fig. 3.13(b)) we observe
a heavy smearing at the contact discontinuity. Although one could attribute this to viscous
heat conduction effects, which are far more pronounced in Test Case 2 than in 1, we remark
that this is essentially not correct since we cannot resolve the contact discontinuity using
typical gridding. This contact smearing is caused by numerical error, and it is inherent
in almost all methods, including high-resolution methods unless specific steps are taken to
combat it. The most popular measure to decrease contact smearing is probably Harten’s
artificial compression (see the text by Laney [160] for further details and more options).
Furthermore, the resolution of the rarefaction is fairly satisfactory. The agreement between
the computed solution and the exact solution is good with respect to the pressure profile.
Comparison of Fig. 3.8(c) and Fig. 3.13(c) illustrates the steepening of the rarefaction fan
as suggested previously. The Mach number profile (Fig. 3.13(d)) illustrates that the solver
underpredicts the peak M . However, we comment that the difference is fairly small, 0.1 in
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Figure 3.13 Test Case 2: Comparison of numerical with exact solution at t = 0.1 units; (a)
u-velocity, (b) density, (c) pressure, (d) Mach number.

the present case. Furthermore, the smearing at the contact surface and the Gibbs oscillations
behind the shock wave are also displayed clearly.

Grid function convergence study

We use the same methodology and notation described in fair detail for Test Case 1 to
conduct grid function convergence tests on solutions to Test Case 2. One-dimensional line
plots on three different grid sizes for u-velocity, density, pressure, and Mach number are
presented in Fig. 3.14.

In each of the plots presented in the figure, we see much better prediction of the position
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Figure 3.14 Test Case 2: Comparison of numerical solution on three different grids with exact
solution at t = 0.1 units; (a) u-velocity, (b) density, (c) pressure, (d) Mach number.

of the shock front and the rarefaction fan as the discretization step-sizes are decreased. The
decrease in the overshoot of the u-velocity profile as the grid spacing is decreased is evident
from Fig. 3.14(a). In part(b) we observe that the ineffectiveness of the artificial dissipation
terms at the contact surface, has resulted in a complete smearing of the contact discontinuity
on the Hc and Hm grids. The solution on the Hf grid is only marginally better; we can at
least observe an attempt by the computed density profile to follow the exact solution at the
contact discontinuity. From both the pressure and density plots (parts (b) and (c)) we notice
that the smearing at the head of the rarefaction fan is reduced as we go to finer and finer
grids. Figure 3.14(d), which displays the M profile, clearly demonstrates the convergence of
the computed solution towards the exact solution.
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The order of convergence of the scheme is also found in a fashion analogous to Test
Case 1. The order of convergence for the various dependent variables is given in Table
3.4. Comparing Table 3.3 with Table 3.4, we infer that the order of convergence for all the

Table 3.4 Test Case 2: Results from grid function convergence tests.

φ ||φh − φh/2|| ||φh/2 − φh/4||
||φh−φh/2||

||φh/2−φh/4||
p

ρ 1.01412e− 3 8.8329e− 4 1.14812 0.19927
ρu 1.4757e− 3 1.17529e− 3 1.2556 0.32838
ρv 1.49634e− 4 1.30836e− 4 1.14367 0.193672
ρw 1.49633e− 4 1.30833e− 4 1.14369 0.193697
ρe 2.67729e− 3 1.95168e− 3 1.371785 0.456054
u 8.61486e− 3 8.51916e− 4 1.011234 0.01611
v 1.23389e− 3 1.16e− 3 1.06306 0.08822
w 1.23e− 3 1.16e− 3 1.063063 0.088227
p 1.03597e− 3 6.69613e− 4 1.547121 0.629593
T 3.19854e− 5 3.82972e− 5 0.835188 −0.25982

dependent variables in Test Case 2 is lower than those in Test Case 1. At the start of the
discussion on the present test case, we mentioned that the artificial dissipation parameters
were not tuned. As a result, the reduction in the amplitude of the Gibbs oscillations with
decreasing grid spacing may not have been as effective. Moreover, the shock strength and
the peak M for Test Case 2 are higher than those in Test Case 1. We further comment that
analysis of the convergence rates will be considered after presenting the rates for Test Case
3 since we will then have more data available to make appropriate arguments.

3.4.3 Test Case 3

Test case 3 is severe in that the initial shock strength is 100000. This test is designed
to assess the robustness and accuracy of the solver. Its solution consists of a strong right
traveling shock wave, a contact discontinuity, and a left running rarefaction wave.

We note that for this test case use of the explicit predictor in the large-scale algorithm
proved to be unstable, i.e., the solution blew up after finite time even on our finest grid.
However, we were able to obtain better stability properties from our algorithm, when we
used the implicit corrector by itself. Since we only used the corrector, the initial guesses for
the nonlinear iterations were taken to be equal to the values of the dependent variables at
the previous time step.

We again begin our discussion on the computed results by providing a 3-D visualization
of the flow field in Fig. 3.15. The figure demonstrates that even for such a severe test case,
the solver exhibits the right traveling shock wave, a contact discontinuity and a rarefaction.
The boundary layer along the tube walls can be seen in the inset of the u-velocity contour
provided in the figure.

Contours of density, u-velocity, pressure, and temperature are displayed as 2-D plots
in Fig. 3.16. From the pressure contour (part(c)) we can deduce that the shock strength
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Figure 3.15 Test Case 3: 3-D visualization of flow field. Contours colored with velocity
magnitude.

for this particular test case is around 45000 (a strong shock!! indeed, compare this shock
strength with those of cases 1 and 2). The shock strength explains the big jumps in the
magnitudes of the dependent variables across the shock front. We immediately also notice
that the contours of density (part(a)) and the temperature (part(d)) are different in this
case than the other two. In particular, the fluid density is at its maximum just behind the
shock, and its minimum value is lower than what was even present in the initial conditions.
Also, the presence of the rarefaction fan is not very evident and the contact discontinuity is
not easily distinguishable in both density and temperature contours.

In the case of the density contour, unlike the other two test cases, the distribution of den-
sity along the length of the tube at time t = 0 is uniform. Hence, the maximum fluid density
will always be at a location just behind the shock front. The red band seen in Fig. 3.16(a)
corresponds to this jump. Also, since the rarefaction fan continuously reduces the values of
all dependent variables, the magnitude of the density in this case is reduced to a value below
that which was present in the domain at the initial time after the expansion. In principle,
the region between the the shock front and the region where the fluid density is around 0.015
should have been at a constant density (maximum in this case). The location at which the
discontinuous transition from the constant value of fluid density to some other values occurs
would correspond to the location of the contact discontinuity, since a contact discontinuity
separates two zones of different density and temperature. However, the solver heavily dis-
sipates the location of the contact discontinuity. The light green region corresponding to a
fluid density value of around 3.5 between the two regions alluded to above clearly indicates
the presence of heavy dissipation. The rarefaction fan can be clearly seen in the u-velocity
profile (part(b)), pressure contour (part(c)), and also somewhat in the temperature contour
(part(d)). Also, from part(b) of the figure we observe that the contact surface moves at
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Figure 3.16 Test Case 3: 2-D contour plots at t = 0.012 units; (a) density, (b) u-velocity, (c)
pressure, (d) temperature.

supersonic velocity. In fact, the contact surface moves at a velocity that is ten times faster
that what was achieved in Test Case 2. However, this should not lead us to think that
the corresponding M is also very high. From the temperature contour (Fig. 3.16(d)) it is
evident that the temperature in the tube is also higher in comparison. Obviously increase
in temperature increases sound speed, hence, lowering the corresponding values of M . We
further comment that the features described above can also be seen clearly in the line plots.

In Fig. 3.17 we display the velocity vectors of the computed boundary-layer profile. We
note that for the grid resolution we are computing with, the solver provides a reasonably
good boundary-layer profile.
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Figure 3.17 Test Case 3: Boundary layer profile.

Comparisons of computed results with exact 1-D solutions are displayed in Fig. 3.18. In
general, even for this test case the solver produces results consistent with features observed
in the numerical solutions of Test Cases 1 and 2. That is, the the right-traveling shock front
and left-traveling rarefaction wave are positioned in the correct locations. Also, resolution
of the rarefaction fan is fairly satisfactory in all the plots displayed in Fig. 3.18. We can still
observe the overshoot in the u-velocity profile from part(a) of the figure, which we know by
now is due to lack of finer grid spacing. Other than the overshoot at the contact surface, the
computed u-velocity profile agrees well with the exact solution. From part(b) of the figure we
observe that the resolution of the shock is fairly sharp, but as previously suggested, there is a
fair bit of smearing at the contact discontinuity. Moreover, an overshoot in the peak value of
the density is evident. Evidence of Gibbs oscillations can be seen at the contact surface. This
is evident from the Mach number plots also. The features that were discussed in the contour
plots can also be clearly seen in the density profile. From the pressure profile displayed in
part(c) of the figure, we note that although the profile is in fairly good agreement with the
exact solution, there is a small but visible deviation of the pressure in the rarefaction fan.
Moreover, we also see some smearing at the head of the rarefaction fan. The Mach number
profile is also satisfactory, minus the Gibbs oscillations, which is to be expected considering
the strength of the incident shock wave. As alluded to before, even though the velocity of
the contact surface is high the peak Mach number is lower than that in Test Case 2. In
particular, the peak M is near 2 for this test case.

Grid function convergence study

Figure 3.19 shows the 1-D plots on three different grid sizes for u-velocity, density, pres-
sure and temperature. From the figure, we notice that the solutions obtained on the Hc

grid are highly dissipative. The resolution of the discontinuities on this grid is far from
satisfactory for all solution components presented. Moreover, as noted previously for the
other two test cases, the overshoot of the u-velocity profile decreases as we compute on finer
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Figure 3.18 Test Case 3: Comparison of numerical with exact solution at t = 0.012 units; (a)
u-velocity, (b) density, (c) pressure, (d) Mach number.

grids. However, we note that the resolution of the head of the rarefaction fan is not good,
no matter which grid we are on. In fact, this feature can be observed in the other plots of
the figure as well. From the density profile (part(b)) it is evident that we obtain a better
resolution of the contact discontinuity and the shock wave on the Hf grid when compared to
the other two grids, but these are still far from being adequately resolved. Convergence of
the pressure profile to the exact solution is evident from part(c) of the figure (see the portion
of the plot at the rarefaction fan). The same features discerned above especially for density,
are also evident in the Mach number profiles.

The order of convergence for Test Case 3 is given in Table 3.5. One can immediately notice
that the order of convergence for this test case has significantly dropped when compared to
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Figure 3.19 Test Case 3: Comparison of numerical solution on three different grids with exact
solution at t = 0.012 units; (a) u-velocity, (b) density, (c) pressure, (d) Mach number.

the orders obtained for the other test cases. Moreover, the negative values present in Table
3.4 seem to indicate that the resolution of at least the Hc grid is not sufficient to provide
meaningful results. This in turn suggests this grid should not have been used for the above
calculations, but we were forced to so because of computing resources. Even for this test
case we did not tune the artificial dissipation parameters, so the comments made regarding
this in Test Case 2 will also hold here.
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Table 3.5 Test Case 3: Results from grid function convergence tests.

φ ||φh − φh/2|| ||φh/2 − φh/4||
||φh−φh/2||

||φh/2−φh/4||
p

ρ 2.87773e− 2 2.28391e− 2 1.26 0.33342
ρu 6.5508e− 1 4.256e− 1 1.53917 0.62216
ρv 2.6242e− 2 3.18524e− 2 0.82298 −0.281054
ρw 2.6214e− 2 3.18524e− 2 0.822984 −0.28106
ρe 1.30642e1 7.26125e0 1.79917 0.84733
u 1.1625e− 1 1.6475e− 1 0.70559 −0.50308
v 2.01406e− 2 2.22284e− 2 0.90607 −0.14229
w 2.01e− 2 2.22e− 2 0.90605 −0.14232
p 2.73473e0 1.9063e0 1.43457 0.52062
T 2.66466e− 2 5.67685e− 2 0.46939 −1.091136

Remarks on convergence studies

In the following paragraphs we will try to provide some justification for the convergence
rates obtained for the three test cases. The convergence rates achieved for Test Case 1 are
within acceptable limits for problems whose solutions are inherently nonsmooth (see [167]
for details). However, as already noted the rates for the other two test cases are far from
satisfactory considering that we should be able to achieve first-order convergence.

Recall that our coarsest grid has a grid spacing of ∆x = 0.02, ∆y = 0.01, and ∆z = 0.01.
We also know that in the last two test cases the velocity of the gas in the tube is higher than
that in Test Case 1. Moreover, we know that as Reynolds number (Re) increases, the number
of length scales (especially the smaller scales) in a flow increases. This then suggests that
one needs finer grids to resolve these scales to be able to obtain meaningful results; otherwise
there will be loss of physical information. Hence, use of coarse grids in calculations involving
convergence rates at high Re degenerates the results that could be expected.

The length scale for the Re calculations was chosen to be the hydraulic diameter of the
rectangular tube under consideration, which is 0.2 for the shock-tube problem. Moreover,
in our computations the dynamic viscosity is assumed to be constant; i.e., we prescribe a
specific value. With the length and dynamic viscosity set, the only other variables required
to build the Re are the density and velocity magnitude, which are readily available at each
grid point in our calculations.

Two-dimensional contour plots of Reynolds number profiles for Test Cases 1 to 3 are
shown in Fig. 3.20. The distribution of Re was obtained by supplying the formula for Re
to our post-processing visualization package (FieldView). We note that for Test Case 1 and
Test Case 2 the maximum Re is approximately the same. In particular, it is near 4840. For
Test Case 3 the maximum Re is 1600000, which is significantly higher. Since the Reynolds
numbers are the same in both Test Cases 1 and 2, intuition would lead us to expect the order
of convergence of the solutions to be nearly the same, since in all test cases we computed on
identical grids.

However, contrary to our intuition, the orders of convergence for Test Case 2 is fairly far
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Figure 3.20 Contour plots of Re; (a) Test Case 1, (b) Test Case 2, (c) Test Case 3.

from those obtained in Test Case 1. The maximum Mach number of the flow in Test Case
2 is approximately 2.45 (supersonic), whereas that in Test Case 1 is only 0.95 (transonic).
We remark that irrespective of the value of Re, an increase in the value of M increases
the nonsmoothness of the solution, which is detrimental to the convergence rates. Hence,
the decrease in convergence rates in Test Case 2 when compared to Test Case 1, should
be expected. For Test Case 3 we have three main concerns as far as convergence rates are
concerned. The first is an increase in Re, which is now considerably higher than in the other
two cases. Also, the maximum M is two, which is approximately twice as high as that of
Test Case 1. Also, the incident shock wave is 15000 times stronger when compared to the
shock in Test Case 1 and around 7500 times stronger than the one that is formed in Test
Case 2. All these factors play their own role in the deterioration of convergence rates. The
result of these effects are clearly visible in orders of convergence presented in Table 3.5.
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3.4.4 Test Case 4

With this test case we are concerned with assessing the capability of the solver to simulate
a multi-dimensional problem. Although, in the previous test cases the simulated results were
three-dimensional, the solutions mainly depended on only the x-coordinate (see contour plots
at the cross sections of the shock tube). The test case considered here is a three-dimensional
blast-wave problem described in [65]. The initial conditions for the problem are given in Table
3.2. This problem setup suggests that even this test case is essentially one-dimensional; if
we were to employ spherical coordinates with velocity and other scalars variables of the flow
depending only on the radial distance r from the origin. However, our code was developed
in Cartesian coordinates, thereby, introducing a three-dimensional aspect to the problem.

One may consider the spherical motion alluded to above as being analogous to the one-
dimensional motion in the tube under the influence of a piston, with the piston being replaced
by an expanding sphere, which impresses a motion on the medium outside. One should bear
in mind, however, that in three-dimensional space energy at an increasing rate is required
to maintain the constant speed of the piston. Moreover, This is not the scenario being
considered here since at t = 0 we have a region in the domain having finite energy, which is
released instantaneously. In better agreement with the present test scenario is the analogy
with the case of spherical blast waves caused by the explosion of a given mass of explosive.
However, one should not confuse this scenario with the typical “point” explosion problem,
where like in our case there is an instantaneous release of energy, but at a specific space
point. Our test case considers the problem of shock wave propagation in air, caused by the
explosion of some charge of spherical shape, i.e., a sphere of finite radius. In our case the
sphere has a radius of 0.4 units.

y
x

z

Figure 3.21 Test Case 4: 3-D visualization of spherical waves.

We begin by presenting in Fig. 3.21 a three-dimensional rendering of the total velocity
magnitude at time t=0.25 units. The solutions for this test case were calculated on a grid
of 101 × 101 × 101 points. We were forced to use the same gridding in all three directions
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because of the intrinsic symmetry of the problem. The figure clearly demonstrates the ability
of the solver to resolve the spherical waves generated as part of the solution. In particular,
the solution to this test case consists of a spherical shock wave traveling outwards, a spherical
contact surface traveling in the same direction, and a spherical rarefaction traveling inwards.
This is to be expected based on the nature of the initial conditions. The spherical structures
(waves) present in the figure are isosurfaces, which were generated at specific values of the
velocity magnitude. The transparency of the outer surface was increased so as to allow the
visualization of the surface within. We note that we have not used a definitive color table
since the transparency of the surfaces would obscure interpretation. Moreover, we have not
made an attempt to delineate the different spherical waves since there is no easy way of
presenting the visualization.

To demonstrate that an explosion-like scenario occurs, we display in Fig. 3.22 total ve-
locity vectors colored with velocity magnitude in the xy-plane at a value of z=0. We note
that all the velocity vectors point outwards, indicating the movement of fluid away from the
high pressure center, just as would be the case due to an explosion.

x

y

1.137

0.568

0.000

Figure 3.22 Test Case 4: Velocity vectors colored with velocity magnitude displaying the
explosion scenario.

Figure 3.23 shows the velocity magnitude as a function of x and y on the plane z=0 at
output time t=0.25. The figure exhibits a shock wave traveling outwards, a contact surface
traveling in the same direction, and a rarefaction wave traveling inwards. The white arrow
pointing inwards (towards the center) indicates the direction of motion of the rarefaction
wave, and the white arrow pointing outwards (towards the quiescent zone) indicates the
direction of motion of the shock wave and contact discontinuity. Unlike the contour plots
in the previous test cases, the features of the solution for this test case are not readily
comprehensible. We have, therefore, made explicit comments in the plots themselves to
provide better clarity to the reader. The problem in distinguishing the features of the
solution is in part due to the slightly more complicated physics of the explosion, compared
with that of the shock tube. Herein, we will make a humble effort to at least provide an

66



0.0

y
−

c
o
o
rd

in
a
te

x−coordinate

0.5

1.0

−1.0 1.00.0 0.5−0.5
−1.0

−0.5

initial discontinuity
Position of Shock front

0.568

0.000

1.137

Figure 3.23 Test Case 4: 2-D contour plot of velocity magnitude at t = 0.25 units.

overview of the overlying physics of the problem.
Recall that this test case is analogous to that of an explosion, i.e., the total energy

available is given in the initial data. Hence, as time evolves we should expect that the
energy available to push the shock wave through the medium should reduce. This will in
effect result in weakening of the shock wave itself, thereby decreasing the jumps across it as
time progresses. This is clearly visible in the velocity magnitude plot (see the region between
the position of the initial discontinuity and the shock front). Note that at regions near the
initial discontinuity we see the maximum velocity, and the velocity gradually decreases as
we move outwards to the present location of the shock front at t=0.25. This is because at
early times the shock front is located at regions near the initial discontinuity when the shock
is strong, but as the shock moves outwards the shock weakens resulting in decreasing jumps
across the shock. The inward moving rarefaction fan is also clearly visible in the figure.

In Fig. 3.24((a),(b),(c)) we show the corresponding density, pressure and temperature
distributions, respectively, on the same plane (z=0) at the same time. As expected, we
see a jump in density and temperature at the contact discontinuity, whereas the pressure
is continuous across it. The rarefaction wave across which density and pressure decreases
continuously is also evident from the plots. Moreover, after the air in a blast wave has been
crossed by the shock front, and thereby compressed, it expands rapidly to a pressure, which
is in general below the pressure in front of the shock wave (see the text by Courant and
Fredrichs [168]). This so called suction phase is an important feature of fluid motion caused
by explosions. This feature can be seen in the pressure contour (see region just behind the
shock), thus demonstrating that the solver is able to predict such physics. The temperature
contour also shows the same basic features. Furthermore, in all plots presented we observe
that the spherical nature of the solutions has not been perfectly resolved.

This should be expected since the rectangular cells will cut the initial discontinuity so
as to result in a staircase representation of the data. Such representation directly leads to
the formation of small amplitude waves. These waves are also propagated by the numerical
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Figure 3.24 Test Case 4: 2-D contour plots at t = 0.25; (a) density, (b) pressure, (c) temper-
ature. (d) Manifestation of small amplitude waves at initial time

method (see Fig. 3.24(c)), since such waves are not actually spurious as they result from
the data as given. The source of the small amplitude waves generated due to the staircase
representation of data is clearly shown in Fig. 3.24(d). The plot was generated at t = 0, and
it represents the distribution of the initial conditions at that time.

To display the symmetric character of the numerical solution, we display 1-D plots of
the u-velocity profile, v-velocity profile and w-velocity profile in Fig. 3.25. We note that the
u-velocity plot was extracted from the horizontal centerline of the xy plane at a location
where z=0, the v-velocity plot was extracted on the vertical centerline of the same plane,
and the w-velocity vector was extracted from the horizontal centerline of the zy plane at a
location where x=0. The symmetries in the velocity components are clearly evident from
the figure.

We also present the density and pressure contours on each of the three orthogonal planes
to demonstrate the three-dimensional, but still symmetric aspect of the problem. The figures
displaying the contours are particularly interesting because they allow us to view the interior
in its most natural way, i.e., as a sphere with one-eight of it being removed. It is evident
from both part(a) and part(b) of the figure that the solver is able to capture the spherical
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Figure 3.25 Test Case 4: 1-D plots of (a) u-velocity, (b) v-velocity, and (c) w-velocity at
t = 0.25 units displaying symmetries.

symmetries present in the problem.
In Fig. 3.27 we present one-dimensional plots of the velocity magnitude, density, and

pressure. We note that for this test case, we could not find any resources that would allow
us to produce an exact solution to the Riemann problem in spherical coordinates, although
we are sure that such resources exist. Moreover, keeping in mind the performance of the
solver for the previous three test cases we are confident that the solver produces solutions
that are in fairly good agreement with the exact solutions. For a qualitative comparison
of the computed solutions with “exact” solutions, the reader is referred to the chapter on
multi-dimensional test problems in [65]. We remark that the general profile of the computed
solutions are in fairly good agreement with the solutions given in [65].
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Figure 3.26 Test Case 4: 3-D visualization of (a) density contour and (b) pressure contour.

We remark that data for the plots presented were extracted from a radial line coincident
with the x-axis. We further note that comparisons of the solution along other radial directions
gave virtually the same result. This is confirmed by the very symmetric nature of the solution
as shown in Figs. 3.26(a) and (b). Furthermore, the shock front, contact discontinuity and
the rarefaction fan can all be easily delineated from the plots. The shock weakening effect
is evident in the velocity magnitude plot. One can clearly observe that the magnitude
of velocity behind the shock front gradually decreases as the shock moves away from the
initial discontinuity (as time evolves). The jump in density at the contact discontinuity is
evident from the density profile; as expected the pressure is continuous across the contact
discontinuity. The phenomenon of the fluid rapidly expanding to a pressure comparable to
the quiescent region (suction phase) after the pressure increase across the shock can also be
seen clearly in the pressure profile. The rarefaction fan be clearly seen in each of the plots
presented in the figure. The Gibbs oscillations at discontinuities is also evident in the plots.
We further note that the Gibbs oscillations in the case of the shock tube problem are far
more pronounced when compared to that of the blast-wave problem. This is seen clearly by
comparing the 1-D plots in Fig. 3.27 to any of the 1-D plots presented for the shock tube
problem. We should recognize that the shock tube problem is a wall-bounded shear flow,
i.e., there is a formation of boundary layer. The presence of a boundary layer then suggests
there must be at least two length scales associated with this flow; one corresponding to the
rather thin region adjacent to the tube walls and the other can be related to the nearly
uniform part of the flow farther away from the walls. On the other hand in the blast-wave
problem there is no such formation of the boundary layer and hence it possesses only a single
length scale. This problem of multiple length scales in a wall-bounded shear flow results in
an increase in aliasing effects due to under-resolution, whereas in the blast-wave problem
the effects are relatively lower. Moreover, these problems will be exacerbated near the shock
due to interactions between the Gibbs oscillations and aliasing errors. This is the reason
for the Gibbs oscillations in the blast wave problem to be somewhat less pronounced when
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Figure 3.27 Test Case 4: Numerical solution at t = 0.25 units; (a) u-velocity, (b) density, (c)
pressure, (d) Mach number.

compared to that of the shock tube.

Grid function convergence study

We perform a grid function convergence study using three grids with a refinement ratio
2. Since our finest grid has 101 × 101 × 101 points, the medium grid will have 51 × 51 × 51
gridpoints, and the coarse grid will have 26×26×26 gridpoints. These grid resolve a domain
Ω = 2 × 2 × 2 in x-y-z space. We remark that for this test case since we were unable to
obtain a source providing us with the exact solution, we did not deem it as appropriate to
present 1-D plots of solutions obtained on the three different grids. However, we provide
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results of the order of convergence in Table 3.6. The entries in the table indicate that the

Table 3.6 Test Case 4: Results from grid function convergence tests.

φ ||φh − φh/2|| ||φh/2 − φh/4||
||φh−φh/2||

||φh/2−φh/4||
p

ρ 5.58955e− 2 3.44658e− 2 1.62167 0.69756
ρu 4.1169e− 2 1.855506e− 2 2.21927 1.15
ρv 4.11689e− 2 1.85507e− 2 2.21925 1.15
ρw 4.1169e− 2 1.85506e− 2 2.21927 1.15
ρe 1.411e− 1 7.98e− 2 1.76889 0.82285
u 1.6532e− 1 7.25579e− 2 2.27854 1.18811
v 3.26755e− 3 1.434e− 3 2.27855 1.18811
w 1.6532e− 2 7.25578e− 2 2.27854 1.18811
p 5.4853e− 2 2.9505e− 2 1.85906 0.89457
T 4.8e− 4 2.1668e− 4 2.21558 1.14768

convergence rates obtained for the blast-wave problem are better than those obtained for
the cases involving the shock-tube. This is not entirely surprising since the initial conditions
were a three-dimensional extension of those in Test Case 1, although the Re and M values
obtained for this test case would suggest quite the contrary.

A contour plot of Re is presented in Fig. 3.28. The Re was calculated in the same fashion
as discussed previously for the other test cases. However, the length scale for this case was
chosen to be the length of one side of the physical domain (cube), which is equal to two.
The figure indicates that the peak Re for this case is around 33310, which when compared
with that of Test Case 1 is significantly higher. Also, from Fig. 3.27(c) the peak M of 1.3 is
higher. These parameters then suggest that the convergence rates for the blast wave problem
should have been poorer.

However, we comment that, although the intervals within which the magnitudes of density
and velocity magnitude lie are the same in both cases, the length scales chosen for the
calculation of Re are completely different. In particular, the length scale for Test Case 1
based on the hydraulic diameter is 0.2, whereas that for the blast wave problem based on
the scale of the physical domain is 2. This order of magnitude increase in the length scale
immediately indicates the reason for the increase in Re for Test Case 4, although the values
of the initial conditions are the same at t = 0.

Moreover, as discussed in fair detail at the start of this subsection, Test Case 4 corre-
sponds to an explosion where there is an instantaneous release of a finite amount of energy.
This results in the weakening of the shock wave as time evolves. This effect can be seen in
both the velocity magnitude plot (Fig. 3.27(a)) and Mach number plot (Fig. 3.27(d)). That
is, both the velocity magnitude and M decrease as time progresses. We note that although
the peak M is higher in the blast wave problem, the M is not at its peak value for a long
time. The M decreases to a value of 0.55 behind the shock wave within a time interval of
0.25, whereas the M behind the shock wave in Test Case 1 is 0.75 (see Fig. 3.8(d)) even at
t = 0.2 units. Since the flow in Test Case 1 is inherently one-dimensional, this M will be
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Figure 3.28 Test Case 4: Contour plot of Re on the xy plane at z = 0.

sustained at later times also. This then suggests that, in comparison, the shock wave in Test
Case 1 is stronger than that of Test Case 4.

Even though the above discussions provide reasonable arguments for improved conver-
gence rates for the blast wave problem, analysis of a more fundamental nature clearly demon-
strates the reason why. For this we have to look back into the basic differences between the
nature of fluid flow for a shock tube and blast wave problem. Previously we alluded to the
fact that the shock tube flow is a wall-bounded shear flow having multiple scales, whereas the
blast-wave problem possess a single length scale. Hence in the shock tube problem there is
an increasing number of small (unresolvable) scales, thus suggesting that meaningful results
can only be obtained on grids that are fine enough. The blast-wave problem has no such
problem. This clearly demonstrates the reason for the improvement in convergence rates for
the blast wave problem when compared to the shock tube problem (even in comparison to
Test Case 1).

3.5 Concluding Remarks

This chapter was entirely devoted to the development of an algorithm to calculate the
large-scale part ’q(x, t)’ of the usual LES decomposition (into large and small scales) em-
ployed in our multi-scale approach to LES of compressible turbulence. Shocks and other
phenomena unique to compressible flows are also captured in this part of the algorithm. The-
oretically, physical viscosity and heat conduction effects should result in sharp but continuous
variations in shock waves and other discontinuities. However, these cannot be resolved using
typical gridding; hence some method must still be used to capture these discontinuities in
the large-scale algorithm.

We began by providing a brief review on shock-capturing methods, which are designed
to have shock waves appear naturally within the computational domain as a direct result
of the overall flow field solution. Although most (if not all) of these schemes/methods were
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developed for solving the Euler (inviscid) equations of compressible gas dynamics, they can
be applied to the full Navier–Stokes equations by employing centered discretizations for the
viscous and heat conduction terms. We concluded that even though high-resolution methods
such as ENO, WENO etc., provide superior shock capturing properties when compared to
using artificial dissipation, we chose to use the latter in our scheme keeping in mind the
complexities and difficulties involved in implementing, for e.g., an ENO scheme in multi-
dimensions.

In Sec. 3.2 we presented the governing equations followed by a detailed mathematical
formulation of the numerical scheme developed in this work. Our solver is based on a
predictor-corrector methodology. The governing equations, Euler in the predictor stage
and full N.–S. in the corrector stage, are solved in conservation form on a cell-centered
unstaggered grid arrangement. The predictor part of the scheme consists of a half time-step
forward Euler time integration of the Euler equations. This step is followed by the corrector
part, which employs a full time-step implicit backward Euler time integration of the N.–S.
equations. In both predictor and corrector parts of the algorithm, spatial discretization is
second-order centered with dependent variables being evaluated at cell-centers and fluxes at
cell walls. The 3-D implicit solves are performed by employing Douglas–Gunn time splitting,
and the nonlinearities of the N.–S. equations are treated via δ-form quasilinearization. To
capture shocks we used the MacCormack and Baldwin higher-order artificial viscosity. Since
our LES methodology entails the application of a filter to the large-scale solution rather than
to the equations, we used the Shuman filter to handle effects of aliasing. A coarse grained
pseudo-language algorithm describing the implementation of this scheme was also provided
towards the end of Sec. 3.2.

Several numerical tests were performed to test the solver and assess its performance.
In particular, we used the standard shock-tube and three-dimensional blast wave problems.
Boundary and initial conditions were also presented to construct a well-posed problem. Test
Cases 1, 2 and 3 correspond to the shock-tube problem with an initial pressure ratio of 10,
100, and 100000, respectively. This increase in pressure ratio results in an increase in the
strength of the incident shock wave, thus subjecting the solver to a sequence of tests with an
increasing degree of difficulty. Test Case 4 is a blast-wave problem where there is a sphere of
finite radius with high pressure and energy inside a quiescent region. This initial spherical
discontinuity results in generation of spherical discontinuities as part of the solution as time
evolves.

We presented 3-D and 2-D visualizations of the flow field inside the shock tube to provide
a qualitative view of the typical wave patterns (shock waves, contact discontinuities, and
rarefaction fans) seen in the evolution of the flow field subsequent to the removal of the
diaphragm at t = 0. Comparisons of computed 1-D results with the exact inviscid solution
are presented in Figs. 3.8, 3.13, and 3.18 Test Cases 1, 2, and 3 respectively. These figures
indicate that we are able to capture that positions of the shock wave and rarefaction fan with
fairly reasonable accuracy in Test Cases 1, 2 and 3. Although the resolution of the contact
discontinuity for Test Case 1 was satisfactory, we observed a fair amount of smearing in
Cases 2 and 3. This contact smearing is caused by numerical error, and it is inherent in
almost all methods, including high-resolution methods unless specific steps are taken to
combat it. The most popular measure to decrease contact smearing is probably Harten’s
artificial compression (see the text by Laney [160] for further details and more options).
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Some smearing at the head and tail of the rarefaction fan is also seen. This smearing is to be
expected since expansions typically have corners at their head and tail. Moreover, in all the u-
velocity profiles (Figs. 3.8(a), 3.13(a), and 3.18(a)) we observe an overshoot in the computed
results. However, we showed that this overshoot decreases with decrease in grid spacing.
We were also able to resolve the boundary-layer with reasonable accuracy for both transonic
(Test Case 1) and supersonic cases (Test Cases 2 and 3). The boundary layer profiles for the
three test cases are presented in Fig. 3.7, Fig. 3.12, and Fig. 3.17, respectively. The presence
of Gibbs oscillations is also evident in the plots presented. Moreover, interaction of aliasing
error with the Gibbs oscillations make the oscillations in the solution more pronounced in
the shock-tube problem.

Comparisons of density, u-velocity, pressure and Mach number profiles obtained on the
Hc, Hm and Hf grids with the exact 1-D, inviscid solution were presented in Fig. 3.9 for
Test Case 1, Fig. 3.14 for Test Case 2, and Fig. 3.19 for Test Case 3. These figures indicate
that the computed solution approaches this solution as grid-spacing is decreased, indicating
convergence of the solution in a qualitative sense. To determine the convergence rate of
the solver we calculated the L2 error based on the results obtained on the three grids. The
convergence rates for Test Case 1 were found to be within acceptable limits for problems
whose solutions are inherently nonsmooth. Cited references also corroborated our findings.
However, there was a significant drop in the convergence rates for Test Cases 2 and 3. For
Test Case 2, this reduction was due to effects of increase in M , and in Test Case 3 it was
due to effects of increase in both M and Re, when compared to Test Case 1. One should
recognize the roles played by the increase in shock strength and aliasing errors associated
with increasing M and Re in further reducing the convergence rates in Test Cases 2 and 3.

To assess the capability of the solver to simulate a confirmedly three-dimensional problem
(at least with respect to Cartesian coordinates) we used the 3-D blast-wave problem. Even
for this case we were able to obtain the spherical waves generated as part of the solution. We
were also able to simulate some of the physics that is unique to the 3-D blast-wave problem.
In particular, in Fig. 3.23 we demonstrated that the solver is able to simulate the weakening
of the shock wave as time progresses. The so called suction phase wherein the air after being
crossed by the shock front, and thereby compressed, expands rapidly to a pressure present
in front of shock wave can also be clearly seen in Fig. 3.24(b). Furthermore, the symmetries
present in Test Case 4 were displayed in Fig. 3.25 and Fig. 3.26. Grid function convergence
studies indicated that the convergence rate achieved for the blast-wave problem are better
than those achieved for the shock tube problem. This increase in convergence rates is due
to the fact that the blast-wave problem possesses a single length scale; hence, the effects due
to aliasing are significantly lower than those present in the shock tube problem.

Taking into consideration the wide range of test cases that have been employed, we
conclude that the solver is reasonably accurate, robust and multi-dimensional. However, use
of artificial dissipation to capture shocks implies that the numerical solutions will always
display oscillations. Moreover, in the context of implementing our LES methodology which
requires high-pass filtering of the grid-scale results, these oscillations will also feed into the
subgrid-scale model. These findings suggest that the user has to be judicious when analyzing
the subgrid-scale results.

Copyright c© Chetan B. Velkur 2006
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Chapter 4

SMALL-SCALE SOLUTION PROCEDURE

The novel subgrid-scale model developed in this work, which is based on deconvolution,
discrete dynamical systems (DDS) and Kolmogorov’s theories is presented in this chapter.
We begin by providing some background on the work conducted by McDonough and his
co-workers in the development of such models for incompressible flow simulations and the
form of the SGS model developed by them. Next, we present a detailed derivation of the
discrete dynamical system termed the compressible ‘poor man’s Navier–Stokes (CPMNS)
equation’ starting from a non-dimensionalized form of the full viscous Navier–Stokes equa-
tion. We then establish the relationships between the bifurcation parameters present in the
CPMNS equation and the resolved-scale results via deconvolution thus eliminating the “clo-
sure” problem. The approach employed to construct the amplitude factors which forms an
important part of the proposed model is also discussed. We will then characterize the differ-
ent types of temporal behavior produced by the DDS in parameter space via time-series and
power spectra. Using so called “regime maps” we provide insight into the overall dynamics of
the CPMNS equation when the bifurcation parameters are varied over their ranges of stable
behavior. Finally, we perform some preliminary testing of the subgrid-scale (SGS) model
developed in this chapter.

4.1 Background

As emphasized throughout this work and recalled here for completeness, the motivation
and objective to develop a subgrid-scale model to be described in the following sections is
to overcome as much as possible the many shortcomings of traditional LES. It has been
known since its very inception that the filtering process in LES leads to significant problems.
Filtering equations, as is done in usual LES, results in two main problems. First, if the
governing equations are nonlinear, the action of the filter on the nonlinear terms produces
correlations (statistical, rather than physical quantities) which must be modeled. Second,
if non-uniform gridding is employed, the filter will no longer commute with the differential
operators; so errors arise from this source even if the equations are linear. Hence, in general
the traditional SGS models tend to model correlations (statistics) rather than primitive vari-
ables (physics) at the small-scale, thus removing any possibility of accounting for interactions
between turbulence and other physics on the sub-grid scale.

Moreover, applications of LES to compressible flow have been significantly fewer owing
to increased complexity introduced by the need to solve an additional equation (usually
expressed in terms of total energy), which in the traditional framework results in extra
unclosed terms that must be modeled in addition to the SGS stresses. Complexities involved
in developing such models was demonstrated in Sec. 2.1.3. Although implicit large-eddy
simulation (ILES) procedures, which use implicit filters and the notion of a corresponding
“built-in” SGS model associated with the filter are being widely used for simulations involving
compressible turbulence, there are several compelling reasons to adopt a more systematic
approach. While discrete derivative operators have a low-pass filtering effect, they act only
in the spatial direction in which the derivative is taken. Of a more serious nature is the
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inability of the implicit filtering approach to control numerical error. Without the use of
an explicit filter there is no way of controlling the energy in the high-wavenumber portion
of the energy spectrum. Significant energy in this part of the spectrum coupled with the
non-linearities in the N.–S. equations can produce significant aliasing errors in such methods.

To eliminate most of the problems caused by filtering the equations of motion and also to
provide better control over the energy at the small scales, McDonough et al. [62] introduced
an alternative approach to LES. This is based on three key ideas: 1) filter solutions, not
equations; 2) model primitive variables (physics), not correlations (statistics), and 3) do
not discard subgrid-scale model results; instead use them to augment the resolved scale via
a multi-scale formulation. Hylin and McDonough [169] provide a detailed analysis of this
approach, and a summary is presented in the text by Sagaut [93]. In all of these works the
small-scale components were constructed as a product of three factors:

q∗i = AiζiMi , (4.1)

where q∗i is the fluctuating component of the ith dependent variable at the small scale; Ai

is an amplitude factor constructed on-the-fly during a LES from Kolmogorov’s theories of
isotropic turbulence; ζi is an anisotropy correction factor; and Mi is a ‘chaotic map’—a
discrete dynamical system (DDS) that introduces “turbulent-like” temporal fluctuations.
Details of the derivation and method of calculation of Ai and ζi can be found in [169]. The
Mis were constructed using the logistic map (May [170]) for all solution components.

However, it was found in McDonough et al. [171] that the practice of using only the
logistic map did not provide correct predictions for passive scalar fluctuations, which led
McDonough and Huang [172] to produce a ‘first-principles’ derivation of the fluctuating
factor in Eq. (4.1). The resulting DDS, termed the ‘poor man’s Navier–Stokes (PMNS)
equation’ in deference to the comment made by Frisch [4] regarding quadratic maps, was
derived directly from the equations of motion, thus endowing the Mis with some of the actual
small-scale physics. A detailed derivation of the DDS for 2-D incompressible flow, including
a thorough computational analysis of the system, is given by McDonough and Huang in
[173]. They identified 14 kinds of behaviors characterized by time series and power spectra
that the DDS could produce; these appear to encompass the known temporal behaviors of
incompressible N.–S. flows. Analysis of the DDS was furthered by Bible and McDonough
[174] and McDonough et al. [175]; and McDonough and Joyce [176] presented a subgrid-scale
model based on this first-principles approach for turbulent convection. In recent work the
small-scale components were constructed as a product of only two factors, as proposed by
McDonough [177] and Holloway and McDonough [178]:

q∗i = AiMi , i = 1, 2, . . . , Nv , (4.2)

where, as before, q∗i is the small-scale portion of the decomposition of the usual LES depen-
dent variable vector

Q(x, t) = q(x, t) + q∗(x, t) , (4.3)

containing Nv components. Removal of ζi, the anisotropy correction in Eq. (4.1), was enabled
by employing an extension of Kolmogorov’s approach to nonisotropic, nonhomogeneous flows,
as described in [178].
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Successful comparisons of time series produced by the PMNS equations with those of the
classical experimental data of Gollub and Benson [57] is shown in [176]. The motivation to
transfer the concept to compressible flow was mainly due to the success of the incompress-
ible PMNS equations as subgrid-scale models, both with and without chemistry and the
general difficulty of constructing subgrid-scale models for compressible flow by traditional
approaches. We now proceed to derive the discrete dynamical system for compressible flow
from the compressible N.–S. equations.

4.2 Mathematical Formulation

We begin with a non-dimensional form of the 3-D N.–S. equations,

∂ρ

∂t
+ ∇ · (ρU ) = 0 , (4.4a)

ρ
DU

Dt
= −

1

γM2
∇p+

1

Re
∇ · τ , (4.4b)

ρ
DE

Dt
= −

1

γM2
∇ · (pU) +

1

Pe
∇ · (k∇T ) +

1

Re
φ . (4.4c)

The equation of state is given by

p = ρT . (4.5)

In the above equations ρ, p and T are the usual density, pressure and temperature; U ≡
(u, v, w)T is the velocity vector; E is total energy (internal plus kinetic); ∇ is the gradient
operator, and D/Dt is the substantial (material) derivative. Elements of the stress tensor
are given in Cartesian tensor notation by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ δijλ∇ · U , i, j = 1, 2, 3 , (4.6)

and the dissipation function φ is defined by:

φ = τij
∂ui

∂xj

, (4.7)

with Einstein summation. Finally, k is the thermal conductivity; µ is dynamic viscosity;
λ is second viscosity; γ is the ratio of specific heats, and δij is the Kronecker delta. The
velocity components u, v, w have been scaled with a reference velocity magnitude Uref , spatial
coordinates (x, y, z) by a fixed length scale L, pressure by the equation of state for a perfect
gas and temperature by a reference temperature Tref . In the above set of governing equations
presented in dimensionless form, Re is the Reynolds number, Re ≡ UL/ν; Pe is the Péclet
number defined as Pe ≡ UL/κ, and finally M is the Mach number given by M ≡ U/a.
Here, ν is the kinematic viscosity; κ is thermal diffusivity, and a is the speed of sound in the
medium.
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4.2.1 The discrete dynamical system

In this subsection we will present a detailed derivation that converts the set of PDEs Eq.
(4.4) into an algebraic system that can be very efficiently evaluated. We start by assuming
that all dependent variables can be represented by Fourier series. The Fourier representations
for ρ, U , p, E and T respectively can be expressed as

ρ (x, t) =
∞∑

k=−∞

ak(t)ϕk (x, t) , (4.8a)

u (x, t) =
∞∑

k=−∞

bk(t)ϕk (x, t) , (4.8b)

v (x, t) =

∞∑

k=−∞

ck(t)ϕk (x, t) , (4.8c)

w (x, t) =

∞∑

k=−∞

dk(t)ϕk (x, t) , (4.8d)

p (x, t) =
∞∑

k=−∞

pk(t)ϕk (x, t) , (4.8e)

E (x, t) =

∞∑

k=−∞

ek(t)ϕk (x, t) , (4.8f)

T (x, t) =

∞∑

k=−∞

Tk(t)ϕk (x, t) . (4.8g)

Here k = (k1, k2, k3)
T is a 3-D wavevector with all three components in the range −∞ ≤

ki ≤ ∞. We will assume the basis set ϕk used in the construction of these series is complete
in L2 and orthonormal, but only the orthonormality will be specifically used in what follows.
Also, despite the possible differences in the components of ϕk, we will treat all of them as
complex exponentials with respect to differentiation, and we will assume indexing has been
done in such a way as to cancel imaginary parts from corresponding wavevectors. Next,
application of the Galerkin procedure consists of the following steps:

i) substitute solution representations into governing equations, i.e., substitute Eqs. (4.8)
into Eqs. (4.4) ;

ii) commute differentiation and summation ;

iii) calculate Galerkin inner products ;

iv) supply the orthogonality constraint ;

v) reduce to a single wavevector ;

vi) construct forward Euler temporal discretization ;
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vii) transform and rearrange to define bifurcation parameters and obtain the compressible
poor man’s Navier–Stokes equation (CPMNS equation).

We will give details on application of the Galerkin procedure only for the x-momentum
equation—Eq. (4.4a); treatment of other equations is similar. Substituting the required
solution representations given by Eqs. (4.8) into the x-momentum equation yields

(
∑

l

blϕl

)

t

+

(
∑

l

blϕl

)(
∑

m

bmϕm

)

x

+

(
∑

l

clϕl

)(
∑

m

bmϕm

)

y

+

(
∑

l

dlϕl

)(
∑

m

bmϕm

)

z

= −
1

γM2

1∑

l

alϕl

(
∑
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)

x

+
1

Re

1∑

l

alϕl


4

3

(
∑

l
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)

xx

+

(
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)

yy

+
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∑
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)

zz


 (4.9)

+
1

Re
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l

alϕl


1

3

(
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l

clϕl

)

xy

+
1

3

(
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l

dlϕl

)

xz


 ,

where subscripts denote partial differentiation. The result after completing steps ii)—iv) is
the following:

∑

k

ḃk +
∑

l,m

blbmB
(1)
lm,k +

∑

l,m

clbmB
(2)
lm,k +

∑

l,m

dlbmB
(3)
lm,k = −

1

γM2

1∑

k

ak

∑

k

pkk1

−
Z

Re

1∑

k

ak

[
∑

k

bk|k|
2 +

1

3

∑

k

bkk
2
1 +

1

3

∑

k

ckk1k2 +
1

3

∑

k

dkk1k3

]
. (4.10)

In Eq. (4.10) B
(i)
lm,k, i=1, 2, 3 arise from Galerkin triple products, and it is assumed that any

required normalizations have been absorbed into these coefficients. These triple products
are defined as, for example,

B
(1)
lm,k = m1

∫

ω

ϕl ϕm ϕk dV , (4.11)

with analogous results for the others, wherein we have chosen to lump the wavevector com-
ponent also into the definition. Z is a normalization constant arising from the fact that
although the ϕk may be orthonormal, this is not necessarily true for their derivatives, but,
the value of Z is generally set equal to unity.

We may view Eq. (4.10) as an infinitely accurate model (basically a DNS); but for our
purposes, for its utilization as a subgrid-scale model for LES, we will proceed by deleting from
consideration all but some finite number of wavevectors k as in shell model constructions
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[60]. In fact, we will remove all but a single arbitrary wavevector k. This results in

ḃ+ b2B(1)+ bcB(2) + bdB(3) = −
k1

γM2

p

a
−

1

a

Z

Re

[
b|k|2+

1

3
bk2

1+
1

3
ck1k2+

1

3
dk1k3

]
. (4.12)

Then employing a forward Euler time discretization yields

bn+1 = bn − τ(b2)nB(1) − τbncnB(2) − τbndnB(3) −
τ

an

[
k1

γM2
pn

]

−
Z

Re

τ

an

[
bn|k|2 +

1

3
bnk2

1 +
1

3
cnk1k2 +

1

3
dnk1k3

]
, (4.13)

where τ is an arbitrary time step parameter.
We next add and subtract τZbn|k|2/Re in Eq. (4.13) to obtain a transformation which

we shall use to incorporate the logistic map into our DDS:

bn+1 = τB(1)bn
[
1 − τZ|k|2/Re

τB(1)
− bn

]
− τbncnB(2) − τbndnB(3) + τ

Z

Re
bn|k|2

−
τ

an

[
k1

γM2
pn

]
−

Z

Re

τ

an

[
bn|k|2 +

1

3
bnk2

1 +
1

3
cnk1k2 +

1

3
dnk1k3

]
, (4.14)

Observe that if we are to recover the logistic map as part of this DDS we must require
(analogous to the transformation employed in [173])

1 − τZ|k|2/Re

τB(1)
= 1 , (4.15)

which implies that

τB(1) = 1 −
Z

Re
τ |k|2. (4.16)

This allows us to write Eq. (4.14) as

bn+1 = β1b
n (1 − bn) − γ21b

ncn − γ22b
ngn + αbn −

1

an
[αbn + ψ1p

n]

−
1

3an
[χ1b

n + ζ1c
n + ζ2g

n] , (4.17)

in which the first term is the logistic map.
It is worthwhile to comment that insistence on including the logistic map has arisen for

several reasons. First, is the analysis by Frisch [4] relating quadratic maps, in general, to
the N.–S. equations and introducing the description, poor man’s Navier–Stokes equation,
as mentioned earlier. The second comes from the fact that initial work of this sort pre-
sented here was performed for the 2-D incompressible N.–S. equations, and the continuous
dynamical system that resulted contained only two different equations, and hence could not
exhibit behavior any more complicated than quasiperiodicity. Hence, it was decided to in-
troduce a simple discrete dynamical system at the time of discretization of the ODEs. For
the 3-D incompressible equations this is not completely necessary, but far wider ranges of
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stable behavior are observed when the transformation is employed. Finally, for the com-
pressible equations we have had difficulty obtaining any interesting stable behavior without
introduction of the transformation Eq. (4.15) leading to the incorporation of the logistic
map.

A completely analogous derivation for the other equations in Eq. (4.4), sans introduction
of the logistic map into results results in a coupled system of logistic maps obtained directly
from the N.–S. equations:

an+1 = an − γ11a
nbn − γ12a

ncn − γ13a
ndn (4.18a)

bn+1 = β1b
n (1 − bn) − γ21b

ncn − γ22b
ndn + αbn −

1

an
[αbn + ψ1p

n]

−
1

3an
[χ1b

n + ζ1c
n + ζ2d

n] , (4.18b)

cn+1 = β2c
n (1 − cn) − γ31c

nbn − γ32c
ndn + αcn −

1

an
[αcn + ψ2p

n]

−
1

3an
[χ2c

n + ζ2b
n + ζ3g

n] , (4.18c)

dn+1 = β3d
n (1 − dn) − γ41d

nbn − γ42d
ncn + αdn −

1

an
[αdn + ψ3p

n]

−
1

3an
[χ3d

n + ζ2b
n + ζ3c

n] , (4.18d)

en+1 = en − γ51e
ncn − γ52e

ncn − γ53e
ndn −

1

an
[η1p

nbn + η2p
ncn + η3p

ndn]

−
1

an
[θT n] −

4

3an

[
χ1 (bn)2 + χ2 (cn)2 + χ3 (dn)2] (4.18e)

−
1

3an
[σ12 b

ncn + σ13 b
ndn + σ23 c

ndn]

−
1

an

[
(bn)2 (σ22 + σ33) + (cn)2 (σ11 + σ33) + (dn)2 (σ11 + σ22)

]
.

The above equations (4.18) are the “compressible poor man’s Navier–Stokes (CPMNS)
equation.” This DDS is seven dimensional (when the equation of state and definition of
internal energy are included to relate pn to an and T n to En), and it has a co-dimension of
35 (number of bifurcation parameters). Although it may appear at first that this imposes
an almost insurmountable closure problem, all the bifurcation parameters are known in the
sense that they can be evaluated “on the fly” at each grid point and at every time step of
any typical LES procedure based only on the large-scale part of the solution. Finally, we
comment that the form of this DDS and the nature of its construction suggest that it is
related to a pseudodifferential operator of the compressible N.–S. system. This implies that
is carries a significant part of the (local in space and time) behavior of these equations and
should thus be appropriate as a SGS model of the type we are considering.

The 35 bifurcation parameters can be grouped into families based on their dependence
on physical dimensionless parameters, or on velocity gradient components. This along with
deconvolution leads to the straightforward theory for their evaluation which is described in
the sequel.
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4.2.2 Bifurcation parameters and amplitude factors—theory and evaluation

Recall that there are two main components in the subgrid-scale model: 1) the discrete
dynamical system (DDS) which introduces temporal fluctuations at the subgrid-scale and
2) the amplitude factors for each fluctuating component. The derivation of the CPMNS
equation (DDS) was discussed in fair detail in the previous section. In this section we provide
details on the relationship between the bifurcation parameters in the CPMNS equation
and the physics on the large-scale via the technique of deconvolution. Construction of the
amplitude factors from an extension of Kolmogorov’s theories is also discussed in brief.

Bifurcation parameters

By comparing Eq. (4.14) and Eq. (4.17), which is a part of the Galerkin procedure applied
to the x-momentum equation, and going through an analogous derivation for the other four
equations, it is straightforward to deduce that χi, ζi, σij, (i, j = 1, 2, 3) and α all depend on
Re; ψi and ηi, (i = 1, 2, 3) depend on M , and θ depends on Pe. For the sake of completeness
we will explicitly write down the definitions of the bifurcation parameters mentioned above.
Those associated with the Reynolds number are:

βi = 4

(
1 −

Z

Re
τ |k|2

)
, χi =

τZk2
i

Re
, σij =

τZV (ij)

Re
, α =

τZ|k|2

Re

ζ1 =
τZk1k2

Re
, ζ2 =

τZk1k3

Re
, ζ3 =

τZk2k3

Re
, (4.19)

where i, j = 1, 2, 3. Those containing Mach number are:

ψi =
τki

γM2
, ηi =

τP (i)

γM2
, i = 1, 2, 3 , (4.20)

and the parameter providing Péclet number effects is defined as

θ =
τ |k|2

Pe
. (4.21)

The γs defined as (e.g., γ21 = τB(2)) are set by the time stepping parameter and the Galerkin
triple products corresponding to the selected wavevector. The Galerkin triple product carries
Fourier space information associated with the velocity gradients. It is straightforward to
check that B(2) arises from uy in Eq. (4.4b), and this kind of relationship can be built for the
other γs analogously. Even though this is somewhat complicated by wavevector dependence
included in the triple products, we have lumped these into the definition of γs.

The basic feature of a subgrid-scale model is to account for the unresolved scales in a LES.
The unresolved scales correspond to high-wavenumber content of the solution. We recognize
that by performing the grid-scale calculation, hopefully, we are resolving wavenumber fluctu-
ations that are approximately half-way through the inertial subrange (but probably not even
that for high Re). To extract the high-wavenumber content from the solution components
we need to perform a high-pass filtering of the grid-scale results. This corresponds to what
is now termed deconvolution. In the present work this is achieved by using the Shuman filter
[163], which is given by the formula ui = (ui+1 + βui + ui+1) / (2 + β) , i = 2, . . . , N − 1,.

83



We note that even though the Shuman filter is a low-pass filter (damps high-frequency oscil-
lations) the high-frequency content of a signal can be extracted trivially by subtracting the
Shuman filtered signal from the original signal.

At this point it is important to recognize that one has to specify a value for the filter
parameter β. Moreover, one should expect this value to be different than the value employed
to treat “aliasing” on the large-scale. On one end, at the large-scale the Shuman filter is used
to remove high-wavenumber content, i.e., as a low-pass filter, whereas at the small-scale it
is employed to extract high-wavenumber content from the resolved-scale results (high-pass
filter). Work done by Yang et al. [165] indicates that smaller the value of β lower the
amount of high-wavenumber content left in the original signal. In the context of using the
Shuman filter as a high-pass filter this would result in extracting more and more of the
high-wavenumber content by lowering β. Moreover, filtering of the solution with a low value
of β is somewhat similar to the second-filtering operation employed in implementations of
dynamic SGS models, typically performed by employing a filter with a wider filter-width
(generally 2∆x). The reader would immediately recognize that setting the value of this
parameter is important since it dictates the contribution from the SGS model. However,
such free parameters, which have to be set are present in almost all filters that are widely
used for LES; they are viewed as mathematical/numerical analytic quantities rather than as
“closure constants.”

We showed that the formal definition of the βis is

βi = 4

(
1 −

Z

Rei

τ |k|2
)
, i = 1, 2, 3 , (4.22)

where Z is a normalization constant (usually set to unity); τ is the small-scale (dimensionless)
time step; Rei is a “directional” Reynolds number, which we will argue below to be roughly
a Taylor microscale Reynolds number Reλ. Finally, k is an arbitrary wavevector that must
be estimated, by methods we will describe below.

We begin by estimating the time step τ on the sub-grid scales. Since we expect to be
approximately half-way through the inertial subrange with the grid-scale calculations, it is
natural to associate ‖S‖−1 (inverse of the L2 norm of the strain-rate tensor) with the Taylor
microscale time, τT . Now since τ is dimensionless, and τT is not, we scale this with the
resolved-scale time step size ∆t; i.e., we set

τ =
τT
∆t

. (4.23)

We next consider the wavenumber k. Our working hypothesis at this point is that we
should use a wavevector consistent with, roughly, the middle of the inertial subrange. Thus,
if we can compute a Taylor microscale Reynolds number and extract a length scale λ from
this, we can obtain an appropriate value for k from its reciprocal.

Recall that the Reλ ∼ Re
1/2
l , the latter being the integral-scale Reynolds number defined

by

Rel =
u′rmsl

ν
, (4.24)

where l is a (“large-scale”) length scale to be defined later; ν is kinematic viscosity (a function
of density, locally in space and time), and u′rms the root mean square velocity is defined as
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follows. First let
u′ (x, t) = u (x, t) − 〈u〉(t) (4.25)

where, 〈·〉 denotes a spatial average over some specified subdomain. Then u′
rms is given by

u′rms = 〈u′ 2〉1/2 . (4.26)

In general we will average over a 27 point stencil to perform the spatial averaging procedures.
We observe that the length scale l is often viewed as the reciprocal of the wavenumber k

at which E(k), the energy spectrum achieves its (global) maximum. This generally occurs
at relatively large spatial scales, typically on the order of about one-tenth of the size of the
problem domain; that is, l ∼ 0.1L. Now from the definitions Reλ ≡ u′rmsλ/ν it follows that

λ =
ν

u′rms

Reλ =
ν

u′rms

1/2

Re
1/2
l , (4.27)

from which we obtain

λ =

(
ν

〈u′2〉1/2

)
l1/2 . (4.28)

Because of the manner in which this length scale is used (deducing a wavevector), it is advan-
tageous to define the integral-scale Reynolds number in each separate direction—especially in
cases of anisotropic turbulence. This will then permit calculation of the separate components
of the wavevector as

ki =
1

λi
, i = 1, 2, 3 . (4.29)

The final step for completing the calculations of the βis is to determine the appropriate Re
for use in this context. We note that in the transformation leading to the CPMNS equation,
the ability to define the βis as in Eq. (4.17) comes from setting

τB
(1)
lm,k = 1 −

Z

Re
τ |k|2 (4.30)

where B
(1)
lm,k = kxBlmk, with Blmk being a Galerkin triple product—the Galerkin triple

product carries Fourier space information associated with the velocity gradients. We note
that we use the term Galerkin triple product to identify Blmk since this corresponds to∫
Ω
ϕl ϕm ϕk dV , (recall Eq. (4.11)). In particular, kx comes from the Galerkin approxima-

tion of ∂u/∂x. This provides us with a heuristic suggestion that the Re in the definitions of
βis should be the grid-cell Reynolds number, i.e., Re based on cell size.

In order to be somewhat more quantitative, we make the following approximate identifi-
cation

|u′| = |u− 〈u〉| ∼ h

∣∣∣∣
∂u

∂x

∣∣∣∣ . (4.31)

We note that there are several choices of u (and v and w). Formally, u should be the complete
velocity field (which would be available from the preceding time step). But we might also
average the high-pass filtered squared velocity components. This approach is fairly consistent
with the overall construction being presented here. Then we can write

〈u′ 2〉1/2 ∼ h

∣∣∣∣
∂u

∂x

∣∣∣∣ . (4.32)
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It follows that the Taylor microscale Reynolds number is of the same order as the cell
Reynolds number if h is approximately the size of λ. In general, we should expect h > λ to
hold. Thus choosing k = 1/λ and Re = Reh in the formula for βis is fairly consistent. Then
the appropriate definition for Reh ought to be

Reh ∼ hxi

|∂ui/∂xi|

ν
(4.33)

From this we conclude that a reasonable approximation of the βis is

βi = 4
[
1 −

(
∆tλxi

||S||Rehxi

)−1
]
, i = 1, 2, 3 . (4.34)

In addition, we note that we can now at least specify Rehmin
by observing β ≥ 1 must hold

for the CPMNS to exhibit “interesting” behavior—meaning at least periodic. The precise
limits on β also will depend strongly on the values of γs and the other bifurcation parameters,
and these interrelationships will be investigated in the first half of the results section.

We further note that both M and Pe are calculated from their respective definitions.
However, we should now use the high-pass filtered components in their constructions.

Considering the γs in the momentum equations we recall that

γ21 = τm2Blmk , γ22 = τm3Blmk ,

γ31 = τm1Blmk , γ32 = τm3Blmk , (4.35)

γ41 = τm1Blmk , γ42 = τm2Blmk .

The values of the triple products depend on the specific basis set chosen, but in general they
can be expected to take O(1) values. We also known that the factor m2 in γ21 arises as a
part of the Galerkin representation of ∂u/∂y; similarly, m3 can be associated with ∂u/∂z,
etc. This suggests that we set

γ21 = τ
∂u

∂y
, γ22 = τ

∂u

∂z
,

γ31 = τ
∂v

∂x
, γ32 = τ

∂v

∂z
, (4.36)

γ41 = τ
∂w

∂x
, γ42 = τ

∂w

∂y
.

Since we chose the non-conservation form of the governing equations to derive the CPMNS
the γs in the continuity and total energy equations are given by

γ11 = τ (l1 +m1)Blmk , γ12 = τ (l2 +m2)Blmk , γ13 = τ (l3 +m3)Blmk ,

γ51 = τ (l1 +m1)Blmk , γ52 = τ (l2 +m2)Blmk , γ53 = τ (l3 +m3)Blmk . (4.37)

where, as alluded to above mi, i = 1, 2, 3 arises due to velocity gradients, and li, i = 1, 2, 3,
arise due to spatial gradients of density in the case of γ11 through γ13 and total energy in
the case of γ51 through γ53. In these expressions the velocity and scalar gradients will be
evaluated on the computational grid (using centered differencing) of the high-pass filtered
components of the resolved-scale solutions.

With the detailed explanations given above for determining wavenumber components,
Re, M , and Pe it is straightforward to evaluate the other parameters from their definitions.
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Amplitude factors

We define local amplitude factors at each grid point (i, j, k) by assuming that locally
the energy (per unit wavenumber) can be expressed as a power law of the form proposed
by Kolmogorov but not necessarily having the well-known “universal constant” and −5/3
exponent. So, we can express the kth mode contribution to energy as

E(k) = C2〈ε〉
βk−(β+1) , (4.38)

where C2 and β are the constant and exponent respectively. To compute C2 and β locally
we make use of the second-order structure function, which is defined as

S2(ℓ) ≡ 〈(u(x + ℓ) − u(x))2〉 . (4.39)

These were shown by Kolmogorov to satisfy a power law given by

S2(ℓ) = C2〈ε〉
βℓβ . (4.40)

In the above equations 〈·〉 represents a generic spatial average, which in our present formu-
lation will be carried out spatially over the current grid point and its 26 nearest neighbors in
3D; ℓ is a vector displacement from the current point having magnitude ℓ, and ε is turbulence
kinetic energy dissipation rate given by ε = ν‖S‖2, where || · || is the Euclidean norm, ν the
kinematic viscosity (which varies spatio-temporally due to changes in density), and S is the
strain rate tensor given by

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
−

1

3

∂uk

∂xk

δij , (4.41)

where Einstein notation is used. For homogeneous, isotropic turbulence it is well-known that
β = 2/3, while C2 must be found from experiment.

Furthermore, by observing that k ∼ 1/ℓ it is easily argued that

S2(k) = C2〈ε〉
βk−β+1 = E(k) . (4.42)

This leads to the well-known k−5/3 law. Now supposing that in each grid cell S2(ℓ) and 〈ε〉
have been computed forNℓ values of ℓ (for each solution component), we seek the Kolmogorov
constant C2 and exponent β such that

Q(C2, β) =

Nℓ∑

n=1

[
S2(ℓn) − C2〈ε〉

βℓβn
]2

(4.43)

is a minimum. Thus, we require

∂Q

∂C2
= 0 ,

∂Q

∂β
= 0 . (4.44)

Through considerable algebra one can show that this problem reduces to finding

C∗
2 =

(
∑
An)

∑
B2

n − (
∑
AnBn)

∑
Bn

(Nℓ − 1) (
∑
B2

n) − (
∑
B2

n)
, (4.45)
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and

β =
Nℓ

∑
AnBn −

∑
An

∑
Bn

(Nℓ − 1) (
∑
B2

n) − (
∑
B2

n)
. (4.46)

C∗
2 is related to C2 via the relationship C2 = 10C∗

2 . In the above equation An = log S2(ℓn)
and Bn = log (〈ε〉ln).

Once C2 and β have been obtained for each velocity component, the corresponding Ais
are computed as

A∗2
i =

∞∑

n=1

E∗
i

(
kloc

n

)
. (4.47)

Here, kloc
n ≡ (n + 1)kc. Then n = 0 gives kloc

0 = kc, with kc being the cut-off wavevector.
This is known in advance from grid spacing on a uniform grid.

The extension of such calculations to the case of scalars is also direct. In particular, from
the Kolmogorov–Obukhov–Corrsin theory (see Warhaft [179]) we can express the “energy”
(the L2 norm) associated with the fluctuations of a scalar as

ES,k = CS,2〈ε〉
−β/2〈εS〉

αk(−α−β+1) (4.48)

where 〈εS〉 is scalar dissipation rate. Thus, with β already determined from the velocity
field, we can immediately calculate CS,2 and α from scalar structure functions analogous to
Eq. (4.39)

4.3 Results and Discussion

To characterize the different types of behavior produced by the CPMNS equations (4.18),
we examine the time series and their corresponding power spectra. The time series are
generated by performing 5× 104 iterations of the DDS, with the last 8192 points of the time
series being used to determine the power spectral density (PSD) using a standard radix-2
Fast Fourier Transform (FFT). To view the different states of the system in parameter space,
we make use of the PSDs and time series, themselves, phase portraits and so called “regime
maps” (2-D and 3-D bifurcation diagrams). In a final subsection we consider effects of initial
conditions.

4.3.1 Solution regimes

One of the most important outcomes of this study was the identification of 14 different
types of temporal behaviors that are produced by the DDS. We comment that the same
behaviors have been reported for the incompressible case in [173] and that there are no
further ones. We remark that, although this seems possibly counterintuitive with respect
to the physical differences between compressible and incompressible flows, the fact remains
that the DDSs obtained are quadratic maps in both cases. Thus, this result is not altogether
unexpected due to the genericity of behaviors of such maps.

We proceed by first providing a list of the types of behaviors we have identified in the time
series of Eqs. (4.18), by analyzing the respective PSDs: i) steady, ii) periodic, iii) periodic
with different fundamental, iv) subharmonic, v) phase locked, vi) quasiperiodic, vii) noisy
subharmonic, viii) noisy phase locked, ix) noisy quasiperiodic with fundamental, x) noisy
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quasiperiodic without fundamental, xi) broadband with fundamental, xii) broadband with
different fundamental, xiii) broadband without fundamental, and xiv) divergent.

It may be tempting to associate divergent behavior with employing a numerical time
step parameter that is too large. Recall that the time step parameter τ is present in the
definitions of the bifurcation parameters. However, dynamical systems tend to exhibit di-
vergent behavior over certain ranges of values of their bifurcation parameters independent of
how they are derived. Thus, we prefer not to associate divergent behavior specifically with
numerical instability, especially since we do not assign values specifically to τ in the present
context (but we must in the context of the complete SGS model).
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Figure 4.1 Example non-noisy power spectra and time series

Figure 4.1 displays power spectra and their corresponding time series in order of increasing
complexity for each of the above “non-noisy” classifications except steady (a trivial case)
and divergent, whose values go to infinity rapidly. Each of these PSDs has a sharp peak at
zero frequency since we did not remove the average (“dc component”); but this cannot be
seen in the plots. We note that the frequencies shown have been normalized because the
time increments corresponding to map iterations are arbitrary. We further note that since
the time increments are arbitrary, we started the abscissa on the time series plots from zero
time, even though the data for these plots were taken from near the end of the computed
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interval. In Fig. 4.1(a) we see a sharp peak at the highest possible frequency; this is the basic
periodic case that arises via a pitchfork bifurcation of a quadratic map. In certain ranges
of bifurcation parameters the system produces trajectories that are periodic with a different
fundamental as shown in Fig. 4.1(b). It is well known that this occurs for the logistic map,
and it has been observed for the incompressible PMNS equations as well. Figure 4.1(c)
shows a subharmonic case, which has undergone one bifurcation beyond simple periodicity.
The associated time series clearly displays the period doubling effect. In Fig. 4.1(d) we
display a phase-locked PSD and time series which might also be identified as a period-
tripling bifurcation following the initial periodic state. Phase locking occurs in quasiperiodic
regimes when the two incommensurate frequencies of the quasiperiodic case (which begins
as a bifurcation from a periodic state) become commensurate; however, we have presented
this prior to the quasiperiodic case because its time series and PSD are noticeably simpler—
clearly in the present case, a period-3 behavior. Finally, Fig. 4.1(e) corresponds to the PSD
and time series of an example trajectory from the quasiperiodic classification. We note
that a quasiperiodic signal has a seemingly (but not actually) nonperiodic, irregular aspect,
suggestive of turbulence, and experimentalists sometimes classify it as such. However, Ruelle
and Takens [61] proved that such a signal cannot be turbulent since it cannot be associated
with a strange attractor; in particular, it is not sensitive to initial conditions (SIC). On the
other hand, strange attractors may be arbitrarily nearby in bifurcation parameter space.

We note that distinguishing a phase lock from subharmonic behavior beyond the first
bifurcation is difficult without knowing, a priori, the sequence of behaviors leading to a given
state as a bifurcation parameter is varied. Borrowing from [173] our approach has been to
characterize the behavior as subharmonic if the following criteria are met: 1) number of
frequencies fn is a power of two and 2) the power of all frequencies at the 22m−1 level is less
than that of either of their neighbors (in frequency) at the 2m level. The same criteria are
also applied to the noisy cases, where the attribute “noisy” implies some broadband aspects
in the PSD (see [173] for details). We comment that these criteria are not always sufficient to
make the distinction between phase lock and subharmonic based on a single time series; but
in many situations (construction of regime maps shown below, or analysis of experimental
data) this is all that is available. Moreover, the classification “n–periodic” might be applied
to either case.

In Fig. 4.2 we present PSDs and time series for the remaining noisy classifications. Figure
4.2(a) displays a case of the noisy-subharmonic behavior. The spectral peaks are well defined,
and they rise many tens of decibels from the base noise and are hence easily identifiable. On
the other hand, although the basic feature of period doubling is still present in the time series
for this case, the maxima and minima no longer exactly repeat (compare with Fig. 4.1(c)).
In Fig. 4.2(b) we present a noisy phase lock wherein again we observe well-defined spectral
peaks. Furthermore, the time series from which the PSD was generated is quite regular at the
level of large amplitude oscillations, but non-repeatability is evident in the lower amplitude
peak-to-peak behavior as the PSD suggests. We remark that experimentalists often attribute
this to measurement noise; but this cannot be the case here—and possibly it is not in some
experimental studies as well.

We note that as the bifurcation parameters are varied such that we move deeper into the
noisy regime, classification of types of behavior becomes increasingly more difficult. Figures
4.2(c) and (d) are noisy quasiperiodic with and without, respectively, the fundamental fre-
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Figure 4.2 Example noisy power spectra and time series

quency. In the first of these, somewhat well-defined spectral peaks are present (e.g., in the
range between 0.4 and 0.6); but in the latter case the noise has continued to rise, and the
peaks are far more difficult to distinguish. But evidence of such peaks can be seen scattered
throughout the spectrum, e.g., near the the frequencies 0.2 and 0.6. The temporal behav-
ior, as seen in the time series is correspondingly less regular than in the case for which the
fundamental is still present. Indeed, evidence of (physical) intermittency can be seen just
preceding times t = 0.1 and 0.6, and the general nature of the oscillations and their timing
have become much more “turbulent like.”

The final three plots display behaviors involving broadband characteristics. In the first
of these (Figure 4.2(e)), there is distinct peak and, hence, it is termed broadband with
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fundamental (one might also call this noisy periodic). Aside from the peak at the highest
possible frequency, the spectrum shows no distinguishing characteristics. The time series
shows very regular peaks associated with this frequency, but their amplitudes are irregular.
Moreover, one can see evidence of nonperiodic switching between short sequences of relatively
lower amplitude oscillations to longer sequences of higher-amplitude behavior. The last two,
broadband with different fundamental (Fig. 4.2(f)) and broadband without fundamental
(Fig. 4.2(g)) are characterized by their lack of any defining spectral characteristics. There
is clear evidence of this in their respective PSDs. However, in the case of the former there
is some evidence of a peak at a frequency of 0.65. The corresponding time series displays
some of the features contained in the time series of broadband with fundamental (see region
between 0 and 0.4) and quasiperiodic with fundamental (see region between 0.4 and 1),
which strongly suggests the presence of some fundamental frequency which is of a different
amplitude. The time series of the broadband without fundamental classification displays
a behavior that is somewhat less regular than the case for which the fundamental is still
present. Furthermore one can clearly see some evidence of intermittent behavior at times
preceding 0.4 and 0.8.

Before we end our discussion on time series and power spectra, it is also of interest to look
at some of the associated “attractors” of the time series presented above. Attractors can be
pictorially represented by making use of phase portraits. A phase portrait is a geometric
representation of the time evolution of two or more dependent variables in phase space.

In Fig. 4.3(a) we display a three-dimensional phase portrait constructed using the three
components of velocity for the broadband with different fundamental classification. The
associated 2-D projections are presented in parts (b), (c) and (d). It is clear from the figure
that, even after the initial transient, the trajectories of the discrete dynamical system display
a highly irregular behavior, due to the wide range of frequencies present in the signal. From
part (a) of the figure we observe that the phase points tend to align themselves at a 45
degree angle. Such alignments of the phase points suggests that there is good correlation
between the u and v components of velocity (as verified in part(b) of the figure). However,
correlations between the other two combinations of velocity components is not good. This
is clearly evident from parts (c) and (d) of Fig. 4.3. As a result the trajectories of the
system visit phase points that are widely separated thereby increasing the noise. But as
observed in the time series (Fig. 4.2(f)) the presence of some fundamental has resulted in
certain dominant features in the attractor. The harmonics can be somewhat discerned by
looking at the dominant features of the attractor. However, the increase in the surrounding
noise together with the lack of a strong fundamental has blurred the distinction between the
dominant features.

4.3.2 Regime maps

The most appropriate method of studying a large number of cases (sets of bifurcation
parameters) of Eqs. (4.18) is to view the so called “regime map.” Regime maps can be
thought of as multi-dimensional extensions of standard bifurcation diagrams typically used
in the dynamical systems literature. The regime maps presented in this paper were created
using a type of visual recognition algorithm that recognizes distinctive traits in the auto-
matically calculated power spectrum. The power spectrum itself is run at each grid point
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Figure 4.3 Phase portrait of broadband with different fundamental behavior. (a) 3-D phase
portrait of the three velocity components (b) 2-D phase portrait of u and v components of velocity
(c) 2-D phase portrait of v and w components of velocity and (d) 2-D phase portrait of u and w

components of velocity

on a grid of bifurcation parameter values. The plots are then created, based on the result
of the image processing algorithm, by color coding the 14 different types of behaviors that
have been described in fair detail in the previous section. Moreover, regime maps provide
us with a visual tool for the the easy identification of bifurcation sequences. For each 3-D
regime map we used 145 points in each of the three coordinate directions, for a total of over
3 million combinations of bifurcation parameter values at which the DDS was iterated. To
show details, we make use of more highly-resolved 2-D regime maps (in general, a slice of
the overall 3-D domain) with a total of 1 million combinations per 2-D slice. We note that
the power spectrum was computed (from the w-component Fourier coefficient) and the type
of behavior was classified, recorded, and plotted. It is to be noted that it is generally (phys-
ically) not appropriate to equate the different sets of bifurcation parameters, and, hence,
all bifurcation parameters have been assigned unique values. The same initial conditions
were used in all calculations from which the regime maps were constructed: a(0) = 0.5,
b(0) = 0.45, c(0) = 0.6, d(0) = 0.75 and E(0) = 0.95, henceforth termed “standard,” except

93



for results specifically associated with effects of initial conditions. With 35 bifurcation pa-
rameters it is nearly impossible to thoroughly study the behavior of the DDS for all possible
combinations of these parameters. To make the task tractable, we present regime maps of
combinations of the different families of bifurcation parameters, as identified in Sec. 4.2.2,
by picking a bifurcation parameter from each family. This will at least give us an overall
view of the behavior of the DDS.

The first regime map that we present, Fig. 4.4(a), is a 3-D map of β1 vs γ22 vs ψ1. Figure
4.4(b) is the color map which associates the 14 types of behaviors with the respective colors
we have chosen to represent them. There are several observations to be made regarding
Fig. 4.4(a). First, we see a relatively large region of divergent behavior at a value of ψ1=1,
particularly at high values of β1. However, the plane on the 3-D plot displaying the behavior
of β1 vs ψ1 suggests that this region decreases as the Mach number increases. Part(a) of
the figure also suggests that as γ22 is increased (becomes less negative) the DDS produces
complicated (noisy and broadband) behavior, indicating that the flow field is excited because
of higher velocity gradients (recall the definitions of the γs). To make comparisons between
the behavior of the system at different Mach numbers, we display a sequence of 2-D plots
(Fig. 4.4(c)–Fig. 4.4(e)). These plots were produced by using values of ψ1 in decreasing
magnitude, thus simulating the effect of increasing Mach number. In Fig. 4.4(c) we present
the system behavior at a value of ψ1=0.896. Except for a very small region at the top left
corner, which displays broadband behavior and a small patch at a value of β1 ≈ 3.5, the
rest of the parameter space is comprised of relatively simple behavior. In the same region at
high values of γ22 we see a series of “islands” where the DDS remains bounded even though
it is divergent at most nearby points. Often present near these islands are “holes”, which
are regions of divergence completely surrounded by bounded behavior. As the value of ψ1 is
decreased to 0.555, the region at the top left hand corner moves inwards, increasing in size,
and the corner region now displays noisy quasiperiodic behavior. We further notice a decrease
in the area displaying periodic behavior and the appearance of a feather-like projection of
quasiperiodic behavior at a value of β1 around (but mostly below) 3.0. Also, note the noisy
tip in this region. With further decrease in ψ1 to 0.09 we see a marked increase in the region
of broadband behavior especially in the low β region, i.e., 1 ≤ β1 ≤ 2.5. Moreover, we also
see an increase in the area displaying non-divergent behavior at values of β1 ≥ 3.0. In the
low β region one can also easily discern the bifurcation sequence and the associated chaotic
attractor as γ22 is increased. In particular, we see a period-doubling route to chaos:

steady → periodic→ subharmonic→ quasiperiodic→ chaotic .

We note that this is not the usual period-doubling route to chaos, since it contains a quasiperi-
odic state between the subharmonic and chaotic states. From both Fig. 4.4(d) and Fig. 4.4(e),
we notice a bifurcation sequence going from steady → periodic → quasiperiodic in the
feather-like region, which suggests that the CPMNS equations can also display the Ruelle–
Takens–Newhouse (RTN) bifurcation scenario—steady → periodic → quasiperiodic →
chaotic. However, in both plots the γ22 interval is not long enough to determine if this
scenario occurs. Hence in Fig. 4.4(f) we display a map whose γ22 interval is [−1.5, 2.5]. We
further note that our standard grid for 2-D plots, which contains a million grid points, was
used to determine the behavior of the system on the domain (β1, γ22) ∈ [1, 1.5] × [4, 2.5].
An obvious observation is that the system does not display the RTN bifurcation sequence.
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Figure 4.4 Regime maps displaying effects of M ; (a) 3-D map of β1 vs γ22 vs ψ1, (b) Color
table, (c) ψ1=0.896, (d) ψ1=0.555, (e) ψ1 = 0.09, (f) ψ1 = 0.09 and −1.5 ≤ γ22 ≤ 2.5.

The sequence does not proceed through the usual transition from quasiperiodic to chaotic
directly; instead there is a region of subharmonic behavior before the eventual chaos. In
particular, we observe the following bifurcation sequence:

steady → periodic→ quasiperiodic→ subharmonic → chaotic .

This region of subharmonic between the quasiperiodic and chaotic behaviors can physically
be attributed to the phenomenon of relaminarization.

Figure. 4.5(a) displays a map of χ2 vs γ31 vs ψ2. We have chosen to show only a subspace
of the overall domain because the behavior of the system at the extrema of the considered
parameter values was divergent, and, hence not very interesting. In Fig 4.5(b) we present
a 2-D slice of the entire computational domain at a relatively low value of M (ψ2=0.569).
It is evident that in the region 0.3 ≤ χ2 ≤ 1 (recall that χ2 is inversely proportional to
Re) the system produces divergent behavior for all values of γ31. However, in the region
0.001 ≤ χ2 ≤ 0.03 we see the system producing relatively complicated behavior (although
not yet chaotic). In Fig. 4.5(c), which is at a higher value of M (ψ2=0.118), the system
produces broadband (chaotic) behavior as Re is increased (decreasing values of χ2), and,
moreover, there is an overt decrease in the area of regions exhibiting divergent behavior.
This is particularly encouraging from a modeling standpoint because it is at such regimes
that we expect to have turbulence and, hence, our model to be active. Again, we see a
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Figure 4.5 Regime maps displaying effects of Re; (a) 3-D map of χ2 vs γ31 vs ψ2, (b) ψ2=0.569,
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period-doubling route to chaos as Re increases.
In Fig. 4.6 we present regime maps of β1 vs β2 vs β3 at 7 different values of γ21 to γ42 (Fig.

4.6(c)–Fig. 4.6(i)). We note that the values of the γs were varied by integer factors from a
set of values, henceforth termed baseline. The baseline values of the γ’s were γ21 = 0.025,
γ22 = 0.01, γ31 = 0.031, γ32 = 0.021, γ41 = 0.019 and γ42 = 0.022. At high negative values of
the γs (−25 times the baseline values—Fig. 4.6(c)), there exists a large region of divergence
surrounding a relatively small region of non-trivial behavior apart from steady. As the γs
are increased to −15 times the baseline value, Fig. 4.6(d), the large region of divergence
transitions to regions producing non-divergent behavior. The behaviors at moderate values
of β1 and β2 (1 ≤ β1 ≤ 3 and 1 ≤ β2 ≤ 3) are somewhat similar to those present in Fig. 4.6(c).
However, transition to non-divergent, non-steady behavior is evident as values of β1 and β2

are increased. At the upper-right corner of the plot we clearly see the system undergoing the
RTN bifurcation sequence. With further increase in the magnitudes of the γs, the large patch
of steady behavior present in Fig. 4.6(e) begins to shrink in size, transitioning to periodic.
However, the rim of interesting, generally chaotic, behavior surrounding the less complicated
behavior still persists. At low positive values of the γs (5 times baseline value–Fig. 4.6(g)),
the region of steady behavior becomes an island surrounded by a region of periodic behavior.
When the γs reach a value of 15 times the baseline (Fig. 4.6(h)), the island of steady behavior
completely transitions to a region of periodic behavior, and this region is surrounded by
another region exhibiting subharmonic behavior. Further increases in γs (Fig. 4.6(i))result
in the system producing noisy behavior (quasiperiodic and broadband) in most regions of
the domain since the flow is excited by higher velocity gradients (hence, strain rates). Also,
regions of divergent behavior reappear at high values of β1 and β2. When the value of the
γs is raised to 35 times the baseline value (figure not shown), the flow is excited to such
an extent that the regions of non-divergence almost completely disappear. The behavior in
those regions which do produce non-divergent behavior is chaotic. In particular, we found
broadband with a different fundamental and broadband without fundamental behavior in
those regions.

In Figs. 4.4—4.6 we displayed regime maps involving bifurcation parameters mainly from
the momentum equations. We will end the discussion on regime maps with illustrations of the
system behavior as sets of bifurcation parameters from the continuity and energy equations
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Figure 4.6 Regime maps displaying effects of velocity gradients; (a) 3-D map of β1 vs β2 vs β2,
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are varied. We begin by presenting a case from the continuity equation. In particular, we
display a map of β2 vs γ11 vs γ12 in 3-D and the associated projections as 2-D plots in Fig.
4.7.

The figure illustrates the fact that there is a significant increase in regions of the domain
that display divergent behavior as the values of γ11 and γ12 become negative. The reduction
in the area of the region exhibiting non-divergent behavior as the γs become more and
more negative can be clearly observed in Fig. 4.7(b). We further comment that there is a
shortening of the intervals of the γs at which we obtain stable behavior when compared with
those in the momentum equations. This is clearly seen in the plots presented. Derivation of
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the Galerkin form of the continuity equation analogous to that described in fair detail for
the x-momentum equation allows us to observe that γs in the continuity equation depend
on both the velocity and density gradients. From Fig. 4.7(c) and (d) we also see a transition
to complicated behavior in both the low and high β regimes. Furthermore, we can also
determine the tendency of the system to produce complicated behavior as the γs move
towards negative values.

In Fig. 4.8(a) we present a map of σ11 vs γ51 vs θ for the energy equation. Recall that
the σs depend on the Re and θ depends on the Pe number. From Fig. 4.8(b) we ob-
serve that for any constant value of θ the system transitions from steady → periodic →
noisy quasiperiodic without fundamental as we increase the value of γ51. We comment
that this particular bifurcation sequence is generally not seen. To enhance our understand-
ing about the system behavior in the region which displays the transition, we provide two
successively zoomed views. The zoomed views are presented as insets in Fig. 4.8(b). We note
that the zoom-ins were not merely created by using the visualization package Fieldview, but
instead we re-ran the DDS on a 1000 × 1000 grid on the chosen sub-domain. In particular, for
the second zoomed view (zoom 2) we ran on a domain (θ, γ51) ∈ [0.587, 0.98] × (0.59, 0.982)
which provides a grid spacing of ∆θ=3× 10−6 and ∆γ51=2×10−6. Even at such a high
resolution, the inset (zoom 2) in part(b) of the figure clearly shows the direct transition
alluded to above. In fact the PSD (part(e)) and phase portrait (part(f)) of a point in the
noisy quasiperiodic regime from the zoom 2 inset is a classic example of the correspond-
ing classification. The phase portrait clearly displays the two limit cycles characteristic of
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quasiperiodic signals and also a large region of phase points separated from the limit cycles,
that the individual trajectories of the system visit (hence, the attribute noisy).

In Fig. 4.8(c) we also see the transition from steady to quasiperiodic. The same exercise
as described above for the periodic to noisy quasiperiodic without fundamental was carried
out. However, for this case we noticed the emergence of a thin region of periodic with
different fundamental behavior between the steady and quasiperiodic regions. Part(d) of the
figure illustrates that the system undergoes a Hopf bifurcation at high values of σ11 and θ.
In particular, for a fixed value of σ11 in this region we see a Hopf bifurcation sequence as
the parameter θ is increased. Furthermore, we also see the period-doubling route to chaos
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as the values of σ11 are decreased. At low values of σ11, although we see regions exhibiting
complicated behavior, we also see large regions where a return to periodicity is evident.

Effects of initial conditions

Until now we have studied the behavior of the CPMNS using only a particular set of
initial conditions. However, it is well known that multiple attractors can exist for multi-
dimensional dynamical systems. Hence it is necessary to study the effects of altering the
initial conditions on the behavior on the system. One method of doing this would be to
construct the regime maps presented in the previous subsection by changing the values of
the initial conditions and comparing them to determine the effects. Undoubtedly this would
be a painstaking process especially if one wants to study the effects of a large number of sets
of the initial conditions. Another method of studying the effects of initial conditions is via the
visualization of the basins of attraction for a particular set of bifurcation parameter values.
A basin of attraction is the set of all initial conditions whose orbits converge to a specific
attractor, in our case a specific behavior represented by a specific color on the color map.
To study the basins of attraction of the CPMNS we implemented the same methodology we
used for the regime maps, which should now be familiar to the reader. That is, we treat
the initial conditions in the same way as we treated the bifurcation parameters. We further
comment that we have used the same color coding to classify the behavior of the system on
the initial condition grid.

The basins of attraction for a set of bifurcation parameter values, which produce broad-
band with fundamental behavior, is illustrated in Fig. 4.9. We investigated the behavior of
the system by varying the initial data of the velocity vector between 0.001 and 0.999 for all
three components (u, v, and w). Projections of the 3-D domain onto three orthogonal planes
are also shown as 2-D plots. It is evident from the figure that there is a growth of regions
exhibiting divergent behavior as the values of the initial conditions approach 1, suggesting
that such high values should not be used. In the zoomed view displayed as an inset in the
figure we clearly see the existence of multiple basins. In particular, we see three different
basins apart from broadband with fundamental, which are: i) noisy quasiperiodic with fun-
damental, ii) noisy quasiperiodic without fundamental, and iii) broadband with different
fundamental. We comment that from a modeling standpoint we should expect the model to
be driven by changes in values of the bifurcation parameters since they embody the physics
of the flow. Hence, we do not want the system to produce drastically different behavior
because of small changes in initial conditions, although the values of the bifurcation param-
eters remain the same. This favorable feature is evident from the figure, since we do not
see for e.g., any non-noisy behavior at any value of the specified initial conditions interval.
Although the time series presented in Fig. 4.2 for the four types of behaviors seen on the
initial condition grid are fundamentally different, they are all still sufficiently complex.

In Fig. 4.10 we display time series, which demonstrate the property of sensitivity to initial
conditions (SIC). The time series in red corresponds to a series that was generated form the
standard set of initial conditions and the one in green corresponds to initial conditions
b(0) = 0.365167, c(0) = 0.489167, and d(0) = 0.503056 (a0 and E0 were set to the standard
values). We note that for both cases the values of the bifurcation parameters were set exactly
the same (corresponding to broadband with fundamental for this case). It is evident from
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the figure that the time series do not match point by point even though the bifurcation
parameters are the same. Moreover, we see the time series going in and out of phase as
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time evolves. In the region between 0 and 0.1 we clearly see the out of phase nature of the
time series. But as we proceed towards the end of the considered time interval, especially in
the region between 0.4 and 0.5, we clearly see the time series getting back into phase. This
demonstrates that the system produces time series that are different even though the only
parameters that have changed are the initial conditions; i.e, the dynamical system produces
time series that are sensitive to initial conditions. However, we remark that although the
time series are different, the overall qualitative behaviors generated by them are not very
different from each other. This is good from the subgrid-scale model point of view since the
end result of the discrete dynamical system is to generate temporal fluctuations.

4.3.3 Preliminary testing of CPMNS turbulence model

To test the turbulence model we made use of a data set recorded at a particular time-step
of the large-scale calculations. These data were then supplied to the small-scale algorithm
to generate the different parameters that are present in the CPMNS equations.

To generate the large-scale field we considered a shock tube problem. The initial condi-
tions in the left and right sections of the tube are presented in Table 4.1 (all entries are in
SI units) This set up is similar to that of Test Case 1 in that it provides a pressure ratio
of 10 across the diaphragm. The boundary conditions and computational domain are the
same as considered previously in Chapter II. We ran the calculations on a grid consisting
of 101 × 41 × 41 points in x-y-z space with a time step ∆t = 1 × 10−6s. The data set that
was supplied to start the small-scale calculations was recorded at a time in the large-scale
calculations when the shock was well established. In particular, we generated the large-scale
data set at two specific times t = 0.61ms and t = 0.6ms.

Recall that the CPMNS equation was derived from a non-dimensional form of the N.–S.
equations. However, the large-scale equations are in dimensional form; hence, solutions to
these equations also have dimensions associated with them. This then suggests that we
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Table 4.1 Initial conditions for shock tube problem employed to test CPMNS turbulence model.

Parameters Left Right

Velocity 0 0
Density 1 0.125
Pressure 10000 1000

Total Energy 2.5e5 2.5e4

would have to non-dimensionlize the large-scale field in a manner consistent with that used
in deriving the CPMNS equations. In particular, the density, velocity components, and
temperature are scaled by “typical” values. Pressure is scaled by the equation of state and
the total energy E by the square of the velocity scale. Also, in this case we chose the typical
length scale to be the length of the tube. This provides sufficient information to scale both
dependent and independent variables and the spatial coordinates. The scaling parameters
were set to be

ρs = 2 , Us = 400 , Ts = 500 , and , Es = U2
s , (4.49)

with associated units. The scaling parameters were chosen such that their magnitudes were
greater than the maximum values obtained by the corresponding variables in the large-scale
field.

Once we obtain the non-dimensional large-scale field the next step is to extract the
high-wavenumber content from these results. The high-wavenumber content is obtained by
high-pass filtering the large-scale field using the Shuman filter as described in Sec. 4.2.2. This
operation corresponds to implementing the second idea in the LES approach proposed by
McDonough et al., i.e., filter solutions not equations. Previously, we alluded to the fact that
the value of the filter parameter β at the small-scale should be set to a low-value. Moreover,
we should also recognize that the value of β should be related to the grid-spacing in some
fashion since in our setting the grid-size determines the extent of under-resolution in the LES
simulation. Hence, we should expect that the coarser the grid, the greater will be the role
played by the SGS model. This relationship between the computational grid and the SGS
model then demands extraction of the maximum amount of high-frequency content from
the grid-scale calculation. On coarse-grid simulations like the one being performed here, the
extraction of the maximum amount of high-frequency content can only be obtained by using
low values of β. Moreover, we conducted numerical tests and decided that a value of 10
for the filter parameter gave reasonable results. Nevertheless, it is clear that an automatic
procedure for setting the parameter value would be a significant advantage in implementing
this LES procedure, but this is beyond the scope of the present work.

Computed results of DDS bifurcation parameters

The large-scale flow field inside the shock tube at t = 0.61ms into the calculations at
which we chose to generate the data set are presented in Fig. 4.11(a) for the non-dimensional
u-velocity contour. This also provides a reminder of the location of the shock front, and
the general physics associated with the shock tube problem. The distribution of the high-
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Figure 4.11 2-D contour plots of (a) u-velocity, and (b) highpass filtered u-velocity

wavenumber content of the velocity field (displayed in part(a)) is presented in part(b) of
the figure. We observe that the regions near the tube walls and the shock display more
high-wavenumber content than in found in the most of the remainder of the flow field. We
comment that it is at these same regions that the effects of calculating on an under-resolved
grid are most severe; thus the corresponding large-scale solutions will be significantly under-
resolved. Hence, we would want the turbulence model to be active in these regions so
that the model results can augment the under-resolved large-scale solution, and presence of
high-wavenumber content in these regions is very encouraging from a modeling standpoint.
However, one should expect the high-pass filtered field to be contaminated by the oscillations
generated by the Gibbs phenomenon near the shock at the large-scale. Even though we are
aware of this from the start, there is no a priori easy way to fix the problem, one would
have to resort to using superior shock capturing schemes like ENO, WENO, etc., to provide
sharper shock-capturing with smaller overshoots and undershoots.

In Fig. 4.12 we display the distribution of the bifurcation parameters β1, ψ1, and γ21.
We have chosen to present results for β1, ψ1, and γ21 because they are associated with
the horizontal component of velocity, which is the dominant flow direction in this case. In
particular, β1 is related to the grid-scale Re, ψ1 is related to the M , and γ21 is related to
∂u/∂y. In Figs. 4.12(a)–(c) we present results displaying the bifurcation parameters on a
longitudinal plane running the length of the tube. The 2-D plane chosen to display the
contours is the same plane used for the the 2-D contour plots in Chapter III (see Fig. 3.4).
The distribution of the parameters within a planar cross section at a location corresponding
to that of the shock front is presented in Figs. 4.12(d)–(e). We further note that the color
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Figure 4.12 Distribution of bifurcation parameters along the length of the shock tube at
t = 0.61ms; (a) β1, (b) ψ1, (c) γ21. Distribution of the parameters at a cross section of the tube
corresponding to the location of the shock front at t = 0.61ms; (d) β1, (e) ψ1, (f) γ21.

code for this figure is inverted when compared to those used throughout this work. We
chose to do this to provide better clarity for viewing results in the case of the bifurcation
parameters.
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Part(a) of the figure clearly shows that β1 is zero in the quiescent regions of the domain
that have not yet been passed by either the shock or rarefaction wave. We also see relatively
high values of β1 in regions near the wall and also near the position of the shock wave.
Furthermore, within the region near the shock we see that β1 is often close to its maximum
value providing a high probability for chaotic, turbulent like behavior to be generated by the
model. The parameter ψ1 is also distributed in the same general way as β1 in that the regions
in the domain with activity is near the walls and the shock. Recall that the parameter ψ1

is inversely proportional to M . In discussions on regime maps we presented results which
indicated that at low values of ψ1 the CPMNS equation displays complicated (turbulent like)
behavior. From Fig. 4.12(b) we clearly see that the values of ψ1 near the shock and near the
walls are relatively lower when compared to those taken in other parts of the domain. Part(c)
of the figure, on the other hand displays rather low values of γ21 throughout. However, we
do observe that the parameter takes on a fairly wide range of values within the regions of
interest, while it is constant, in fact equal to zero in the undisturbed right and left sections
of the tube.

The distribution of β1 and ψ1 (part(d) and (e)) on the shock front suggests that there
will be considerable activity from the turbulence model, especially at regions near the walls,
since the value of β1 is high and that of ψ1 low. This scenario is interesting since it is in
these regions that we would expect interaction between the shock and the boundary layer.
From part(f) we notice that γ21 takes on constant values in most of the domain. Although
this should be true in the interior since the shock is a normal shock wave taking on constant
values on this plane, we should have seen some activity at near wall regions. We do see
indications of this at some places but not in the others.

In Fig. 4.13 we present the distribution of the bifurcation parameters β1, ψ1, and γ21

at t = 0.6ms of the large-scale calculations. The figure clearly shows that the structure of
the distribution of the bifurcation parameters within the length of the shock tube (parts
(a)–(c)) are not very different from those obtained at t = 0.61ms (see Figs. 4.12(a)–(c)).
This similarity is to be expected considering that only 0.01 ms has elapsed in time. We
note that the although the time interval is only 0.01ms the position of the shock front
will change, but only by a small distance. However, we observe that the distributions at
the cross section corresponding to the location of the shock front are somewhat different
(compare Figs. 4.12(d)–(f) and Figs. 4.13(d)–(f)). In particular, in Fig. 4.13(d) we see that
the values of β1 in the arms of the cross shaped region at the center of the cross section
is slightly lower than that in Fig. 4.12(d). The yellow region in the middle of Fig. 4.13(e)
seems to spread out as time progresses (see Fig. 4.12(e)). The distribution of γ21 is similar
to that present at t = 0.61ms but the magnitude is reduced in most of the domain.

4.4 Concluding Remarks

In this chapter we outlined the construction of a novel subgrid-scale (SGS) model for
an alternative approach to LES of compressible turbulence. The form of the SGS model
that was proposed consists of modeling each dependent variable at the sub-grid scale as
a product of two factors: i) an amplitude factor and ii) a discrete dynamical system that
produces temporal fluctuations.

The amplitude factors A∗
i s were calculated locally (both in space and time) by utilizing
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Figure 4.13 Distribution of bifurcation parameters along the length of the shock tube at
t = 0.6ms; (a) β1, (b) ψ1, (c) γ21. Distribution of the parameters at a cross section of the tube
corresponding to the location of the shock front at t = 0.6ms; (d) β1, (e) ψ1, (f) γ21.

results from an “extended” Kolmogorov’s K41 theory, thus not limiting them to homoge-
neous, isotropic turbulence. In particular, the A∗

i s are calculated as the square-root of the
total (cumulative) energy E(k). E(k) corresponds to the energy of all wavenumbers above
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the cut-off. The cut-off is determined based on the resolution of the resolved-scale grid.
Extension to non-homogeneous, nonisotropic flows was accomplished by assuming that the
constant C2 and the exponent β in the power-law representation of E(k) are not constant,
but instead vary in both space and time. We also described the technique employed to
calculate C2 and β at each grid-point and at each time-step of the small-scale calculations
using a power-law formula derived by Kolmogorov for physical-space second-order structure
functions S2(ℓ).

To introduce turbulent-like fluctuations at the sub-grid scale we derived a new discrete
dynamical system from the 3-D compressible N.–S. equations. The derivation, shown in fair
detail for the x-momentum equation, is based on a Galerkin representation of the governing
equations followed by the removal of all wavevectors except a single arbitrary one which
is incorporated into the bifurcation parameters of the DDS. This DDS, which, we call the
“compressible poor man’s Navier–Stokes (CPMNS) equation” has a co-dimension of 35.
Moreover, the bifurcation parameters were grouped into families based on their dependence
on non-dimensional parameters or on velocity gradients. The derivation also provides us
with formulae for the 35 bifurcation parameter values, permitting their evaluation “on the
fly” at each grid point and at every time step of our LES procedure, thus overcoming the
well-known “closure-problem” in turbulence simulations. This was discussed in some detail
in Sec. 4.2.2

We further provided detailed characterizations of the possible behaviors that can be pro-
duced by the system via time series and power spectra. We identified 14 different types of
behaviors (see Fig. 4.1 and Fig. 4.2) that the CPMNS equations are capable of producing.
These different types encompass a wide range from relatively simple steady to behaviors dis-
playing chaos. The complexity of the trajectories of the velocity components was illustrated
by presenting a phase portrait of broadband with different fundamental behavior.

Employing so called “regime maps” (multi-dimensional bifurcation diagrams) we sought
to provide a general overview on the dynamics of the CPMNS equations as various sets
of bifurcation parameters are varied. In each 3-D regime map there were over 3 million
combinations of bifurcation parameter values, and for the 2-D maps there were one million
combinations at which the DDS was iterated. To determine the behavior of the system
with changes in M we displayed a sequence of 2-D plots that were produced by successively
decreasing the value of the associated bifurcation parameter ψ1. As M increased the DDS
displayed an increase in complexity of the behaviors it produced over the considered pa-
rameter range. This is seen clearly in the sequence of figures starting from Fig. 4.5(c) to
Fig. 4.5(d). Furthermore, in Fig. 4.6 the DDS demonstrated an increase in the areas of
non-divergence at increasing values of M . This is encouraging from the point of view of
implementing the DDS in the SGS model since divergent turbulent fluctuations would com-
plicate implementation. Hence, this increase in area of non-divergence provides a wider range
of values that the bifurcation parameters can take on but still display interesting behavior.
Moreover, the areas of divergence are typically adjacent to steady behavior, where the model
would be turned off anyway. We further subjected the model to a gradual increase in strain
rates. As would be expected in many physical flows, an increase in strain rate resulted in an
increase in regions displaying turbulent behavior. This is evident at high β regions of Fig.
4.7. In Figs. 4.8 and 4.9 we presented regime maps constructed from bifurcation parameters
associated with the continuity and energy equations, respectively. From Fig. 4.8 we observed
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large increases in areas of divergence at negative values of both γ11 and γ12 at any value of
β1. This occurs because, near the regions of divergence the DDS produces complex behavior
(noisy or broadband) indicating that the flow is already excited to a high degree and hence,
any further increase beyond this produces divergent behavior.

The regime maps displayed in Sec. 4.3.2 also act as a visual tool for the identification
of bifurcation sequences. These showed the CPMNS equation to be capable of producing
both the period-doubling as well as the Ruelle–Takens–Newhouse routes to chaos. There
were other routes to chaos also. Moreover, the presence of these various routes to chaos
suggest that the CPMNS equation are capable of automatically transitioning to turbulence.
This capability of the DDS should allow the SGS model to predict transition to turbulence
without the need for separate and often ad hoc models for this purpose. We comment that
even though the CPMNS equation is capable of predicting transition, we are still far from
actually proving the accuracy of this for a given physical flow. But we believe that the
ability of the CPMNS equation to produce deterministic chaos enhances its ability as a
“synthetic-velocity” model for LES.

Effects of initial conditions on the DDS were studied via visualization of basins of at-
traction. In particular, we dealt with a specific case involving broadband with fundamental
behavior. We showed that the DDS has multiple attractors even though the values of the bi-
furcation parameters were held constant. Making use of time series from two different sets of
initial conditions we illustrated that the system is sensitive to initial conditions. We remark
that even though the DDS displays SIC the time series generated by the DDS are not very
different from each other in a qualitative sense. Moreover, one of the important findings in
terms of implication of use of this DDS as a SGS model is the general understanding gained
on the effects of initial conditions, including growth of regions of divergence at relatively
high values of initial conditions.

Finally, we conducted a preliminary test of the CPMNS turbulence model by supplying
it with a data set from the large-scale. A shock tube problem was employed for this purpose.
Two-dimensional contour plots of the large-scale horizontal component of velocity and its
corresponding high-pass filtered part were presented in Fig. 4.11. The distribution of the
high-pass filtered velocity field was found to be at least qualitatively as should be expected,
but one should keep in mind the contamination of this field by the Gibbs oscillations at the
large-scale. Distribution of three bifurcation parameters (β1, ψ1 and γ21) associated with the
horizontal direction (dominant direction for the shock tube problem) were also displayed in
Fig. 4.12.

Although the above observations could be better validated by making comparisons with
experimental data, our attempts to do so have been inhibited by the lack of availability of
detailed data (e.g. time series data) for compressible turbulence in the literature. However,
the complicated parameter space structures that we have demonstrated are quite suggestive
of the small-scale physics that can be reproduced by the use of the CPMNS equation. Fur-
thermore, this provides the potential for the CPMNS equation to be used in constructing
“synthetic-velocities” in the context of LES subgrid-scale models.

Copyright c© Chetan B. Velkur 2006
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Chapter 5

SUMMARY AND CONCLUSIONS

Despite a tremendous expenditure of effort over the past century, the problem of turbu-
lence is still not very well understood and remains an active area of research till the present
day (and will probably remain so in the future). Advances in computing hardware towards
the latter half of the 20th century provided an impetus to the development of computational
approaches to turbulence. Several well-established numerical techniques are available at the
present day, but large-eddy simulation (LES) is rapidly becoming the method of choice for
industrial and environmental applications involving computation turbulent flows. This is
witnessed by the fact that many commercial CFD code vendors are incorporating versions of
LES into their software suites. However, application of LES to compressible flow have been
significantly fewer owing to increased complexity (especially in 3-D) introduced by the need
to solve an extra equation (for total energy), which in traditional LES would result in extra
unclosed terms (correlations) that must be modeled in addition to the usual subgrid-scale
stresses. Also, filtering the equations of motion in traditional LES leads to significant prob-
lems. This research effort was focused primarily on developing some of the key components
for a novel three dimensional large-eddy simulation (LES) solver for compressible turbulent
flow. The solver is based on a multi-scale approach and is designed to overcome most of the
problems presented by traditional LES.

In the next section we will summarize the work presented in this thesis. Following this
we will draw a list of conclusions from this research effort. Finally, a brief note on future
work that can be undertaken based on the work conducted will be given.

5.1 Summary

1) In Chapter I, a brief introduction to turbulence was given. Included was a concise review
on the history of turbulence research over the past century. We also specifically dealt with
studies on compressible turbulence in brief. Furthermore, we outlined the problems that
arise from filtering the governing equations as performed in traditional LES procedures.
To circumvent most of the problems posed by traditional LES we proposed an alternative
framework based on a multi-scale formalism. In this approach the numerous correlations
that result from filtering governing equations do not occur, and thus need not be modeled.
Instead, the physical variables are modeled on the small-scale utilizing a combination of
Kolmogorov’s theories and discrete dynamical systems.

2) In Chapter II, we presented some background information to enable the reader to under-
stand the motivation behind this work as much as possible. In particular, relevant previ-
ous work on numerical procedures employed for turbulence simulations was presented. In-
cluded were discussions on classical techniques such as Reynolds-averaged Navier–Stokes
(RANS) procedures, direct numerical simulation (DNS), and large-eddy simulation (LES).
Emphasis was laid on LES, and a review on subgrid-scale modeling procedures was also
presented. Two fairly recent numerical approaches, detached-eddy simulation (DES) and
implicit large-eddy simulation (ILES), were also discussed. Since dynamical systems are
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used in our SGS model, some background on the virtually untapped modern mathe-
matical theory of dynamical systems and chaos was presented towards the latter half of
Chapter II. Specific references (experimental and numerical) providing support to the
“strange attractor theory of turbulence” were also cited. However, we noted that at-
tempts to oversimplify turbulence by analogy with low-order dynamical systems is not
entirely correct. But a subspace of fully developed turbulence, the small scales, may be
effectively described locally in space and time by low-order dynamical systems without
belying the complexity of fully developed turbulence. In addition we presented a brief
review on a relatively new class of SGS models known as “synthetic-velocity” models,
which allows one to explicitly evaluate the dependent variables on the sub-grid scale.

3) Chapter III dealt extensively with the numerical method employed to calculate the large-
scale part of the solution, i.e., q (x, t). The algorithm is based on a predictor-corrector
methodology. An explicit Euler method is used to solve the Euler (inviscid) equations
at the predictor stage. This provides an initial guess to the corrector where the N.–
S. equations are solved implicitly. Fairly standard numerical techniques such as δ-form
quasilinearization and δ-form Douglas–Gunn time splitting are employed for the implicit
solves. A detailed mathematical formulation and the corresponding pseudo-language
algorithm were presented in Sec. 3.2. Several validation tests were performed to test
the performance of the solver. In particular, the standard shock tube problem at three
different initial conditions and the 3-D blast-wave problem were employed. 3-D and 2-D
plots were used to describe the overall flow-field, and computed 1-D results were compared
with the exact solution. Grid function convergence studies were performed for all four
test cases to test the convergence of the numerical method.

4) In Chapter IV, we outlined the construction of a novel SGS model to represent the small-
scale dependent variables for our LES procedure, i.e., we model q∗ (x, t). The proposed
model consists of modeling each dependent variable at the sub-grid scale as a product
of two factors: i) an amplitude factor constructed from an extension of Kolmogorov’s
theories and ii) a DDS that produces temporal fluctuations. Discussions regarding the
evaluation of the amplitude factors from the high-pass filtered resolved-scale solution
was presented in fair detail. We also derived a new discrete dynamical system from the
3-D N.–S. equations and provided a detailed characterization of the possible behaviors
produced by the system. We reported results in the form of regime maps to provide
an overview on the dynamics of the CPMNS equations as various sets of bifurcation
parameters were varied over ranges of stable behaviors. Effects of initial conditions on
the DDS were studied via visualizations of basins of attractions for a specific case of
broadband with fundamental behavior. Finally, we conducted some preliminary tests on
the SGS model by qualitatively analyzing the distribution of some bifurcation parameters
in the computational domain when the model was supplied with a large-scale scale data
set recorded at a particular time step of the large-scale calculations.

5.2 Conclusions

In this section we will draw conclusions from results reported mainly in Chapters 3 and
4. From the validation tests conducted on the large-scale solver in Chapter 3 we learn that:
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1) The inclusion of the predictor step in the large-scale algorithm weakens the stability
properties of the algorithm, especially in cases involving strong shocks (e.g., Test Case
3). Moreover, comparisons of total number of iterations through the full viscous N.–
S. equations with and without the predictor indicated that we achieved only a 10 %
decrease when the predictor is used. Even though this gives some reduction in total
arithmetic, one can obtain the same (if not more) reduction by using standard code
optimization procedures. These findings suggest that the predictor should not be used
for the calculations.

2) Within the framework of employing artificial dissipation to capture shocks, comparisons
of 1-D results with exact inviscid solutions indicate that the solver is able to resolve the
shock wave and rarefaction fan with fairly reasonable accuracy.

3) Resolution of the contact discontinuity was found to be adequate for Test Case 1. How-
ever, a fair amount of smearing was seen in Test Cases 2 and 3. However, this smearing
is inherent in almost all shock capturing methods, including high resolution methods, un-
less specific steps such as artificial compression or sub-cell resolution (see [160] for further
options) are taken to combat it.

4) The solver demonstrated the ability to take into account effects of viscosity in the numer-
ical solution. In fact, the solver was able to capture the general shape of the boundary
layer for both transonic (Test Case 1) and supersonic (Test Case 2 and 3) cases, which is
particularly encouraging.

5) One dimensional plots comparing computed solutions on three grids denoted as Hc, Hm,
Hf—coarse, medium and fine, respectively, with the exact solution showed that the com-
puted solution approaches the exact solution as grid-spacing is decreased, thus implying
the convergence of the numerical solution at least in a qualitative sense.

6) Results from grid function convergence tests show that for Test Case 1 the convergence
rate was within acceptable limits for problems whose solutions are inherently nonsmooth,
i.e., only O(h) accuracy is achieved even for formally higher-order methods (see [167] for
details). However, there is a significant drop in convergence rates for Test Cases 2 and
3. This reduction is primarily caused by effects due to restrictions on number of grid
points that could be employed. These effects combined with the roles played by increase
in shock strength and aliasing further reduced the convergence rates.

7) Numerical results presented as 1-D and 2-D plots displayed the ability of the solver in
simulating the complicated physics associated with the blast-wave problem (Test Case
4). The shock weakening effect as time evolves and the so called “suction phase,” which
are important features of fluid motion caused by explosions, can clearly be discerned in
the plots presented.

8) The results for Test Case 4 also established the multi-dimensional capability of the solver.
In particular, it was able to display the three-dimensional symmetries inherent in the
solution to the blast-wave problem.
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9) Grid function convergence tests for the blast-wave problem indicated that the convergence
rates achieved were better than those obtained for the shock-tube problem. This increase
is mainly due to fundamental differences between the physical flow scenarios in the two
cases. These differences results in lower aliasing error in the blast wave problem, thus
providing better convergence rates.

10) Overall, considering the performance of the solver over a wide range of test cases, we
believe that the solver is reasonably accurate, robust and multi-dimensional. However,
use of artificial dissipation to capture shocks implies that the numerical solution will
always display oscillations due to Gibbs phenomenon. Hence, in the context of using this
solver in our LES methodology one has to be judicious in analyzing the subgrid-scale
results.

Probably the most significant achievement of this research was the derivation of the
CPMNS equation, which provides turbulent fluctuations for the novel SGS model developed
for LES of compressible turbulence. Given below is a list of conclusions drawn from analysis
of the system conducted in Chapter IV:

1) The CPMNS equation can produce 14 different kinds of temporal behavior. These differ-
ent types encompass a wide range from relatively simple steady to behaviors displaying
chaos. The wide range of behaviors that have been identified provide a low-dimensional
basis set from which practically any temporal behavior can be obtained as a linear com-
bination.

2) The DDS also produced behaviors of increasing complexity when M , Re, or strain rate
were increased. This is true for many physical flows; hence, implementation of the
CPMNS equation in the SGS model should allow it to mimic the physics at the small
scales. Moreover, the form of this DDS and the nature of its construction suggest that
it is related to a pseudodifferential operator of the compressible N.–S. system. This re-
lationship then implies that it carriers a significant part of the local in space and time
behavior of these equations; i.e., it inherently retains some of the small scale physics.

3) The CPMNS equation are capable of displaying both period-doubling and Ruelle-Takens-
Newhouse (RTN) routes to chaos. Various other routes were also found. The presence
of these different routes suggests that the CPMNS equation is capable of automatically
transitioning to turbulence. This capability should enable the SGS model to predict tran-
sition to turbulence without separate and often ad hoc models which are implemented for
this purpose. Even though we are far from proving the accuracy of predicting transition
for a given physical flow, we believe that the ability of the CPMNS equations to produce
deterministic chaos enhances the ability of the SGS model in this respect.

4) One of the important findings in terms of implications of use of the DDS in an SGS
model is the general understanding gained on the effects of initial conditions on the
behavior of the DDS. In particular, we found growth of regions of divergence at relatively
high values of initial conditions, suggesting that such values should not be used in model
implementation. In the same study we illustrated that even though the CPMNS equation
displays sensitivity to initial conditions (SIC), the time series generated by the DDS are
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not very different from each other in a qualitative sense. This is good from a SGS modeling
standpoint since we expect the model to be driven by changes in values of the bifurcation
parameters, which embody the physics of the flow.

5) Preliminary tests conducted on the SGS model showed that the distribution of the high-
pass filtered velocity field was found to be at regions where the turbulence model results
can augment the under-resolved large-scale solution. At the same time, one should bear
in mind the contamination of the high-pass filtered field by oscillations due to Gibbs
phenomenon at the large scale. The distribution of bifurcation parameters showed that
there will be considerable activity near locations where we found the high-wavenumber
content. But effects of these parameters on the small-scale field have not yet been studied
and will be taken up in future work.

6) Even though our results could be better validated by making comparisons with experi-
mental data, our attempts to do so have been inhibited by lack of availability of detailed
experimental data (e.g., time series data) for compressible turbulence in the literature.
However, the complicated parameter space structures we have demonstrated is quite sug-
gestive of the small-scale physics that can be reproduced by use of the CPMNS equation.
Furthermore, this provides the potential for the CPMNS equation to be used in construc-
tion of “synthetic-velocity” forms of SGS models for LES like the one undertaken in this
work.

5.3 Future work

As alluded to at the beginning of this thesis, this research effort was focused primarily on
developing some of the key components for a LES solver based on a multi-scale approach to
turbulent compressible flow. The results achieved at this stage of the development process
are very encouraging, hence demanding immediate attention to the implementation of the
complete multi-scale algorithm.

However, one should recognize that both the large-scale and small-scale parts themselves
should be enhanced to increase the potential for the use of the LES solver over a wider range
of flow scenarios. This would require a two-pronged approach, one dealing with including
more physics, and the second with the numerical aspect, especially at the large-scale. Of
interest in this regard would be the inclusion of chemistry into both the large- and small-
scale algorithm, thus making the solver capable of dealing with combustion phenomena
(deflagaration, detonation waves, etc.). The basic three-dimensional large-scale solver should
be converted to generalized coordinates, so that it can incorporate complicated geometry
and allow stretchable grids. Boundary conditions should also be enhanced so as to include
complicated conditions such as supersonic inflows and outflows, shock reflection conditions,
etc. The N.–S. equations should be solved in a fully-coupled manner as opposed to the present
sequential approach since this would decrease CPU time and enhance robustness. Although
the storage requirements are much greater for the fully-coupled approach, keeping in mind
advances in computing hardware at the present day, this should not pose any problem in
the future. Even though LES significantly reduces the amount of arithmetic when compared
to DNS, the required arithmetic can still scale as badly as Re2. This in turn results in
very long run times; hence, the code needs to be parallelized. Preliminary investigation
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into this has been undertaken in 2-D where we parallelized the large-scale algorithm using
OpenMP. However, we found that the speedups obtained were sub-linear and not especially
good. This lack of performance from OpenMP parallelization suggests that MPI should be
used for parallelization in the future. A problem of a more serious concern is the presence
of Gibbs oscillation in the large-scale solutions. We also recognize the fact that this effects
the SGS model as well. In this regard use of post processing filters (e.g., [166]) are probably
the most promising and the simplest.

Even though some analysis was performed on the CPMNS equation in the present work,
the presence of 35 bifurcation parameters made the task of obtaining appropriate limits on
the values of bifurcation parameters to be used in model implementation not very thorough.
Hence, more work needs to be done on the study of the CPMNS equation, itself. Moreover,
with the inclusion of chemistry, which will add many corresponding equations to the CPMNS
equation a detailed analysis of the system must be taken up.

Copyright c© Chetan B. Velkur 2006
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36. L. S. G. Kovàsznay. Turbulence in supersonic flow. J. Aeronau. Sci., 20(10), pp. 657–
674, 1954.
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