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Abstract. We study the initial boundary value problem of semilinear hyperbolic

equations utt − Δu = f(u) and semilinear parabolic equations ut − Δu = f(u) with

critical initial data E(0) = d (or J(u0) = d), I(u0) < 0, and prove that there exist

non-global solutions under classical conditions on f .

1. Introduction. It is well known that the semilinear hyperbolic equations and semi-

linear parabolic equations are the most important nonlinear evolution equations in the

area of mathematical physics (see the previous works [1], [2], [11], [7], [13], [15]). The

following are examples of important problems that are considered in this paper:

utt −Δu = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

(1.1)

and

ut −Δu = f(u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

(1.2)

A powerful technique for treating the above problems is the so-called “potential well

method”, which was established by Payne and Sattinger [11]. The technique for proving

the global nonexistence of solutions of abstract problems that include (1.1) and (1.2) was

developed first in [2]. In [1] a stronger result for (1.1) and (1.2) was established, namely

pointwise blow-up in finite time. In [3] and [14], the case for which E(0) > 0 was first

considered. A “blow-up” (global nonexistence result) was proved in these two papers
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by relying on the condition that (u0, u1) ≥ 0. The upper bound for E(0) required was

smaller than the depth of the potential well.

The potential well theory has ignited considerable interest among researchers to treat

various parabolic and hyperbolic equations. Because it is not possible to cite all of the

more than one hundred papers on the subject, we refer the reader to [4]–[6], [8]–[10],

[16]–[22] and the references therein. In [11] the authors assumed that f(u) satisfies the

following conditions:

(H)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) f ∈ C1, f(0) = f ′(0) = 0;

(ii) (a) f(u) is monotone and convex for u > 0, concave for u < 0 or

(b) f(u) is convex for −∞ < u < ∞;

(iii) There exist p and γ satisfying 2 < p+ 1 ≤ γ < n+2
n−2

such that(p+ 1)F (u) ≤ uf(u) and |uf(u)| ≤ γ|F (u)|
where F (u) =

∫ u

0
f(s)ds.

And Payne and Sattinger defined

W =
{
u ∈ H1

0 (Ω)|I(u) > 0, J(u) < d
}
∪ {0},

V =
{
u ∈ H1

0 (Ω)|I(u) < 0, J(u) < d
}
,

where

J(u) =
1

2
‖∇u‖2 −

∫
Ω

F (u)dx,

I(u) = ‖∇u‖2 −
∫
Ω

uf(u)dx,

d = inf
u∈N

J(u), N = {u ∈ H1
0 (Ω)|I(u) = 0, ‖∇u‖ 	= 0},

E(t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 −

∫
Ω

F (u)dx =
1

2
‖ut‖2 + J(u).

In the above and the following discussions we denote ‖ · ‖Lp(Ω) by ‖ · ‖p, ‖ · ‖2 by ‖ · ‖

and (u, v) =

∫
Ω

uvdx. In [11], by introducing the above sets W and V , as well as other

functionals, Payne and Sattinger gave a series of properties of W and V . Then, by using

V , they proved the global nonexistence of solution for problem (1.1) and (1.2) in the

case E(0) < d (or J(u0) < d for problem (1.2)), I(u0) < 0. In early 1977, in [12], Levine

was informed by the authors of [11] that both proofs of Theorem 2.3 (about uniqueness)

and Lemma 2.7 (in the case f is convex) in [11] are incorrect. Recently, some other

incorrect proofs regarding both invariance of the set V and global non-existence (see

Lemma 4.2, Theorem 4.3 and Theorem 6.3 in [11]) were pointed out and corrected in [21]

by introducing a family of potential wells. In the correction (ii) on page 2667 of [21], the

authors indicate that M ′(t) could always be negative. Of course that is correct, but on

page 294 of [11], near the top of the page, Payne and Sattinger rule out this possibility.

The remark in [21] may leave the impression that they did not consider this possibility.
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In [21] they required the nonlinear term f(u) to satisfy

(Ha)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i) f ∈ C1, f(0) = f ′(0) = 0;

(ii) f(u) is monotone and convex for u > 0, concave for u < 0;

(iii) There exist a p and γ satisfying 2 < p+ 1 ≤ γ < n+2
n−2

such that (p+ 1)F (u) ≤ uf(u) and |uf(u)| ≤ γ|F (u)|,
where F (u) =

∫ u

0
f(s)ds,

a hypothesis that will also be in force here. Moreover, in [21], some new results were

achieved on the invariant sets, specifically global existence of solution for the critical

initial data E(0) = d (or J(u0) = d), I(u0) ≥ 0 for problems (1.1) and (1.2). But in

[21] the authors did not consider all the cases related to the critical initial data. Let us

explain this in detail. The main results obtained in [21] are the following theorems:

Theorem 1.1. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω), u1(x) ∈ L2(Ω). Assume that

E(0) < d. Then when I(u0) > 0 or ‖∇u0‖ = 0, problem (1.1) admits a global weak

solution u(t) ∈ L∞(0,∞;H1
0 (Ω)) with ut(t) ∈ L∞(0,∞;L2(Ω)) and u(t) ∈ W for 0 ≤

t < ∞; and when I(u0) < 0, the problem does not admit any global weak solution.

Theorem 1.2. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω), u1(x) ∈ L2(Ω). Assume that

E(0) = d, I(u0) ≥ 0. Then problem (1.1) admits a global weak solution u(t) ∈
L∞(0,∞;H1

0 (Ω)) with ut(t) ∈ L∞(0,∞;L2(Ω)) and u(t) ∈ W̄ = W ∪∂W for 0 ≤ t < ∞.

Theorem 1.3. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω). Assume that J(u0) < d. Then

when I(u0) > 0 or ‖∇u0‖ = 0, problem (1.2) admits a global weak solution u(t) ∈
L∞(0,∞;H1

0 (Ω)) with ut(t) ∈ L2(0,∞;L2(Ω)) and u(t) ∈ W for 0 ≤ t < ∞; and when

I(u0) < 0, the problem does not admit any global weak solution.

Theorem 1.4. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω). Assume that J(u0) = d, I(u0) ≥ 0.

Then problem (1.2) admits a global weak solution u(t) ∈ L∞(0,∞;H1
0 (Ω)) with ut(t) ∈

L2(0,∞;L2(Ω)) and u(t) ∈ W̄ for 0 ≤ t < ∞.

However for the global existence of solution for either problem (1.1) with E(0) = d,

I(u0) < 0 or problem (1.2) with J(u0) = d, I(u0) < 0, there are no results in [21], [11] or

any other literature. In [19] Enzo Vitillaro considered the more general case ‖u0‖p > λ1,

E(0) ≤ E1 for a class of abstract evolution equations. But the critical case E(0) = E1

depends on the presence of the damping term. Hence these problems are still open. One

of the reasons is that one cannot easily obtain the non-global existence of solution solely

by the method used for E(0) < d or J(u0) < d. For instance, in order to prove the

non-global existence of solution to problem (1.1) with critical case E(0) = d, I(u0) < 0,

one must ensure the invariance of set V ′ = {u ∈ H1
0 (Ω)|I(u0) < 0} under the flow of

(1.1) in the case of E(0) = d. It is natural to think whether we can use the method for

case E(0) < d to solve the problem with critical case E(0) = d. In the process of treating

the case E(0) < d, by a contradiction method, we can suppose the invariance of the set

V ′ does not hold; then there exists a t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u) < 0

for 0 < t < t0, where T is the existence time of u. Hence we have ‖∇u(t0)‖ ≥ r(1) and
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J(u(t0)) ≥ d. Unfortunately, this result does not contradict

1

2
‖ut‖2 + J(u) = E(t) ≤ E(0) = d, 0 ≤ t < T.

Therefore this situation yields some difficulties, so we have to work out some new ideas

in order to solve this problem.

The main purpose of this paper is to resolve the open problems mentioned above by

using the potential well method. We prove that if f(u) satisfies (Ha), E(0) = d, I(u0) < 0

and (u0, u1) ≥ 0 for problem (1.1); or J(u0) = d, I(u0) < 0 for problem (1.2), then either

problem (1.1) or problem (1.2) does not admit any global weak solution. So, we seek to

give positive answers to the unsolved problems existing in [21] and [11].

2. Definitions and preliminary lemmas. In this section we give some definitions

and recall some preliminary lemmas.

For (1.1) and (1.2) we define J(u), I(u), E(t), d, W and V as above. In addition, we

define the functional related to the Nehari flow as

Iδ(u) = δ‖∇u‖2 −
∫
Ω

uf(u)dx, δ > 0,

the depth of the family of potential wells as

d(δ) = inf
u∈Nδ

J(u),

Nδ = {u ∈ H1
0 (Ω)|Iδ(u) = 0, ‖∇u‖ 	= 0}, δ > 0;

and the family of potential wells as

Wδ = {u ∈ H1
0 (Ω) | Iδ(u) > 0, J(u) < d(δ)} ∪ {0}, 0 < δ < b;

Vδ = {u ∈ H1
0 (Ω) | Iδ(u) < 0, J(u) < d(δ)}, 0 < δ < b.

Then some lemmas can be recalled.

Lemma 2.1 ([21], [11]). Let f(u) satisfy (Ha). Then

(i) |F (u)| ≤ A|u|γ for some A > 0 and ∀u ∈ R.

(ii) |uf(u)| ≤ γA|u|γ , ∀u ∈ R.

Lemma 2.2 ([21]). Let f(u) satisfy (Ha). Assume that u ∈ H1
0 (Ω) and Iδ(u) < 0. Then

‖∇u‖ > r(δ); in particular, if I(u) < 0, then ‖∇u‖ > r(1), where

r(δ) =

(
δ

aCγ
∗

) 1
γ−2

, a = sup
u∈R,u �=0

uf(u)

|u|γ , C∗ = sup
u∈H1

0 (Ω),u �=0

‖u‖γ
‖∇u‖ .

Lemma 2.3 ([21]). Let f(u) satisfy (Ha). For d(δ) we have

(i) d(δ) ≥ a(δ)r2(δ) for a(δ) = 1
2 − δ

p+1 , 0 < δ < p+1
2 .

(iii) limδ→0 d(δ) = 0 and there exists a constant b satisfying p+1
2 ≤ b ≤ γ

2 such that

d(b) = 0 and d(δ) > 0 for 0 < δ < b.

(iii) d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ b and takes the maximum

d = d(1) at δ = 1.

Throughout this paper we employ the notion of weak solution defined below.
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Definition 2.4. u = u(x, t) is called a weak solution of problem (1.1) on Ω × [0, T )

if u ∈ L∞ (
0, T ;H1

0 (Ω)
)
with ut ∈ L∞ (

0, T ;L2(Ω)
)
satisfying

(i) (ut, v) +
∫ t

0
(∇u,∇v)dτ =

∫ t

0
(f(u), v)dτ + (u1, v), ∀v ∈ H1

0 (Ω), t ∈ (0, T ).

(ii) u(x, 0) = u0(x) in H1
0 (Ω).

(iii) E(t) ≤ E(0), 0 ≤ t < T . (2.1)

Definition 2.5. u = u(x, t) is called a weak solution of problem (1.2) on Ω × [0, T )

if u ∈ L∞ (
0, T ;H1

0 (Ω)
)
with ut ∈ L2

(
0, T ;L2(Ω)

)
satisfying

(i) (ut, v) + (∇u,∇v) = (f(u), v), ∀v ∈ H1
0 (Ω), t ∈ (0, T ).

(ii) u(x, 0) = u0(x) in H1
0 (Ω).

(iii)
∫ t

0
‖uτ‖2dτ + J(u) ≤ J(u0), 0 ≤ t < T . (2.2)

There is a difference between problem (1.1) and problem (1.2). For problem (1.2) we

have the following Lemma 2.6 to guarantee the invariance of the set Vδ. Although this

invariance is not for the critical data J(u0) = d, it will be shown to be sufficient to derive

the nonexistence of global solution of (1.2). But for problem (1.1) this method does not

appear to work.

Lemma 2.6 ([21]). Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω). Assume that 0 < e < d,

(δ1, δ2) is the maximal interval including δ = 1 such that d(δ) > e for δ ∈ (δ1, δ2). Then

all weak solutions of problem (1.2) with 0 < J(u0) ≤ e belong to Vδ for δ ∈ (δ1, δ2),

provided I(u0) < 0.

As mentioned above, we need to give the invariance of set Vδ for problem (1.1) as

follows.

Lemma 2.7. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω), u1(x) ∈ L2(Ω). Assume that E(0) =

d and (u0, u1) ≥ 0. Then the following set

V ′ = {u ∈ H1
0 (Ω)|I(u) < 0}

is invariant under the flow of (1.1).

Proof. Let u(t) be any weak solution of problem (1.1) with E(0) = d, I(u0) < 0 and

(u0, u1) ≥ 0, T being the existence time of u(t). Let us prove I(u) < 0 for 0 < t < T . If it

is false, then there exists a t0 ∈ (0, T ) such that I(u(t0)) = 0 and I(u) < 0 for 0 ≤ t < t0.

Hence we have ‖∇u‖ > r(1) for 0 ≤ t < t0 and ‖∇u(t0)‖ ≥ r(1) > 0. By the definition

of d we get J(u(t0)) ≥ d. From this and

1

2
‖ut(t0)‖2 + J(u(t0)) ≤ E(0) = d,

we get J(u(t0)) = d and ‖ut(t0)‖2 = 0. Let M(t) = ‖u‖2. Then we have

Ṁ = 2(u, ut)

with

Ṁ(0) = 2(u0, u1) ≥ 0,

M̈(t) = 2‖ut‖2 − 2I(u) > 0, 0 ≤ t < t0.
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Hence Ṁ(t) is strictly increasing with respect to t ∈ [0, t0]. This together with Ṁ(0) =

2(u0, u1) ≥ 0 gives Ṁ(t0) = 2(u(t0), ut(t0)) > 0. This contradicts ‖ut(t0)‖ = 0. So this

completes this proof. �

3. Main results and proof. In this section we state the main results and prove

them.

Theorem 3.1. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω), u1(x) ∈ L2(Ω). Assume that

E(0) = d, I(u0) < 0 and (u0, u1) ≥ 0. Then the existence time of a weak solution for

problem (1.1) is finite.

Proof. Let u(t) be any weak solution of problem (1.1) with E(0) = d, I(u0) < 0 and

(u0, u1) ≥ 0, T being the existence time of u(t). Let us prove T < ∞. Arguing by

contradiction, let us assume T = +∞. Again, let

M(t) = ‖u‖2.
Then we have

Ṁ = 2(u, ut)

with

Ṁ(0) = 2(u0, u1) ≥ 0,

M̈(t) = 2‖ut‖2 − 2I(u), 0 ≤ t < ∞. (3.1)

From (2.4) and (p+ 1)F (u) ≤ uf(u) we arrive at

1

2
‖ut‖2 +

p− 1

2(p+ 1)
‖∇u‖2 + 1

p+ 1
I(u) ≤ 1

2
‖ut‖2 + J(u) = E(t) ≤ E(0) = d.

Hence we have

M̈(t) ≥ (p+ 3)‖ut‖2 + (p− 1)‖∇u‖2 − 2(p+ 1)d

≥ (p+ 3)‖ut‖2 + (p− 1)λ1M(t)− 2(p+ 1)d, 0 ≤ t < ∞,
(3.2)

λ1 = inf
u∈H1

0 (Ω),u �=0

‖∇u‖2
‖u‖2 .

Eq. (3.1) and Lemma 2.7 yield M̈(t) > 0 for 0 ≤ t < ∞ and Ṁ(t) is strictly increasing

for 0 ≤ t < ∞. Hence for any t0 > 0 we have Ṁ(t) ≥ Ṁ(t0) > 0 for t ≥ t0, and

M(t) ≥ Ṁ(t0)(t− t0) +M(t0) ≥ Ṁ(t0)(t− t0), t ≥ t0.

Therefore for sufficiently large t, we have (p− 1)λ1M(t) > 2(p+ 1)d and

M̈(t) > (p+ 3)‖ut‖2.
Hence

MM̈ − p+ 3

4

(
Ṁ

)2

≥ (p+ 3)
(
‖u‖2‖ut‖2 − (u, ut)

2
)
≥ 0,

(
M−α

)′′
=

−α

Mα+2

(
MM̈ − (α+ 1)

(
Ṁ

)2
)

≤ 0, α =
p− 1

4
. (3.3)

From (3.3) it follows that there exists a T1 > 0 such that

lim
t→T1

M−α(t) = 0,
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and

lim
t→T1

M(t) = +∞,

which contradict T = +∞. The proof is completed. �
From Theorem 1.2 and Theorem 3.1 we can get a sharp condition for global existence

of solution for problem (1.1) with E(0) = d as follows:

Theorem 3.2. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω), u1(x) ∈ L2(Ω). Assume that

E(0) = d, (u0, u1) ≥ 0. Then when I(u0) ≥ 0, problem (1.1) admits a global weak

solution u(t) ∈ L∞(0,∞;H1
0 (Ω)) with ut(t) ∈ L∞(0,∞;L2(Ω)) and u(t) ∈ W̄ = W ∪∂W

for 0 ≤ t < ∞; and when I(u0) < 0, the problem does not admit any global weak solution.

Theorem 3.3. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω). Assume that J(u0) = d, I(u0) < 0.

Then the existence time of weak solution for problem (1.2) is finite.

Proof. Let u(t) be any weak solution of problem (1.2) with J(u0) = d, I(u0) < 0, T

being the existence time of u(t). Let us prove T < ∞. Arguing by contradiction, we

suppose T = +∞. Let

M1(t) =

∫ t

0

‖u‖2dτ.

Then

M̈1(t) = 2(ut, u) = −2I(u), 0 ≤ t < ∞. (3.4)

From (2.5) and ∫
Ω

uf(u)dx ≥ (p+ 1)

∫
Ω

F (u)dx

we get ∫ t

0

‖uτ‖2dτ +
p− 1

2(p+ 1)
‖∇u‖2 + 1

p+ 1
I(u)

≤
∫ t

0

‖uτ‖2dτ + J(u) ≤ J(u0) = d.

(3.5)

From (3.4) and (3.5) we have

M̈1(t) ≥ 2(p+ 1)

∫ t

0

‖uτ‖2dτ + (p− 1)‖∇u‖2 − 2(p+ 1)d

≥ 2(p+ 1)

∫ t

0

‖uτ‖2dτ + (p− 1)λ1Ṁ1(t)− 2(p+ 1)d.

(3.6)

Note that (∫ t

0

(uτ , u)dτ

)2

=

(
1

2

∫ t

0

d

dτ
‖u‖2dτ

)2

=
1

4

(
‖u‖4 − 2‖u0‖2‖u‖2 + ‖u0‖4

)

=
1

4

(
Ṁ2

1 (t)− 2‖u0‖2Ṁ1(t) + ‖u0‖4
)
.
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Hence we have

M1M̈1 −
p+ 1

2
(Ṁ1)

2 ≥2(p+ 1)

[ ∫ t

0

‖u‖2dτ
∫ t

0

‖uτ‖2dτ −
(∫ t

0

(u, uτ )dτ

)2]

+ (p− 1)λ1M1(t)Ṁ1(t)− (p+ 1)‖u0‖2Ṁ1(t)

− 2(p+ 1)dM1(t) +
p+ 1

2
‖u0‖4.

From this and the Schwartz inequality we get

M1M̈1 −
p+ 1

2
(Ṁ1)

2

≥(p− 1)λ1M1(t)Ṁ1(t)− (p+ 1)‖u0‖2Ṁ1(t)− 2(p+ 1)dM1(t)

=

(
1

2
(p− 1)λ1M1(t)− (p+ 1)‖u0‖2

)
Ṁ1(t)

+

(
1

2
(p− 1)λ1Ṁ1(t)− 2(p+ 1)d

)
M1(t).

(3.7)

On the other hand, from J(u0) = d > 0, I(u0) < 0 and the continuity of J(u) and

I(u) with respect to t, it follows that there exists a sufficiently small t1 > 0 such that

J(u(t1)) > 0 and I(u) < 0 for 0 ≤ t ≤ t1. Hence (ut, u) = −I(u) > 0 and ‖ut‖ > 0 for

0 ≤ t ≤ t1. From this and the continuity of
∫ t

0
‖uτ‖2dτ it follows that we can choose a

t1 such that

0 < d1 = d−
∫ t1

0

‖ut‖2dt < d.

And by (2.5) we have

0 < J(u(t1)) ≤ d−
∫ t1

0

‖ut‖2dt = d1 < d.

Thus if in Lemma 2.6 we take t = t1 as the initial time, then we have u(t) ∈ Vδ for

δ ∈ (δ1, δ2), t1 ≤ t < ∞, where (δ1, δ2) is the maximal interval including δ = 1 such that

d(δ) > d1 for δ ∈ (δ1, δ2). Hence we have Iδ(u) < 0 and ‖∇u‖ > r(δ) for δ ∈ (1, δ2),

t1 ≤ t < ∞, and Iδ2(u) ≤ 0, ‖∇u‖ ≥ r(δ2) for t1 ≤ t < ∞. Thus from (3.4) we get

M̈1(t) = −2I(u) = 2(δ2 − 1)‖∇u‖2 − 2Iδ2(u)

≥2(δ2 − 1)‖∇u‖2 ≥ 2(δ2 − 1)r2(δ2) ≡ C(δ2), t1 ≤ t < ∞,
(3.8)

Ṁ1(t) ≥ C(δ2)(t− t1) + Ṁ1(t1) ≥ C(δ2)(t− t1), t1 ≤ t < ∞, (3.9)

M1(t) ≥
1

2
C(δ2)(t− t1)

2 +M1(t1) >
1

2
C(δ2)(t− t1)

2, t1 ≤ t < ∞. (3.10)

From (3.9) and (3.10) it follows that for sufficiently large t we have

1

2
(p− 1)λ1M1(t) > (p+ 1)‖u0‖2

and
1

2
(p− 1)λ1Ṁ1(t) > 2(p+ 1)d.
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Thus (3.7) yields

M1(t)M̈1(t)−
p+ 1

2

(
Ṁ1(t)

)2

> 0,

which gives

(
M−α

1

)′′
=

−α

Mα+2
1

(
M1M̈1 − (α+ 1)

(
Ṁ1

)2
)

≤ 0, α =
p− 1

2
. (3.11)

From this it follows that there exists a T1 > 0 such that

lim
t→T1

M−α
1 (t) = 0

and

lim
t→T1

M1(t) = +∞,

which contradicts T = +∞. �
From Theorem 1.4 and Theorem 3.3 we can obtain a sharp condition for global exis-

tence of solution for problem (1.2) with J(u0) = d as follows.

Theorem 3.4. Let f(u) satisfy (Ha), u0(x) ∈ H1
0 (Ω). Assume that J(u0) = d. Then

when I(u0) ≥ 0, problem (1.2) admits a global weak solution u(t) ∈ L∞(0,∞;H1
0 (Ω))

with ut(t) ∈ L2(0,∞;L2(Ω)) and u(t) ∈ W̄ = W ∪ ∂W for 0 ≤ t < ∞; and when

I(u0) < 0, the problem does not admit any global weak solution.
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