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INITIAL-BOUNDARY VALUE PROBLEM FOR THE HEAT
EQUATION—A STOCHASTIC ALGORITHM

BY MADALINA DEACONU∗,† AND SAMUEL HERRMANN‡

Inria∗, Université de Lorraine† and Université de Bourgogne Franche-Comté‡

The initial-boundary value problem for the heat equation is solved by
using an algorithm based on a random walk on heat balls. Even if it repre-
sents a sophisticated generalization of the Walk on Spheres (WOS) algorithm
introduced to solve the Dirichlet problem for Laplace’s equation, its imple-
mentation is rather easy. The construction of this algorithm can be considered
as a natural consequence of previous works the authors completed on the hit-
ting time approximation for Bessel processes and Brownian motion [Ann.
Appl. Probab. 23 (2013) 2259–2289, Math. Comput. Simulation 135 (2017)
28–38, Bernoulli 23 (2017) 3744–3771]. A similar procedure was introduced
previously in the paper [Random Processes for Classical Equations of Math-
ematical Physics (1989) Kluwer Academic].

The definition of the random walk is based on a particular mean value
formula for the heat equation. We present here a probabilistic view of this
formula.

The aim of the paper is to prove convergence results for this algorithm and
to illustrate them by numerical examples. These examples permit to empha-
size the efficiency and accuracy of the algorithm.

1. Introduction. In this paper, we study the Initial-Boundary Value Problem
(IBVP) associated to the heat equation and the corresponding method of simu-
lation based on the Walk on Moving Sphere Algorithm (WOMS) also called the
Random Walk on Balloids. The main and historical objective is to construct an
efficient approximation to the solution of the IBVP. The solution is a C1,2 function
u satisfying

(1.1)

⎧⎪⎨
⎪⎩

∂tu(t, x) = �xu(t, x) ∀(t, x) ∈ R+ ×D,

u(t, x) = f (t, x) ∀(t, x) ∈ R+ × ∂D,

u(0, x) = f0(x) ∀x ∈ D,

where f is a continuous function defined on R+ × ∂D, f0 is continuous on D and
D denotes a bounded finitely connected domain in Rd . For compatibility reasons,
we have also f (0, x) = f0(x).

Our work relies on the probabilistic representation for the solution of a partial
differential equation. Suppose that we are looking for the solution u(t, x) of some
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PDE defined on the whole space Rd . Under a suitable hypothesis, we can use
the classical form u(t, x) = E[f (t,Xt)] where (Xt)t∈R+ is a stochastic process,
satisfying a stochastic differential equation, and f is a known function. In order to
approximate u(t, x), the strong law of large numbers allows us to construct Monte
Carlo methods once we are able to propose an approximating procedure for the
stochastic process (Xt)t∈R+ .

The problem is more difficult when considering boundary conditions. Never-
theless, if some regularity is provided we can also find a probabilistic approach.
A generic representation, for the solution of the Dirichlet problem Lu(x) −
k(x)u(x) = g(x) in a domain D associated to the boundary condition u = f on
∂D (the solution does not depend on time), is

u(x) = E

[
f (XτD)e− ∫ τD

0 k(Xs)ds −
∫ τD

0
g(Xt)e

− ∫ t
0 k(Xs)ds dt

]
,

where f,g, k are given functions, (Xt) stands for the diffusion process associated
to the generator L, X0 = x and τD = inf{t ≥ 0;Xt ∈ ∂D}. We refer to several
classical books for more details [1, 10, 14, 22]. The problem is hard to address as,
in order to give an approximation, we need to approach the hitting time, the exit
position and sometimes even the path of the process Xt up to exit the domain D.

In particular, situations we need to characterize either the hitting time τD or the
exit position XτD . The main goal of our work is to handle a more complex situation
by unearthing numerical algorithms for the couple (τD,XτD) itself.

To fix ideas and present a brief history, consider the simple Dirichlet problem
for Laplace’s equation in a smooth and bounded domain D ⊂ Rd :{

�u(x) = 0 ∀x ∈D,

u(x) = f (x) ∀x ∈ ∂D.

We recall the associated probabilistic representation: u(x) = Ex[f (XτD)] where
(Xt)t≥0 here stands for the d-dimensional Brownian motion starting in x. The
original idea in order to approximate u(x) by using the walk on spheres algorithm
(WOS), was briefly introduced by Brown [3], and developed by Müller [20] and
Motoo [19]; see also the textbook of Sabelfeld [24] for an interesting overview of
the method. The idea consists in constructing a step by step Rd -valued Markov
chain (xn, n ≥ 0) with initial point x0 := x which converges towards a limit x∞,
x∞ and XτD being identically distributed. Let us roughly describe (xn): first, we
choose S0 the largest sphere centered in x0 and included in D. The first exit point
x1 from the sphere S0 for the Brownian motion starting from x0 has an uniform
distribution on ∂S0 and is easy to sample.

The construction is pursued with the new starting point given by x1 (see Fig-
ure 1). The algorithm goes on and stops while reaching the boundary ∂D. In order
to avoid an infinite sequence of hitting times, the stopping criteria of the algorithm
includes a ε test: we stop the Markov chain as soon as δ(xn, ∂D) ≤ ε (δ represents
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FIG. 1. WOS algorithm.

here the Euclidean distance in Rd ). Convergence results depending on the dimen-
sion d , on ε or/and on the regularity of ∂D can be found in Müller [20], Motoo
[19], Sabelfeld [24] and Mascagni and Hwuang [17]. Generalization of this result
to a constant drift, by means of convergence theorems for discrete-time martin-
gales, was proposed in the work of Villa-Morales [28, 29]. Binder and Braverman
[2] gave also the complete characterization of the rate of convergence for the WOS
in terms of the local geometry of D. Other elliptic problems have been studied by
Gurov, Whitlock and Dimov [12].

If needed, we can also approach the boundary hitting time by using the explicit
form of its probability distribution function. However, a real difficult leap appears
when we want to move from the simulation of Xt to the simulation of (t,Xt).
For example, if the domain is a sphere then XτD can be simulated by the uni-
form random variable on the ∂D while τD has an explicit p.d.f. function which
is not well suited for numerical approaches as it depends on the Bessel function.
Nevertheless, acceptance/rejection sampling methods can be used in order to sim-
ulate τD .

In previous works [4–6], the authors discussed the connection between the hit-
ting times of the Bessel process and Brownian ones and introduced a new tech-
nique for approximating both the hitting time and the exit position. These previous
studies on the hitting time form the foundation of our current work. We take inspi-
ration from these results by proposing an adapted algorithm. It involves a random
walk on heat balls belonging to the domain [0, t] × D (see (1.2) or [8], page 53,
for a definition of the heat ball) which approaches (τD,XτD

) in general domains.
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Thus we obtain a method for approximating the solution of the equation (1.1). The
description of the approximation error term and a sharp estimation of the rate of
convergence become then essential challenges. The aim of our work is to consider
these questions in a quite general framework (both for the space dimension and
the geometry of the domain). Various Monte Carlo methods have already been
introduced in order to approximate the solution of a nonstationary heat equation.
A first family of methods concerns random walks inside the domain: Haji-Sheikh
and Sparrow [13] proposed a floating walk using Euclidean spheres and their cor-
responding exit times. In order to simplify the expression of these hitting times,
the spheres can be replaced by heat balls also called balloids. Such an algorithm
has been presented in details in Ermakov, Nekrutkin and Sipin [7] and is similar to
the random walk which holds our attention here.

Let us also mention at this stage that a second family of random walks
(τn, Yn)n≥0 can be used for solving the initial-boundary value problem in the heat
equation context: the random walk on the boundary [0, t] × ∂D. A nicely written
description of the method can be found in [26].

Let us now introduce the main results concerning the algorithm random walk
on heat balls which approximates (τD,XτD), X being a d-dimensional Brownian
motion. We first introduce some preliminary notation: we recall that δ(x, ∂D) is
the Euclidean distance between the point x and the boundary of the domain and
introduce the function α(u, v) = min(u, e

2d
δ2(v, ∂D)). In the following, (Un)n≥1

stands for a sequence of independent uniformly distributed random vectors on
[0,1]	d/2
+1, �U

n denote the product of all its coordinates, (Gn)n≥1 is a sequence
of independent standard Gaussian r.v. and (Vn)n≥1 is a sequence of independent
uniformly distributed random vectors on the unit sphere of dimension d , centered
on the origin. We assume these three sequences to be independent. Let us de-
fine:

Rn+1 := (
�U

n+1
)2/d exp

{
−

(
1 − 2

d

⌊
d

2

⌋)
G2

n+1

}

and construct a sequence (Tn,Xn)n≥0 by the following procedure (Figure 2).

ALGORITHM

Initialisation: Fix ε > 0. The initial value of the sequence (Tn,Xn) is (T0,X0) =
(t, x).
Step n: The sequence is defined by recurrence as follows: for n ≥ 0,{

Tn+1 = Tn − α(Tn,Xn)Rn+1,

Xn+1 = Xn + 2
√

α(Tn,Xn)ψd(Rn+1)Vn+1,

where ψd(t) =
√

t log(t−d/2).
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FIG. 2. Markov chain (Tn,Xn)n≥0.

Stop. If α(Tn,Xn) ≤ ε then Nε = n:
1. If δ2(XNε , ∂D) ≤ 2εd

e
then choose Xε ∈ ∂D such that

δ(XNε ,Xε) = δ(XNε , ∂D)

and define Tε := TNε .
2. If δ2(XNε , ∂D) > 2εd

e
then set Tε = 0 and Xε := XNε .

Algorithm outcomes: We get thus (Tε,Xε) and Nε the number of steps.
This algorithm is quite similar to the random walk on moving spheres but in or-

der to solve the IBVP instead of the Dirichlet problem, the spheres are replaced by
spheroïds (heat balls). The spheroïd centered in (t, x) ∈ R+ × Rd with parameter
a > 0 is defined by

(1.2) Sa(t, x) = {
(s, y) ∈ [t − a, t] ×Rd : δ(x, y) = 2

√
aψd(s/a)

}
.

See Figure 2 for an illustration. Let us notice that the set Sa(t, x) converges to-
wards the point (t, x) as the parameter a tends to 0. We now present the random
walk: in order to evaluate u(t, x), solution to (1.1), we choose the value (t, x)

as initial value of the [0, t] × D-valued random walk (Tn,Xn). At each step, we
consider the exit time and exit position from the spheroïd Sa(Tn,Xn) for the time-
reverting Brownian motion starting at time Tn in Xn. The exit problem permits to
obtain (Tn+1,Xn+1) with Tn+1 ≤ Tn. Let us note that the parameter a (depending
on n) is chosen as large as possible under the constraint: Sa(Tn,Xn) ⊂ [0, t] ×D.
Such a parameter is represented by the function α appearing in the algorithm.
Finally, the procedure is stopped as soon as the Markov chain reaches an ε-
neighborhood of the boundary and the outcome then corresponds to its projection
on the boundary, denoted by (Tε,Xε).

We propose an approximation of the solution to (1.1) by using the definition:

uε(t, x) = E(t,x)

[
f (Tε,Xε)1{Xε∈∂D}

] +E(t,x)

[
f0(Xε)1{Xε /∈∂D}

]
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for (t, x) ∈ [0, T ] × D. We will prove the convergence of this approximation in
Proposition 4.1.

CONVERGENCE RESULT. Let us assume that the initial-boundary value prob-
lem (1.1) admits an unique C1,2([0, T ]×D)-solution u, defined by (3.3). We intro-
duce the approximation uε given by (4.2). Then uε converges towards u, as ε → 0,
uniformly with respect to (t, x). Moreover, there exist κT,D(u) > 0 and ε0 > 0 such
that ∣∣u(t, x) − uε(t, x)

∣∣ ≤ κT,D(u)
√

ε ∀ε ≤ ε0, (t, x) ∈ [0, T ] ×D.

The main result, based on the construction of a submartingale related to the
Riesz potential, describes the convergence rate of the algorithm.

EFFICIENCY RESULT. Let D ⊂ B(0,1) be a 0-thick domain. The number of
steps Nε , of the approximation algorithm, is almost surely finite. Moreover, there
exist constants C > 0 and ε0 > 0 both independent of (t, x) such that

E[Nε] ≤ C| log ε| for all ε ≤ ε0.

The material is organized as follows. In the second section, we present some
well-known mean value properties for the heat equation, which play a central role
in the definition of the algorithm and emphasize arguments of proof directly re-
lated to this particular algorithmic and probabilistic approach. The third section
constructs the random walk on heat balls used to solve the initial-boundary value
problem. In Section 4, we introduce the stopping procedure of the algorithm and
prove the convergence result. The rate of the algorithm is analyzed. We end up
the paper with numerical results for two particular domains. These illustrations
corroborate the accuracy of the algorithm.

2. A spherical mean value property associated to the heat equation. In
this section, we will discuss the link between solutions of the heat equation and a
particular version of the mean value property. This link is also an essential tool in
the study of the classical Dirichlet problem.

Let us first note that due to the time reversion, the solution of the initial-
boundary value problem for the heat equation is directly related to the solution of
the terminal-boundary value problem for the backward heat equation (heat equa-
tion with negative diffusion). Due to this essential property, we are going to first
present a mean value property for the backward heat equation and then deduce a
similar property for the heat equation.

Let A be an open nonempty set of R+ ×Rd .

DEFINITION 2.1. A function h : A →R is said to be a co-temperature in A if
h is a C1,2-function satisfying

(2.1) ∂th(t, x) + �xh(t, x) = 0 ∀(t, x) ∈ A.
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PROPOSITION 2.2. Let A ⊂R+ ×Rd be a nonempty open set. If a function h

is a co-temperature in A, then it has the following mean value property:

(2.2) h(t, x) = 1

2πd/2

∫∫
(s,y)∈]0,1[×Sd

1

s
h
(
t + αs, x + 2

√
αψd(s)y

)
ψd

d (s)dσ(y)ds,

where Sd is the d-dimensional sphere of radius 1, σ is the Lebesgue measure on
Sd and

(2.3) ψd(t) =
√

t log
(
t−d/2

)
, t ∈]0,1[.

Equation (2.2) is satisfied for any α > 0 such that

[t, t + α] × B
(
x,2

√
αd/(2e)

) ⊂ A.

Here, B(x, r) stands for the Euclidean ball centered in x of radius r , that is,
B(x, r) = {x ∈ Rd s.t. ‖x‖ ≤ r}.

Let us just explain this mean value property: the value of the temperature h(t, x)

is directly related to the mean of the temperature h(s, y) where (s, y) belongs
to the boundary of the heat ball (spheroïd) centered in (t, x) and whose size is
parametrized by α. That is why the expression (2.2) is valid for any α which insures
that the ball is contained in the domain A.

The Gauss mean value theorem and its converse due to Koebe permit to char-
acterize the Laplace equation. Pini [16, 23] introduced an analogue of Gauss’ for-
mula in the one-dimensional heat equation context and Montaldo [18] extended the
study to higher dimensions. Fulks [11] proved the same result apparently without
knowledge of the results of Pini. These authors pointed out the following funda-
mental mean value over heat spheres for temperatures:

(2.4) h(t, x) = 1

(4πα)d/2

∫
Sα(t,x)

Q(x − y, t − s)h(s, y)dσS,

where the spheroïd Sα(t, x) is defined by (1.2), σS stands for its surface area mea-
sure and Q is given by

Q(y, s) = ‖y‖2
√

4‖y‖2s2 + (‖y‖2 − 2ds2
)2 for (s, y) ∈ R+ ×Rd .

Similar results were also proven by Smyrnélis [27] and Kuptsov [15]. We suggest
the reading of the interesting historical overview written by Netuka and Vesely
[21] and the presentation of the link between temperatures and heat balls in the
textbook of Watson [30]. The explicit expression of the mean value formula for
the co-temperature pointed out in Proposition 2.2 seems quite different from the
famous expression (2.4). In fact, time reversion and tedious computations (change
of variables) permit to prove that both expressions are equivalent.

Let us also notice that the mean value formula (2.2) is different and more gen-
eral than the classical formula associated to the heat equation in balloïds (see, for
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instance, Theorem 3 on page 53 in [8]). Nevertheless, after some transformations
on (2.2), it is possible to obtain the classical mean value property. These transfor-
mations consist in time reversion and integration of the radius of spheroïd with
respect to a particular probability distribution function with compact support.

The statement of Proposition 2.2 is classical in analysis; nevertheless, we opt
for a quite different presentation emphasizing the link between the mean value
property and exit problems for stochastic processes.

PROOF OF PROPOSITION 2.2. Let a ∈ R+ be defined by a = αd/2(d/2) ×
2d/2−1 and let us consider the associated function

ψa,d(t) :=
√

2t log
(

a

(d/2)td/22d/2−1

)
.

We introduce (Wt , t ≥ 0) a standard d-dimensional Brownian motion and define
by τa,d the following hitting time:

τa,d = inf
{
t ≥ 0 : ‖Wt‖ = ψa,d(t)

}
.

Let us just notice that this hitting time is bounded by α = ( a
(d/2)2d/2−1 )2/d and its

distribution function is given by Proposition 5.1 in [5]

(2.5) pa,d(t) = 1

2at
ψd

a,d(t), 0 ≤ t ≤ α.

Furthermore, the exit location Wτa,d
is uniformly distributed on the sphere of radius

ψa,d(τa,d). Let us consider h a co-temperature on A. By Itô’s formula, we obtain

h(t + τa,d, x + √
2Wτa,d

) = h(t, x) +
∫ τa,d

0
∂th(t + s, x + √

2Ws)ds

+ √
2

∫ τa,d

0
∂xh(t + s, x + √

2Ws)dWs

+
∫ τa,d

0
�xh(t + s, x + √

2Ws)ds.

If a is small enough, then there exists a compact set K such that (t, x) + K �
A and {(s, y) ∈ R+ × Rd : ‖y‖ ≤ ψa,d(s),0 ≤ s ≤ α} ⊂ K . Let us note τK the
first exit time of the domain K for the process (s,Ws). Using the fact that h is a
co-temperature in A, in particular, the continuity of ∂xh is known, we can prove
that the stochastic integral introduced in the Itô formula r → ∫ r∧τK

0 ∂xh(t + s,

x + √
2Ws)dWs is a martingale. Hence combining the stopping time theorem and

the a.s. property τa,d ≤ τK < ∞, we obtain

h(t, x) = E
[
h(t + τa,d, x + √

2Wτa,d
)
]
.

By (2.5), we get

h(t, x) = 1

σ(Sd)

∫ α

0

∫
Sd

h
(
t + u,x + √

2ψa,d(u)y
) 1

2au
ψd

a,d(u)dσ(y)du.
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We introduce the change of variable u = αs, such that s ∈]0,1[, and observe that
ψa,d(αs) = √

2αψd(s) where ψd is defined by (2.3). We get

h(t, x) = 1

σ(Sd)

∫ 1

0

∫
Sd

h
(
t + αs, x + √

2ψa,d(αs)y
) 1

2as
ψd

a,d(αs)dσ(y)ds

= 1

σ(Sd)

∫ 1

0

∫
Sd

h
(
t + αs, x + 2

√
αψd(s)y

)2d/2αd/2

2as
ψd

d (s)dσ(y)ds.

Using both the explicit expression of αd/2 and the classical formula σ(Sd) =
2πd/2/(d/2) leads to (2.2). �

The reverse statement of the preceding result can also be proved. The first step
consists of the following.

PROPOSITION 2.3. If h satisfies the mean value property (2.2) and is a C1,2-
function for any (t, x) ∈ A and α > 0 such that

[t, t + α] × B
(
x,2

√
αd/(2e)

) ⊂ A,

then h is a cotemperature in A.

In the statement of Proposition 2.3, which corresponds to an analogue of the
Koebe result for Laplace’s equation, the function h is assumed to be smooth. Such
result can be generalized to mean value properties associated to other parabolic
equations provided that h satisfies suitable regularity conditions (see, for instance,
Sabelfeld and Shalimova [25], Section 2.4). In fact, the reverse statement can be
highly improved for the heat equation. In the pioneer work of Fulks [11], the au-
thor points out that continuous functions h (in the intended domain) satisfying
the mean value property on spheroïds, satisfy the parabolic maximum principle.
It is therefore easy to conclude that h is a C1,2-function. We consider relevant
to present here a simple proof of Proposition 2.3 related to the particular choice
of the mean value expression (2.2) and to its associated probabilistic interpreta-
tion.

PROOF OF PROPOSITION 2.3. Let us consider the function H : [0,
√

α] → R

defined by

H(r) = h
(
t + r2s, x + 2rψd(s)y

)
for any (s, y) ∈ [0,1] × Sd . Using the Taylor expansion, we get

(2.6) H(
√

α) = H(0) + H ′(0)
√

α + α

2
H ′′(0) + o(α),
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where o(α) is uniform with respect to both s and y variables. The derivatives of H

can be computed explicitly and we get

H(0) = h(t, x), H ′(0) = 2ψd(s)

d∑
j=1

∂xj
h(t, x)yj ,

H ′′(0) = 2s∂th(t, x) + 4ψ2
d (s)

∑
1≤i,j≤d

∂2
xixj

h(t, x)yiyj .

Applying the mean value property to both sides of (2.6), we obtain

(2.7)
d∑

j=1

∂xj
h(t, x)A0

j + ∂th(t, x)A1 + ∑
1≤i,j≤d

∂xixj
h(t, x)Ai,j = o(α),

where

A0
j = 2

√
α

2πd/2

∫∫
(s,y)∈[0,1]×Sd

1

s
ψd+1

d (s)yj dσ(y)ds,

A1 = α

2πd/2

∫∫
(s,y)∈[0,1]×Sd

ψd
d (s)dσ(y)ds,

Ai,j = α

πd/2

∫∫
(s,y)∈[0,1]×Sd

1

s
ψd+2

d (s)yiyj dσ(y)ds.

By symmetry arguments, we have A0
j = 0 and Ai,j = 0 for i �= j . Let Xd be a

random variable whose probability distribution function is

pd(t) = 1

(d/2)t
ψd

d (t)1[0,1](t).

Let us just notice that pd(t) = αpa,d(αt), pa,d being defined by (2.5). Then
Xd = e−G where G is a random variable which has the gamma distribution
of parameters (d + 2)/2 and 2/d . In particular, Xd has the same distribution
as (U1 · · ·U(d+2)/2)

2/d if d is even [here (Ui)i∈N is a sequence of standard
uniform independent random variables] and Xd has the same distribution as
(U1 · · ·U	d+2
/2)

2/de−N2/d if d is odd [here N is a standard Gaussian r.v. inde-
pendent of the sequence (Ui)i ]. Therefore, if d is even, we deduce

A1 = α(d/2)

2πd/2 σ(S1)E[Xd ] = αE[Xd ] = αE
[
U

2/d
1

]
E

[
U

2/d
2

] · · ·E[
U

2/d
(d+2)/2

]

= α

(
d

d + 2

)(d+2)/d

.

For the odd case,

A1 = αE[Xd ] = αE
[
U

2/d
1

]
E

[
U

2/d
2

] · · ·E[
U

2/d
	d+2
/2

]
E

[
e−N2/d]

= α

(
d

d + 2

)	d+2
/d
E

[
e−N2/d]

.
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Let us now compute Ai,i for 1 ≤ i ≤ n. First, we observe that

∫
Sd

y2
i dσ(y) = 1

d

d∑
j=1

∫
Sd

y2
j dσ(y) = σ(Sd)

d
= 2πd/2

d(d/2)
.

So using a convenient change of variable, we get

Ai,i = α

πd/2

2πd/2

d(d/2)

∫ 1

0

1

s
ψd+2

d (s)ds

= 2α(d + 2)

d2(d/2)


(
(d + 2)/2

) ∫ 1

0

1

((d + 2)/2)
t(d+2)/d 1

t
ψd+2

d+2 (t)dt

= α
d + 2

d
E

[
X

(d+2)/d
d+2

] = α

(
d

d + 2

)(d+2)/d

if d is even,

and Ai,i = α( d
d+2)	d+2
/dE[e−N2/d ] if d is odd. So we note that for any d ∈ N∗,

we proved that

A0
j = 0, Ai,j = δijA1,

where δij is the Kronecker’s symbol. Equation (2.7) leads therefore to (2.1). �

All results presented so far in this section have an important advantage, they
can be adapted to other situations for instance by looking backward in time, or
equivalently time reverting. This observation permits to study properties of the
heat equation.

DEFINITION 2.4. A function h : A → R is said to be a temperature in A if h

is a C1,2-function satisfying the heat equation:

(2.8) ∂th(t, x) − �xh(t, x) = 0 ∀(t, x) ∈ A.

By Proposition 2.2 and Proposition 2.3, we obtain the following.

THEOREM 2.5. 1. Let A ⊂ R+ ×Rd be a nonempty open set. If a function h

is a temperature in A, then it has the following mean value property:

(2.9) h(t, x) = 1

2πd/2

∫∫
(s,y)∈]0,1[×Sd

h
(
t −αs, x +2

√
αψd(s)y

)ψd
d (s)

s
dσ(y)ds,

where Sd is the d-dimensional sphere of radius 1, σ is the Lebesgue measure on
Sd and ψd is defined in (2.3). Equation (2.9) is satisfied for any α > 0 such that
[t − α, t] × B(x,2

√
αd/(2e)) ⊂ A.

2. If h satisfies the mean value property (2.9) and is a C1,2-function for any
(t, x) ∈ A and α > 0 such that [t − α, t] × B(x,2

√
αd/(2e)) ⊂ A then h is a

temperature in A.
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3. Solving the initial-boundary value problem. This section deals with ex-
istence and uniqueness for solutions of the initial-boundary value problem (1.1) in
a bounded domain D. These results are deeply related to the existence of a partic-
ular time-discrete martingale: we define Mn := (Tn,Xn) a sequence of R+ × D-
valued random variables. A similar martingale was previously described in the
textbook of Ermakov, Nekruktin and Sipin [7]: we just present or recall here rele-
vant properties and classical results associated to this random process in order to
present a comprehensive study of the random walk on moving sphere algorithm.
In order to define this sequence, we introduce δ(x, ∂D), the Euclidean distance be-
tween the point x and the boundary of the domain. We also introduce the function
α given by

(3.1) α(u, v) = min
(
u,

e

2d
δ2(v, ∂D)

)
.

Let us consider:

• (Un)n≥1 a sequence of independent uniformly distributed random vectors on
[0,1]	d/2
+1. We denote by �U

n the product of all coordinates of Un.
• (Gn)n≥1 a sequence of independent standard Gaussian r.v.
• (Vn)n≥1 a sequence of independent uniformly distributed random vectors on

the unit sphere of dimension d , centered at the origin.

Further, we assume that these three sequences are independent. We define by Fn

the natural filtration generated by the sequences (Un), (Gn) and (Vn). Let F0 note
the trivial σ -algebra. Let us introduce

Rn+1 := (
�U

n+1
)2/d exp

{
−

(
1 − 2

d

⌊
d

2

⌋)
G2

n+1

}
.

The initial value of the sequence (Tn,Xn) is then (T0,X0) = (t, x) and the se-
quence is defined by recurrence as follows: for n ≥ 0,{

Tn+1 = Tn − α(Tn,Xn)Rn+1,

Xn+1 = Xn + 2
√

α(Tn,Xn)ψd(Rn+1)Vn+1.
(3.2)

Let us first note that, due to the definition, the sequence (Tn,Xn) belongs always
to the closed set [0, t] ×D: the sequence is therefore bounded. Moreover, as soon
as Mn reaches the boundary of [0, t] ×D its value is frozen.

LEMMA 3.1. If h belongs to C1,2([0, t] × D) and if it is a temperature in
[0, t] ×D, then Mn := h(Tn,Xn) is a bounded F -martingale.

PROOF. Since h is a continuous function on a compact set, it is bounded.
Therefore, the stochastic process Mn itself is bounded. We obtain

E[Mn+1|Fn] = E
[
h(Tn+1,Xn+1)|Fn

] =: H(Tn,Xn),
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where

H(u, v) = E
[
h
(
u − α(u, v)Rn+1, v + 2

√
α(u, v)ψd(Rn+1)Vn+1

)]
.

Since the p.d.f. of Rn+1 is given by fR(s) = 1
(d/2)

ψd
d (s)

s
1[0,1](s) and since Vn+1 is

uniformly distributed on the sphere, we obtain

H(u,v) = 1

(d/2)σ (Sd)

×
∫∫

(s,y)∈]0,1[×Sd
h
(
t − α(u, v)s, x + 2

√
α(u, v)ψd(s)y

)ψd
d (s)

s
dσ(y)ds.

If h belongs to C1,2([0, t] × D) and if it is a temperature in [0, t] × D, then The-
orem 2.5 implies the mean value property. Hence H(u, v) = h(u, v). We deduce
easily that

E[Mn+1|Fn] = h(Tn,Xn) =Mn a.s. �

LEMMA 3.2. The process Mn = (Tn,Xn) converges almost surely as n → ∞
to a limit (T∞,X∞) that belongs to the set {0} ×D ∪ ]0, t[ × ∂D.

PROOF. Let us consider the function h(t, x) = xi the ith coordinate of x ∈ Rd .
We observe that h is a temperature and belongs to C1,2(R+,Rd). By Lemma 3.1,
we deduce that Mn := h(Tn,Xn) = Xn(i), the ith coordinate of Xn, is a bounded
martingale therefore it converges a.s. towards X∞(i). Since all coordinates con-
verge, we deduce that Xn → X∞ a.s.

Moreover, since Tn is a nonincreasing sequence of nonnegative random times,
it converges a.s. towards a r.v. T∞ which belongs to [0, t]. The sequence (Tn,Xn)

belongs to the closed set [0, t] ×D, consequently its limit belongs to the same set.
Since the function α is continuous, we obtain that αn := α(Tn,Xn) converge

a.s. to α∞.
Let us assume that there exist η1 > 0 and η2 > 0 such that P(α∞ > η1) > η2.

The a.s. convergence implies the convergence in probability; consequently, there
exists n0 ∈ N such that P(αn > η1/2) > η2/2 for any n ≥ n0. Moreover, the def-
inition of the random walk algorithm (3.2) implies the existence of a parameter
0 < γ < 1 such that P(‖Xn+1 − Xn‖ > γαn) > 1 − η2/4 for any n ≥ 0. Combin-
ing these two properties, we obtain that

P
(‖Xn+1 − Xn‖ > γη1/2

)
> η2/4

for any n ≥ n0 which contradicts the almost sure convergence of (Xn). We deduce
that α∞ = 0 a.s. and, therefore, (T∞,X∞) ∈ {0} ×D ∪ ]0, t[ × ∂D. �

PROPOSITION 3.3 (Uniqueness). Set T > 0. Let u be a C1,2([0, T ] × D)-
function satisfying the initial-boundary value problem (1.1) and continuous with
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respect to both variables on [0, T ] ×D. Then u is unique and given by the follow-
ing expression: for (t, x) ∈ [0, T ] ×D,

(3.3) u(t, x) = E(t,x)

[
f (T∞,X∞)1{X∞∈∂D}

] +E(t,x)

[
f0(X∞)1{X∞ /∈∂D}

]
.

PROOF. By Lemma 3.1, the process Mn is a bounded martingale. Moreover,
Lemma 3.2 implies that (Tn,Xn) converges to (T∞,X∞). Since u is a continuous
function, we deduce that Mn converges a.s. and in L2 towards u(T∞,X∞). In
particular, the martingale property leads to

u(t, x) = E
[
u(T∞,X∞)

]
.

In order to conclude it suffices to use the initial and boundary conditions. Indeed
Lemma 3.2 ensures that (T∞,X∞) belongs to the set {0} ×D ∪ ]0, t[ × ∂D. �

We refer to Friedman [9] for the existence of a solution to the initial-boundary
value problem (1.1). More precisely, if the following particular conditions are ful-
filled:

• f and f0 are continuous functions such that f (0, x) = f0(x),
• the domain has an outside strong sphere property,

then there exists a smooth solution u to (1.1): u ∈ C∞(R+ ×D,R). This statement
results from a combination of Theorem 9 on page 69 and Corollary 2 on page 74
in [9].

4. Approximation of the solution for an initial-boundary value problem.
The aim of this section is to construct an algorithm which approximates u(t, x),
the solution of an initial-boundary value problem when (t, x) is given. For the
Dirichlet problem, such an algorithm was introduced by Müller [20] and is called
the random walk on spheres. We are concerned with the heat equation instead of
the Laplace equation and, therefore, propose an adaptation of this algorithm in
order to consider also the time variable. The algorithm is based on the sequence of
random variables Mn = (Tn,Xn) defined by (3.2) and was introduced by Ermakov,
Nekruktin and Sipin [7]. The aim of this section is to present the main results of our
study: the convergence and the rate of convergence of the algorithm under rather
weak conditions on the domain D.

We introduce a stopping rule: let ε > 0 be a small parameter, we define Nε the
stopping time:

(4.1) Nε := inf
{
n ≥ 0 : α(Tn,Xn) ≤ ε

}
,

where α is given by (3.1):

1. If δ2(XNε , ∂D) ≤ 2εd
e

, then we choose Xε ∈ ∂D such that

δ(XNε ,Xε) = δ(XNε , ∂D)

and we denote by Tε := TNε .
2. If δ2(XNε , ∂D) > 2εd

e
, then we set Tε = 0 and Xε := XNε .
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We are now able to give an approximation of the solution to (1.1) by using the
definition: for (t, x) ∈ [0, T ] ×D,

(4.2) uε(t, x) = E(t,x)

[
f (Tε,Xε)1{Xε∈∂D}

] +E(t,x)

[
f0(Xε)1{Xε /∈∂D}

]
.

PROPOSITION 4.1. Let us assume that the initial-boundary value problem
(1.1) admits an unique C1,2([0, T ] × D)-solution u, defined by (3.3). We intro-
duce the approximation uε given by (4.2). Then uε converges towards u, as ε → 0,
uniformly with respect to (t, x). Moreover, there exist κT,D(u) > 0 and ε > 0 such
that ∣∣u(t, x) − uε(t, x)

∣∣ ≤ κT,D(u)
√

ε ∀ε ≤ ε0, (t, x) ∈ [0, T ] ×D.

PROOF. Using the definition of u (resp., uε) in (3.3) [resp., (4.2)], we
obtain ∣∣u(t, x) − uε(t, x)

∣∣ = ∣∣E[
u(T∞,X∞)

] −E
[
u(Tε,Xε)

]∣∣.
Since n → u(Tn,Xn) is a bounded martingale and since Nε is a finite stopping
time (we refer to the proof of Theorem 4.2), we can apply the optimal stopping
theorem and the mean value theorem leading to∣∣u(t, x) − uε(t, x)

∣∣ = ∣∣E[
u(TNε ,XNε )

] −E
[
u(Tε,Xε)

]∣∣
≤ κ̂T ,D(u)E

[
max

(|TNε − Tε|, |XNε − Xε|)],
where

κ̂T ,D(u) := 2 sup
(t,x)∈[0,T ]×D

max
{∣∣∣∣∂u

∂t
(t, x)

∣∣∣∣,
∣∣∣∣∂u

∂x
(t, x)

∣∣∣∣
}
.

Taking into account the two different situations δ2(XNε , ∂D) > 2εd
e

or
δ2(XNε , ∂D) ≤ 2εd

e
, we deduce that

max
(|TNε − Tε|, |XNε − Xε|) ≤ max

(
ε,

√
2εd

e

)
.

The statement follows with the particular choice κT,D(u) = κ̂T ,D(u)
√

2d
e

. �

Let us now focus our attention on the number of steps needed by the algorithm
(3.2) before stopping. In order to present the main result, we need some particular
properties on the domain D.

In the sequel, we shall assume that D is a 0-thick domain (see, for instance,
Binder and Bravermann [2]), that is, there exists a constant C > 0 (so-called the
thickness of the domain) such that

(4.3) Hd(
B(x, r) \D) ≥ Crd ∀r < 1,∀x ∈ ∂D.

Here, Hd(S) denotes the d-dimensional Hausdorff content of the set S. This prop-
erty is namely satisfied by:
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• convex domains;
• domains satisfying a cone condition;
• bounded domains with a smooth boundary ∂D.

We observe that the assumption here is quite weak: convergence results associated
to random walk type algorithms often require convexity conditions of the domain.
Either the domain itself is convex or either it can be split into finitely many convex
subdomains. This is namely the case for the walk on spheres algorithm associated
with Laplace’s equation; we refer to the detailed study of Sabelfeld [24]. Since
we just assume that the domain is 0-thick, the usual arguments cannot be used
anymore. For such domains, we can prove the following rate of convergence.

THEOREM 4.2. Let D ⊂ B(0,1) be a 0-thick domain. The number of steps
Nε , of the approximation algorithm, is almost surely finite. Moreover, there exist
constants C > 0 and ε0 > 0 such that

(4.4) E[Nε] ≤ C| log ε| for all ε ≤ ε0.

The proof of this result is an adaptation of the interesting and recent analysis of
the classical random walk on spheres by Binder and Bravermann [2]. Nevertheless,
the dynamics of both coordinates of the random walk on spheres (Tn,Xn)n≥0 being
definitively different, this adaptation requires a quite tedious effort. In particular,
we need to introduce a particular submartingale, based on the random walk, whose
properties permit to prove the rate of convergence.

4.1. Submartingale related to the Riesz potential. We consider in this section
the 0-thick domain D which is included in the unit ball of Rd (assumption of
Theorem 4.2). The proof of Theorem 4.2 is based on the so-called Riesz potential.
The definition of this particular tool and its first properties essentially depend on
the thickness of the domain which plays therefore a crucial role. We introduce
the set M of all Borel measures μ supported inside B(0,2) and outside of D,
satisfying the following condition:

(4.5) μ
(
B(x, r)

) ≤ rd ∀x ∈ Rd,∀r > 0.

Let us define the so-called energy function U :

U(x) = sup
μ∈M

Uμ(x),

where Uμ stands for the Riesz potential of the measure μ, that is,

(4.6) Uμ(x) =
∫ ∞

0

μ(B(x, r))

rd+1 dr.

Both the choice of the particular set of measures M and the expression of the Riesz
potential are related to the thickness of the domain. The definition of U obviously
implies that U(x) ≥ 0 for any x ∈ Rd .
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REMARK 4.3. Binder and Bravermann [2] gave several properties of this en-
ergy function. We just recall some of them:

1. Since the set of measures M is weakly∗-compact, there exists a family of
measures μx , belonging to M, such that U(x) = Uμx (x). This property will play
a crucial role in the proof of Proposition B.2.

2. The energy function U is subharmonic in D. Consequently, due to the con-
struction of the random walk (Tn,Xn), which is based on uniform random vari-
ables on moving spheres, the process (U(Xn))n≥0 is a submartingale with respect
to the filtration generated by (Tn,Xn)n≥0:

Fn := σ {T1, . . . , Tn,X1, . . . ,Xn}.
Hence

(4.7) E
[
U(Xn+1)|Fn

] ≥ U(Xn) a.s.

3. Easy computations on the Riesz potential permits to prove that

(4.8) U(x) ≤ log
3

δ(x, ∂D)
+ 1

d
∀x ∈ D.

This inequality requires that the thickness of the domain is smaller than 2 and
differs from the space dimension. In particular, we obtain an important property of
the submartingale (U(Xn))n≥0:

(4.9) If U(Xn) ≥ log
3

ε
+ 1

d
then δ(Xn,D) ≤ ε.

These properties, of the energy function U , permit to sketch the proof of the
convergence in the classical random walk on spheres case. Indeed we know that
U(Xn) is a submartingale and the algorithm stops before U(Xn) becomes too
large. So, it suffices to focus the attention on the time needed by the submartingale
to exceed some given large threshold.

In the algorithm described by (3.2), a large value of U(Xn) is not sufficient
to ensure that the stopping rule has been reached. Indeed the stopping procedure
depends on both space and time variables, through the condition: α(Tn,Xn) ≤ ε.
That is why we need to adapt the classical study by considering a martingale based
on the Riesz potential but taking also into account the decreasing time sequence
(Tn)n≥0.

Let us define the modified energy function on R+ ×Rd by

(4.10) U(t, x) = max
{

1

2
log

(
3

t

)
,U(x)

}
.

This function will play a similar role as the energy function (in the classical case).
In particular, if we apply U to the sequence (Tn,Xn), we obtain a submartingale
with nice properties.
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LEMMA 4.4. We define Un := U(Tn,Xn). Then the process (Un)n≥0 is a F -
submartingale.

PROOF. First, we can notice that

Tn+k ≤ Tn ⇒ log
3

Tn+k

≥ log
3

Tn

.

By Jensen’s inequality (see Lemma A.1) and using the submartingale property
(4.7) of U(Xn), we obtain

E
[
Un+1|σ(Tn,Xn)

] = E

[
max

{
1

2
log

3

Tn+1
,U(Xn+1)

}∣∣∣σ(Tn,Xn)

]

≥ E

[
max

{
1

2
log

3

Tn

,U(Xn+1)

}∣∣∣σ(Tn,Xn)

]

≥ max
{

1

2
log

3

Tn

,E
[
U(Xn+1)|σ(Tn,Xn)

]}

≥ max
{

1

2
log

3

Tn

,U(Xn)

}
= Un.

We deduce that (Un) is a submartingale as announced. �

In order to describe an upper-bound for the sequence E[U2
n], we first point out

an inequality relating U(t, x) to the function α(t, x), which plays an essential role
in the algorithm (3.2).

LEMMA 4.5. There exists a constant κ > 0 (depending only on the space di-
mension d) such that

(4.11) U(t, x) ≤ κ − 1

2
log

(
α(t, x)

) ∀(t, x) ∈R+ ×D.

PROOF. On one hand, the definition of α(t, x) in equation (3.1) implies that
e

2d
δ2(x, ∂D) ≥ α(t, x), and consequently

log
3

δ(x, ∂D)
≤ 1

2
log

9e

2d
− 1

2
logα(t, x).

Using the property (4.8), we obtain

U(x) ≤ −1

2
logα(t, x) + 1

2
log

9e

2d
+ 1

d
.

On the other hand, the definition of α(t, x) also implies

1

2
log

3

t
≤ 1

2
log

3

α(t, x)
= log 3

2
− 1

2
logα(t, x).
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Combining both inequalities, we deduce that U(t, x) = max{1
2 log(3/t),U(x)} sat-

isfies (4.11) with κ := max{1
2 log 3, 1

2 log 9e
2d

+ 1
d
}. �

An immediate consequence of Lemma 4.5 is an L2-bound of Un, n fixed.

PROPOSITION 4.6. Let (T0,X0) = (t, x). There exist two constants C1 and
C2 such that

E
[
U2

n

] ≤ (C1 + C2n)2 for n ≥ κ − 1

2
log

(
α(t, x)

)
.

Here, κ stands for the constant defined in Lemma 4.5.

PROOF. Let us first recall that Un := U(Tn,Xn). Due to the definition of the
function U , we observe that U(x) ≥ 0 for any x ∈Rd , and consequently U(t, x) ≥
0 and Un ≥ 0. Due to Lemma 4.5, we shall focus our attention on logα(Tn,Xn).

First, we notice that (3.2) leads to

Tn = Tn−1 − α(Tn−1,Xn−1)Rn ≥ Tn−1(1 − Rn).

Hence

− log(Tn) ≤ − log(Tn−1) − log(1 − Rn)

≤ − log
(
α(Tn−1,Xn−1)

) − log(1 − Rn).
(4.12)

Moreover, by (3.2),

δ(Xn, ∂D) ≥ δ(Xn−1, ∂D) − 2
√

α(Tn−1,Xn−1)ψ(Rn).

By its definition, α(t, x) ≤ e
2d

δ2(x, ∂D), and we obtain

δ(Xn, ∂D) ≥ δ(Xn−1, ∂D)

(
1 −

√
2e

d
ψ(Rn)

)
,

and, therefore,

− log
(

e

2d
δ2(Xn, ∂D)

)

≤ − log
(
α(Tn−1,Xn−1)

) − 2 log
(

1 −
√

2e

d
ψ(Rn)

)
.

(4.13)

Let us define Wn := −2 log(1 −
√

2e
d

ψ(Rn))− log(1 −Rn). Combining (4.12) and
(4.13), we finally obtain

− log
(
α(Tn,Xn)

) ≤ − log
(
α(Tn−1,Xn−1)

) + Wn

≤ − log
(
α(t, x)

) +
n∑

k=1

Wk.
(4.14)
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Let us just note that (Wn) is a family of independent and identically distributed
random variables and (t, x) is the starting position of the algorithm. Let us recall
that Un ≥ 0. We obtain

E
[
U2

n

] ≤ E

[(
κ − 1

2
log

(
α(Tn,Xn)

))2]

≤ E

[(
κ − 1

2
log

(
α(T0,X0)

) +
n∑

k=1

Wk

)2]

≤ 2
(
κ − 1

2
log

(
α(t, x)

))2
+ 2E

[(
n∑

k=1

Wk

)2]

≤ 2
(
κ − 1

2
log

(
α(t, x)

))2
+ 2 Var

(
n∑

k=1

Wk

)
+ 2E

[
n∑

k=1

Wk

]2

≤ 2
(
κ − 1

2
log

(
α(t, x)

))2
+ 2nVar(W1) + 2n2(

E[W1])2

≤ 2nVar(W1) + 2n2(
E[W1]2 + 1

)
,

due to the hypothesis n ≥ κ − 1
2 log(α(t, x)). So Lemma A.2 implies the statement

of the Proposition 4.6: the upper-bound is quadratic with respect to n. �

Let us now point out a lower-bound for the expected value of the submartingale:
(E[Un])n≥0.

PROPOSITION 4.7. There exist two constants C3 ∈ R and C4 > 0, such that

(4.15) E[Un] ≥ C3 + C4n, n ≥ 1.

PROOF. Since (Un)n≥0 is a submartingale, we know that (E[Un])n≥0 is a non-
decreasing sequence, but we need even more. In fact, due to the following lower-
bound:

Un ≥ 1

4
log

3

Tn

+ 1

2
U(Xn) =:Vn,

it suffices to point out the existence of a constant L0 > 0 such that

(4.16) E[Vn+1] −E[Vn] ≥ L0 ∀n ≥ 0.

In order to compute such a lower-bound, we consider two cases: either α(Tn,Xn) =
Tn (event denoted by Tn) or α(Tn,Xn) �= Tn (event denoted by T n).

Step 1. α(Tn,Xn) = Tn. Then the definition of the random walk (3.2) implies
that

Tn+1 = Tn − α(Tn,Xn)Rn+1 = Tn(1 − Rn+1) on Tn.
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Hence

log
3

Tn+1
= log

3

Tn

− log(1 − Rn+1) on Tn.

Let us denote by L1 = −1
4E[log(1 − R1)] > 0. Since U(Xn) is a submartingale

(U being subharmonic in D), we get

(4.17)

E[Vn+11Tn] = E

[
1

4
log

3

Tn+1
1Tn

]
+ 1

2
E

[
E

[
U(Xn+1)|Fn

]
1Tn

]

≥ E

[
1

4
log

3

Tn

1Tn

]
+ L1P(Tn) + 1

2
E

[
U(Xn)1Tn

]
≥ E[Vn1Tn] + L1P(Tn).

Step 2. α(Tn,Xn) �= Tn. Let us recall that the random walk satisfies: Xn+1 =
Xn + 2

√
α(Tn,Xn)ψd(Rn+1)Vn+1 where Rn+1 is a continuous random variable

whose support is the whole interval [0,1] and whose distribution does not depend
on n. Observe also that

ρ(Rn+1) :=
√

2e

d
ψd(Rn+1)

is a continuous random variable with support [0,1]. In other words, on the event
α(Tn,Xn) �= Tn and given Rn+1 = r , the (n + 1)th step of the random walk is
exactly the same as the (n+ 1)th step of the classical random walk on spheres (see
Appendix B) with radius β = ρ(r), for which we can obtain some lower-bound.
So using Proposition B.2, we obtain

E[Vn+11T n
] = E

[
1

4
log

3

Tn+1
1T n

]
+ 1

2
E

[
U(Xn+1)1T n

]

≥ E

[
1

4
log

3

Tn

1T n

]
+ 1

2
E

[
E

[
U(Xn+1)|σ(Rn+1, Tn,Xn)

]
1T n

]

≥ E

[
1

4
log

3

Tn

1T n

]
+ 1

2
E

[(
U(Xn) + L1{δ/4<1−ρ(Rn+1)<δ/2}

)
1T n

]

≥ E[Vn1T n
] + L

2
P

({
δ/4 < 1 − ρ(Rn+1) < δ/2

} ∩ T n

)
(4.18)

= E[Vn1T n
] + L2P(T n),(4.19)

where L2 = L
2 P(δ/4 < 1 − ρ(R1) < δ/2), Rn+1 and (Tn,Xn) being indepen-

dent. Finally, taking the sum of (4.17) and (4.18), we obtain (4.16) with L0 =
min(L1,L2) > 0. �

We end here the preliminary results concerning the submartingale (Un)n≥0. We
are now ready to deal with the rate of convergence of the random walk on moving
spheres.
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4.2. Rate of convergence of the algorithm. Let us consider the algorithm
(Tn,Xn)n≥0 given by (3.2) and stopped as soon as α(Tn,Xn) ≤ ε. We assume that
the starting position satisfies (T0,X0) = (t, x) ∈ R+ × D. Then the mean number
of steps is bounded and the bound depends on | log ε|.

PROOF OF THEOREM 4.2. If the starting position (t, x) satisfies α(t, x) ≤ ε,
then the algorithm stops immediately (Nε = 0 a.s.) and the statement is satisfied.
From now on, we assume that α(t, x) > ε.

Step 1. A remark on the stopping rule. The statement of Theorem 4.2 concerns
Nε [see (4.1)] the first time the random walk (Tn,Xn)n≥0 hits a ε-neighborhood of
the boundary. Let us introduce another stopping rule concerning Un := U(Tn,Xn),
U being defined by (4.10):

N ′
ε := inf

{
n ≥ 0 :Un ≥ log

3

ε
+ 1

d

}
.

Let us now point out that Nε ≤ N ′
ε a.s. for ε small enough (more precisely, we

need ε ≤ 2d
e

).
Indeed, let us consider the first case: U(Xn) ≥ log 3

ε
+ 1

d
, then (4.9) implies that

δ(Xn, ∂D) ≤ ε. Moreover, due to the condition ε ≤ 2d
e

, we get e
2d

δ2(Xn, ∂D) ≤ ε

and, therefore, α(Tn,Xn) ≤ ε.
On the other side, if 1

2 log 3
Tn

≥ log 3
ε

+ 1
d

≥ 1
2 log 3

ε
then Tn ≤ ε, and finally

α(Tn,Xn) ≤ ε. So we deduce that Un ≥ log 3
ε

+ 1
d

implies that α(Tn,Xn) ≤ ε. In
the sequel, we will find an upper-bound for the mean value of N ′

ε .
Step 2. The aim of the second step is to prove the existence of an integer η ∈ N

and a constant p < 1 both independent with respect to the starting position of the
random walk (T0,X0) = (t, x) and independent of the parameter ε such that

(4.20) P
(
N ′

ε > η	− log ε
) ≤ p

for ε small enough. Let us note that the complementary event satisfies, by defini-
tion,

P
(
N ′

ε ≤ η	− log ε
) ≥ P(Uk ≥ βk),

where k = η	− log ε
 and βk = log 3 + 1 + 1
d

+ k/η. We deduce that there exists
a particular choice of the integer η such that, for ε small enough, βk < αk :=
(C3 + C4k)/2 where C3 and C4 are defined in Proposition 4.7. So it is sufficient
to find a lower-bound of P(Uk > αk) which should be positive when k is large. By
Proposition 4.6, there exist two constants C1 and C2 such that

E
[
U2

n

] ≤ (C1 + C2n)2 for any n ≥ κ − 1

2
log

(
α(t, x)

)
.

Due to the condition on the initial position α(t, x) > ε, the previous inequality is
satisfied for n ≥ 	− log ε
 when ε is small enough. In particular, it is satisfied for
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n = k = η	− log ε
. We obtain

E[Uk] = E[Uk1{Uk≤αk}] +E[Uk1{Uk>αk}] > C3 + C4k.(4.21)

Then by an application of (4.15) and the Cauchy–Schwarz inequality, we get

αk +
√
E

[
U2

k

]√
P(Uk > αk) > C3 + C4k.

Therefore, due to the upper-bound of the second moment,

αk + (C1 + C2k)
√
P(Uk > αk) > C3 + C4k.

We deduce

P(Uk > αk) ≥ 1

4

(
C3 + C4k

C1 + C2k

)2
>

1

5

(
C4

C2

)2

for k large enough that is ε small enough. This implies the existence of the constant
p > 0 in (4.20).

Step 3. Upper-bound of E[N ′
ε]. Due to the first step it is sufficient to obtain

an upper-bound of E[N ′
ε] in order to prove the statement of the theorem. Such a

result is essentially based on the Markov property of the sequence (Tn,Xn)n≥0:
the second step implies in particular that

P
(
N ′

ε > kη	− log ε
) ≤ pk ∀k ≥ 1.

Hence

E
[
N ′

ε

] ≤ ∑
k≥1

kη	− log ε
P(
N ′

ε ≤ kη	− log ε
|N ′
ε > (k − 1)η	− log ε
)

× P
(
N ′

ε > (k − 1)η	− log ε
)
≤ η	− log ε
 ∑

k≥1

kpk−1 = η| log ε|
(1 − p)2 ,

and thus obtaining the desired upper-bound. �

5. Examples and numerics. The aim of this section is to illustrate the random
walk on spheres algorithm introduced in Section 4. Let us focus our attention on
the numerical approximation of the solution to the value problem:

(5.1)

⎧⎨
⎩

∂tu(t, x) − �xu(t, x) = 0 ∀(t, x) ∈ R+ ×D,

u(t, x) = f (t, x) ∀(t, x) ∈ R+ × ∂D,

u(0, x) = f0(x) ∀x ∈ D
for particular domains D. First, we shall present results obtained for the hypercube
D = ]0,L[d , L > 0, and second, the half of a sphere

D = {
x ∈Rd : ‖x‖ < 1, x1 > 0

}
.
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Of course, these toy examples are not directly related to concrete situations in
physics but they permit to emphasize the efficiency of the algorithm. Their ad-
vantage relies in the easy computation of the distance to the boundary. For more
general situations, only this part of the procedure has to be modified and can in
some cases become difficult to implement and especially time-consuming.

5.1. Hypercube. Let us first introduce the functions related to the boundary
conditions. We choose a function with the following simple expression:

(5.2) f (t, x) = e−dπ2t/L
d∏

i=1

sin
(
πxi/L

2)
, x ∈ D,∀t ≥ 0.

Setting f0(x) = f (0, x), we observe that both the compatibility and the continuity
conditions are obviously satisfied. In this particular case, we have already pointed
out, in the previous sections, that there exists a unique (smooth) solution to the
initial-boundary value problem which can be approximated using the algorithm of
moving spheres. The choice of the function (5.2) is particularly convenient since
the IBVP solution is explicitly known: u(t, x) = f (t, x) which permit to compare
in an efficient way the exact and the approximated solutions.

The solution can be approximated by uε defined by (4.2), the error being di-
rectly related to the parameter ε. Since uε(t, x) is the expectation of a random
variable, we shall use a Monte Carlo method in order to obtain an estimated value.
Hence

(5.3) uε
N(t, x) = 1

N

N∑
k=1

f (Tε,k,Xε,k)1{Xε,k∈∂D} + 1

N

N∑
k=1

f0(Xε,k)1{Xε,k /∈∂D},

where (Tε,k,Xε,k)k≥0 is a sequence of independent and identically distributed cou-
ples of random variables, the distribution being defined at the beginning of Sec-
tion 4. The difference between u(t, x) and uε

N(t, x) actually relies on both the
error described in Proposition 4.1 of order

√
ε on one hand and the classical er-

ror of Monte Carlo methods of order N−1/2 on the other hand (the confidence
interval depends as usual on the standard deviation of the underlying random vari-
able).

First, let us present uε
N(t, x) for a particular point: the center of the hypercube

[x = (L/2, . . . ,L/2) is the default setting in all this subsection] letting the time
cross the whole interval [0,2].

We present at the same time the associated Monte Carlo 95%-confidence inter-
val (Figure 3). Let us just notice that the choice N = 1000 is not motivated by some
computational facilities but rather to produce a clear picture, the confidence inter-
val becoming very small for larger values of N . Of course, the numerical method
permits to observe directly the distribution of the random variable

Zε = f (Tε,Xε)1{Xε∈∂D} + f0(Xε)1{Xε,k /∈∂D},
which drastically changes as time elapses (Figures 4 and 5).
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FIG. 3. IBVP solution versus t . The figure presents the exact solution (solid line), the approximated
solution uε

N (t, x) (plus sign) and its Monte Carlo 95%-confidence interval, for x the center of the
hypercube, L = 10, N = 1000, ε = 0.001, d = 3.

In our example, small values of Zε are more frequently observed for small time
values than for large ones. Such behaviour of the random variable is not linked
to the particular boundary conditions we introduced, but relies on the following
general argument. The random variable Zε is obtained due to a stopping procedure
on Mn = (Tn,Xn) defined by (3.2). The sequence is stopped as soon as either Xn

is ε-close to the boundary ∂D (we call this event stop due to space constraint) or
Tn is ε-close to 0 (stop due to time constraint). Then it seems quite obvious that
stops due to time constraint are more likely to occur when t becomes small [see
the proportion in Figure 6(left)].

Let us now comment the algorithm efficiency by focusing our attention on the
number of steps. The distribution of this random number depends on several pa-
rameters: the dimension d , the parameter ε, and finally the choice of (t, x) [see

FIG. 4. Histogram of the distribution of 10,000 random variables Zε for various values of t : t = 0.5
(left), t = 2.5 (right), ε = 0.001, L = 5, d = 3.
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FIG. 5. Histogram of Zε for d = 3 (left) and d = 10 (right), t = 1, ε = 0.001.

histogram Figure 6(right) for a particular choice of parameters]. We have pointed
out an upper bound for the average number of steps in Theorem 4.2. The numerics
permit to present different curves illustrating all the dependences: the logarithm
growth with respect to the parameter ε, the behavior when the space position x

varies and the influence of the dimension (Figures 7 and 8). Let us notice that
this algorithm is especially efficient (see the small number of steps) even in high
dimensions.

5.2. Half-sphere. All the studies developed in the hypercube case can also be
considered for the half-sphere. We introduce particular boundary conditions:

(5.4) f (t, x) = (
1 + cos(2πt)

)‖x‖ ∀x ∈ D,∀t ≥ 0,

with f0(x) = f (0, x). Similarly, as above, we present:

• the approximated solution uε
N(t, x) and its Monte Carlo 95%-confidence in-

terval, for the default value x = (0.5,0, . . . ,0) and for t varying in the interval
[0,2] (Figure 9),

FIG. 6. Proportion of stops due to space constraint versus t for 10,000 trials, ε = 0.001, d = 3
(left); histogram of the number of steps t = 1, ε = 0.001, d = 3.
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FIG. 7. Averaged number of steps versus n for ε = 0.5n and x the center of the hypercube (left),
averaged number of steps versus u for x = (u,u,u) and ε = 0.001. In both situations: 10,000 trials,
d = 3, t = 4.

• the distribution of the Monte Carlo underlying variable Zε for different val-
ues of t and different dimension values d (Figures 10 and 11),

• different curves illustrating the influence of the parameter ε, the starting po-
sition x and the dimension d on the averaged number of steps (Figures 12 and 13).

APPENDIX A: TECHNICAL RESULTS

We first start with Jensen’s inequality:

LEMMA A.1. Let X and Y be two random variables and A a σ -algebra,
then the following inequalities hold: E[max(X,Y )] ≥ max(E[X],E[Y ]) and
E[max(X,Y )|A] ≥ max(E[X|A],E[Y |A]).

FIG. 8. Averaged number of steps versus the dimension d , ε = 0.001, 10,000 trials, t = 4. The left
graph concerns the hypercube of side length L = 1 while the right one corresponds to L = 10. For
both of them, the algorithm starts at the center of the hypercube.
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FIG. 9. The value of the IBVP approximated solution uε
N (t, x) versus t for N = 1000, ε = 0.001,

d = 3.

PROOF. We shall just prove the first inequality. The proof of the second one is
similar. We get

E
[
max(X,Y )

] = E
[
E

[
max(X,Y )|X]] ≥ E

[
max

(
X,E[Y |X])].

Since max(X,E[Y |X]) ≥ X, we deduce that E[max(X,E[Y |X])] ≥ E[X]. On
the other side max(X,E[Y |X]) ≥ E[Y |X] and, therefore, E[max(X,E[Y |X])] ≥
E[E[Y |X]] = E[Y ]. Combining both inequalities leads to the result. �

Let us now present properties concerning a particular probability distribution
arising in the random walk on moving spheres.

LEMMA A.2. Let W := −2 log(1 −
√

2e
d

ψd(R))− log(1 −R) where the func-
tion ψd is defined by (2.3) and R is a random variable with the following proba-
bility density function:

fR(s) = 1

(d/2)

ψd
d (s)

s
1[0,1](s) = 1

s(d/2)

(
s log

(
s−d/2))d/21[0,1](s).

Then W has its two first moments (denoted by M1 and M2) bounded.

FIG. 10. Histogram of the distribution of 10,000 random variables Zε for various values of t :
t = 0.01 (left), t = 0.05 (right), both with ε = 0.001, d = 3 and x = (0.5,0,0).
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FIG. 11. Histogram of Zε for d = 3 and t = 1 (left), for d = 10 and t = 0.01 (right), both with
ε = 0.001 and x = (0.5,0,0).

PROOF. Let us first note that W is a nonnegative random variable, since R and√
2e
d

ψd(R) are [0,1]-valued. If we denote

Wa = −2 log
(

1 −
√

2e

d
ψd(R)

)
and Wb := − log(1 − R),

then it suffices to prove that E[W 2
a ] < ∞ and E[W 2

b ] < ∞.

E
[
W 2

b

] =
∫ 1

0
fb(s)ds with fb(s) = (log(1 − s))2

s(d/2)

(
s log

(
s−d/2))d/2

.

Let us observe that fb(s) tends to 0 as s → 0 and in a neighborhood of 1,
fb(s) ∼ C1(1 − s)d/2(log(1 − s))2 where C1 > 0 is a constant. We deduce that
fb is integrable on the whole interval [0,1] which implies that E[W 2

b ] < ∞. For
Wa we get E[W 2

a ] = ∫ 1
0 fa(s)ds with

fa(s) = 4 log2(1 −
√

2e
d

s log(s−d/2))

s(d/2)

(
s log

(
s−d/2))d/2

.

FIG. 12. Averaged number of steps versus n for ε = 0.5n and x = (0.5,0,0) (left), averaged num-
ber of steps versus u for x = (u,0,0) and ε = 0.0001. In both situations: 10,000 trials, d = 3, t = 1.
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FIG. 13. Averaged number of steps versus the dimension d for ε = 0.001 (dashed line) and
ε = 0.0001 (solid line). In both situations: 10,000 trials, t = 1 and x = (0.5,0,0).

In a neighborhood of 0, we have fa(s) ∼ C2s
d/2(log s)d/2+1, in a neighborhood

of 1, we observe fa(s) ∼ C3(1 − s)d/2+1 and finally in a neighborhood of 1/e,
fa(s) ∼ C4 log2 |s − 1

e
|. We deduce that fa is integrable on the whole interval

[0,1] and E[W 2
a ] < ∞. �

APPENDIX B: IMPROVEMENTS FOR THE CLASSICAL
RANDOM WALK ON SPHERES

In this section, we focus our attention on the classical random walk on spheres.
We consider an 0-thick domain D, see the definition developed in (4.3), and the
Euclidean distance to the boundary d(x) = δ(x, ∂D). The random walk is then
defined as follows:

• We start with an initial condition X0 and fix two parameters ε > 0 and β ∈
]0,1[.

• While d(Xn) > ε, we construct

(B.1) Xn+1 = Xn + βd(Xn)γn,

where (γn) stands for a sequence of independent random variables uniformly dis-
tributed on the unit sphere in Rd .

We adapt here several results of [2] to our particular situation. Let us recall that
U is the energy function defined by (4.10) which is based on the set of measures
M, defined by (4.5), and on the Riesz potential. Since D is a 0-thick domain, the
following lemma holds.

LEMMA B.1. There exist two constants δ > 0 and η > 0, such that: for any
y ∈ D (we define x the closest point of y belonging to the boundary) and any
measure μ ∈ M, we have:

1. either U(z) > Uμ(z) + 1 whenever ‖z − x‖ < δd(y) and d(z) > δ/4d(y),
2. or μ(B(y,2d(y))) ≥ ηd(y)d .
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This lemma, which is quite general and is not directly linked to the random
walk, has an important consequence on it (for the proof of Lemma B.1, see [2]).

PROPOSITION B.2. Let us consider δ the constant of Lemma B.1 and the
random walk (Xn)n≥0 defined by (B.1) with β ∈]1 − δ/2,1 − δ/4[. Then there
exists a constant L > 0 such that the sequence Un := U(Xn) satisfies

E[Un+1 − Un|Un] > L ∀n ≥ 0.

In [2], the authors consider a general random walk defined by (B.1). They prove
that there exist an integer k and a constant L > 0 such that E[Un+k −Un|Un] > L.
Here, we adapt the proof by introducing a particular condition on the parameter β

which permits in fact to set k = 1.

PROOF OF PROPOSITION B.2. Let us consider Xn. Due to the weak compact-
ness of the set of measures M (see Remark 4.3), there exists a measure μ ∈ M
such that

Un = U(Xn) = Uμ(Xn).

For this particular measure, either the first or the second point of the previous
lemma are satisfied.

Step 1. Let us assume that the first point is satisfied, that is, U(z) > Uμ(z) + 1
when ‖z−x‖ < δd(y) and d(z) > δ/4d(y). Since Uμ(Xn) is a submartingale, we
get

E[Un+1 − Un|Xn] = E
[
Un+1 − U

μ
n+1|Xn

] +E
[
U

μ
n+1 − Uμ

n |Xn

]
≥ E

[
Un+1 − U

μ
n+1|Xn

]
≥ P

(‖Xn+1 − xn‖ < δd(Xn), d(Xn+1) > (δ/4)d(Xn)|Xn

)
,

where xn is the closest point of Xn on the boundary ∂D. We denote by un = xn−Xn

d(Xn)

which belongs to the unit sphere. Using the definition of the random walk and the
particular choice of the parameter β , we get immediately

d(Xn+1) > (1 − β)d(Xn) > δ/4d(Xn),

and

(B.2)
‖Xn+1 − xn‖ = d(Xn)‖un − βγn‖ ≤ d(Xn)

(
(1 − β)‖γn‖ + ‖γn − un‖)

= d(Xn)
(
1 − β + ‖γn − un‖)

< d(Xn)
(
δ/2 + ‖γn − un‖)

.

Let us recall that un is a unit vector. Then we define the set un of points u belong-
ing to the unit sphere of dimension d such that ‖u − un‖ < δ/2. Let us just note
that un is a nonempty open set.
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We observe that P(γn ∈ un) =: p > 0 for any n ≥ 0 and does not depend on un

due to rotational invariant of the distribution. Furthermore, for any γn ∈ un , (B.2)
implies that ‖Xn+1 − xn‖ < δd(Xn). Therefore,

E[Un+1 − Un|Xn] ≥ P
(‖Xn+1 − xn‖ < δd(Xn), d(Xn+1) > (δ/4)d(Xn)|Xn

)
≥ P(γn ∈ un) = p > 0.

Step 2. The second case concerns the condition

μ
(
B

(
y,2d(y)

)) ≥ ηd(y)d .

By the Green formula, for a C2-smooth function h,

E
[
h(Xn+1)|Xn

] − h(Xn) =
∫
S(Xn,βd(Xn))

h(y)dσ(y) − h(Xn)

=
∫ βd(Xn)

0
r1−d

∫
B(Xt ,r)

�h(y)dV (y)dr.

Since �Uμ(y) = 2(d + 2)
∫ ∞

0
μ(B(y,r))

rd+3 dr outside the support of the measure μ

(consequently Uμ is a C2-function in the domain D), then, for any y satisfying
‖y − Xn‖ ≤ βd(Xn), we get

�Uμ(y) ≥ 2(d + 2)μ
(
B

(
Xn,2d(Xn)

)) ∫ ∞
(2+β)d(Xn)

dr

rd+3 = 2μ(B(Xn,2d(Xn)))

((2 + β)d(Xn))d+2

≥ 2η

(2 + β)d+2 d(Xn)
−2.

Applying the previous results to the particular smooth function h = Uμ, we de-
duce:

E[Un+1 − Un|Xn] = E
[
Uμ(Xn+1)|Xn

] − Uμ(Xn)

≥ Cd(Xn)
−2

∫ βd(Xn)

0
r dr = Cβ2

2

for some positive constant C depending on η, β and d .
Since E[Un+1 − Un|Un] = E[Un+1 − Un|Xn], we obtain the announced result.

�
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