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ABSTRACT.   In recent papers Kreiss and others have shown that initial-
boundary value problems for strictly hyperbolic systems in regions with smooth
boundaries are well-posed under uniform Lopatinskii conditions.  In the present
paper the author obtains new conditions which are necessary for existence and
sufficient for uniqueness and for certain energy estimates to be valid for such
equations in tegions with corners.   The key tool is the construction of a sym-
metrizer which satisfies an operator valued differential equation.

I.  Introduction. The aim of this series of papers will be to obtain energy

estimates for mixed initial-boundary value problems for certain hyperbolic partial

differential equations in regions with corners.  The work will revolve around the

introduction of a new symmetrizer for general initial-boundary value problems.

This symmetrizer seems to have a significance of its own.

Kreiss [6] has  recently shown that a general type of mixed initial-boundary

value problem in regions with a smooth boundary for a strictly hyperbolic operator

with variable real coefficients is well-posed in the  L2   norm.  His result was

improved by Ralston [lOl, to permit complex valued coefficients, and by Rauch

[ill, to obtain a semigroup estimate.  Sakomoto [12]   independently obtained

similar results for a single higher order equation.  Earlier work was done by Hersh

l3J, who obtained classical existence and uniqueness results for equations with

constant coefficients without obtaining energy estimates. An important new idea

in Kreiss' work came in the nature of the symmetrizer he used in order to obtain

his estimate.
The symmetrizer we shall introduce below involves certain solutions to a

homogeneous differential equation.  These are the same exponential solutions that

appear in the Kreiss condition for well-posedness, and indeed which appear in the

analogous Lopatinskii condition for elliptic systems [8l.  We shall, in a later

paper, use the symmetrizer introduced here to obtain special cases of Kreiss'

result in a simpler fashion.
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In the regions with corners discussed below, Kreiss   condition for each half

space problem need not imply well-posedness of the corner problem. We shall

give a simple counterexample below.  We introduce a new condition which is both

natural and necessary in the sense that if a solution for constant coefficients

does exist, then we are led directly to the condition in a natural way, and we can

write down the answer in this case. We then construct a new norm, with which an

a priori estimate is obtained, at least for constant coefficients.  In order to do

problems with variable  coefficients, we shall show in a future paper that this sym-

metrizer has certain smoothness properties, and hence the functional calculus for

pseudo-differential operators applies.  It should be noted that in the elliptic case,

modulo a weakening of the norm at the corner, Kondrat'ev [4] has shown that an

elliptic boundary value problem remains such near a corner, in distinction to what

happens here. We discuss this in the last section.

The situation encountered here appears to be analogous to that found in the

study of Toeplitz operators in two dimensions, e.g. Douglas and Howe [2l, where

invertibility of the two half space problems is necessary, but not sufficient, for

invertibility of the corner problem.
Special hyperbolic differential equations in such regions have been studied

in connection with water waves over sloping beaches, e.g. Peters [9], and in

wedge problems in optics, e.g. Kraus and Levine [5].  Recently, Kupka and the

author [7], used a new Weiner-Hopf technique to obtain a closed form solution to

such a problem.

II. Statement of the problem; results.   We begin by considering the hyperbolic

system with constant coefficients,
n

(2.1) Au   + Bu   +  22   C.u     + Du - u   = F(x, y, z, t),
y      y=3     '  Zi

where  z = (zol z,,---, z ), u  and  F  are complex valued  m vectors and the sys-3      4''«' r

tem is hyperbolic in the sense that for the  m x m  matrices  A, B, C     the matrix

(2.2) det [Ait; + Bit] + Cico - A] = 0

has only purely imaginary roots.
Here Cioj = 2"=3 Cico-, co = (d>3, • • • , ù>n), and  <f, 77, tô are real, with |f|   +

I77I2 + |w|2 > 0. (We shall always use the convention that  | |   of a vector is the

square root of the sum of the squares of its components.)

We wish to solve this problem in the region:

x, y, ¿>0;      -°° < z. < °°,       /' = 3, 4,• • •, n,

with initial conditions

(2.3) u(x, y, z, 0)= 0.
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We further assume that
0    ■••

a, a. <0, ;= 1, 2,-.., /,
(2.4) A = | ' |,    where     ;

> 0, k - I + 1, • • • , m,

\Q    . . .     0 am

and there exists a nonsingular matrix  T such that

0    •••     0\

J> .     \ è   <0, /= 1, 2,.-., p,(2.5)       TBT-l= p 1    where    '
Vl      '      / i»t >0, k= p+ I,-.-, m.'••V

0    ...     0 b   '
We now impose boundary conditions of the form

(a) u\0, y, z, t) - SuU{0, y, z, t) = g(y, z, t),
(2.6)

(b) {Tu)m(x, n, z, t) - R{TtAlV(x, 0, z, t) = h{x, z, t),
where

u1 = («j,.. • , tvpT,       an= (ai+1>- • •, «m)T,

III      / \T IV     / \T
«      =(«j,..., af)   ,        «     = ("p+1,---, «„)   ■

5  and  R   are constant matrices having  / rows and  (m — I) columns, and p

rows, (m ~ p) columns respectively.

It is clear from finite speed of propagation considerations, that in order for

the corner problem to be well-posed in any reasonable sense, it is necessary that

the two half space problems:

Equation (2.1) in region  0 < x, t < oo, — oo < y, z. < oo,
(a) . ?

with boundary condition (2.6(a))
and

Equation (2.1) in region  0 < y, t < oo, - oo < x, z. < oo,
(b) . t ^

with boundary condition (2.6(b))
be well-posed.

We first Laplace transform (2.1) in time and use (2,3).  In problem (a), Fourier

transform in y  and all the z.  variables.  We have, if  F = 0,

(2-7) ux + A~1{Bíxú2 + ¡Coi - s)u= 0,       x > 0.

[it is easily shown that the matrix  D  plays only a trivial role in this problem and

may be set equal to zero throughout.]
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It is easily seen  that Kreiss' condition is valid for both half spaces for all

co ?, to are real,       s = r¡ + iç      with 77 > 0, £ real.

We can show (e.g. [3J), that this ordinary differential equation has exactly /

linearly independent solutions which decay exponentially as x —> + 00. Normalize

them at x = 0, and obtain  / functions

(2.8) $y(x, ú>2,ú>, s),       7= 1, 2,— , /.

Kreiss' condition is, at  x = 0,

(2.9) determinant  [/, - S] [<J> {, ■. . , 4^] / 0

for all oj2, co, s, with  Real s > 0.
This condition is natural in that if one wishes to solve (2.7) with the trans-

formed boundary condition of (2.6(a)), the inverse of this matrix must appear in

the solution.
Kreiss' condition for problem (b) is completely analogous.

We make an assumption.

(2.1) Assumption.    Kreiss' condition is valid for problems (a) and (b).

We now proceed by first assuming that a solution exists to (2.1), (2.6) with

F = 0, h = 0, and then seeing what this assumption leads to.  We have

(2.1') Au   + Bu   + (Cico - s)u = 0,       x, y>0.
x y J —

(2.6')    (a) ul{0, y, co, s) - Sull(0, y, cd, s) = g{y, to, s),

(2.6')    (b) <Tu)lU(x, 0, co, s) - R(Tu)lv{x, 0, to, s) = h(x, to, s).

Let v  be the function defined for y>0, — «><x<oo  as

v(x, y, co. s) = u(x, y. co, s)     if 0 < x < °o,
(2.10)

tax, y, (±>, s) = 0    if -«j < x < C.

Then  v  satisfies

(2.11) Av   + Bv   + (Cico- s)v= AS(x-0)u.{0, y, co, s),      y > 0,
x y T        J J  —

with boundary conditions

(2.12) (Tv)m{x, 0, co, s) - R(Tv)™(x,n,co, s)= 0,       -oo<x<c*.

We know that

(      3) "+(°'>''W'S)=   UCy.o,, S)J + i        0 J"
If we Fourier transform (2.11) in x, the resulting equation

(2-11 ) f   + S'H^zct»! + Cico-s)v = «+(0, y, co, s),

with boundary conditions
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(2-12'} {Tv)miov0,a, s)- R(Tv)lv(wv 0,0;, s) = 0,

can be solved uniquely, using Kreiss' condition, if we require that u+(0, y, oj,s)

be smooth with compact support and the solution not increase exponentially as

y—► + ». We thus have  v (x, y, co, s), and hence  v (x, 0, co, s) for x > 0, which

must equal u(x, 0, tu, s) for x > 0.

We next let w be the function defined for x > 0, — oo < y < oo with

w(x, y, co, s) = u{x, y, oj, s)    if 0 < y < oo,

w\x, y, co, s) = 0    if -oo < y < o.
Then  if  obeys

Aw   + Bw   + (Ci(ú-s)w = ß(3(y - 0)íXx, 0, oj, s),
x y J

x > 0,    with boundary conditions
(2.15)

wKo, y, oj, s) - SwU(Q, y, oj, s) = g(y, oj, s)    if y > 0,

wKo, y, oj, s) - S^'HO, y, co, s) = 0 if y < 0.

We can Fourier transform in y and proceed to solve this in the right half

plane in the analogous fashion as above, finally obtaining w{0, y, co, s). If a

solution does indeed exist to this problem, then it must be true that

-<*»-'>=(«;::; ¿hi**?*)-
however, we have constructed this function such that

(2.17) u-(0, y, oj, s) =  I 1+  (^ J
\ OJ,s OJ,s6     / x

where  T        and   P.,     are linear operators which will be discussed in moreO), S to), s r

detail in succeeding sections.  Thus, if a solution to the corner problem exists,

it is necessary that the equation

(2.18) [T      _/](D = _P     gœ,s oj,s°

has a solution for all oj, s.   We introduce the convention here that all oj, s mean

all real oj . and all s  with real part positive.  Moreover, if we expect to bound the

solution on the boundary in terms of some norm of g, we wish the left inverse to

be bounded in some sense. Finally, if this is all valid, then we need only use

the value of 0 here obtained in (2.13), then solve (2.11'), (2.12 ), to obtain the
correct answer.

We pause here for an example of this condition. Consider the equation

(2.19) ["J    °]»x ̂ [J    _°]«y- —°
in x, y > 0, with boundary conditions
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(2.20)    Ki(0, y, s)~ au2(0, y, s) = f(y, s),      u2(x, 0, s) - bu^x, 0, s) = 0.

It is easily seen that Kreiss' condition is valid for both half spaces for all

complex  a and  b.   A simple calculation shows that

(2.21) T <& = e- lsyay$>,
s '

and in fact that if a solution exists, it must be

(2-22) (X,y, s) = _£-"f(*+y.*>
1 - abe-2s{x+y)

U-^J; u(x,y,s) = --—-;-,
1- abe~2s(x + y)

and we see that an a priori estimate of the type sought below is possible if and

only if  \ab\ < 1, which is exactly the condition that I - T    have a uniformly

bounded left inverse.

We now state our remaining definitions, assumptions, and results.

(2.2) Assumption.   The matrices A, B, C. are symmetric, constant, and com-

plex valued.  Thus the matrix  T  in (2.5) can be taken to be unitary.

(2.3) Assumption.    Either the operator is strictly hyperbolic in the sense that

the eigenvalues in (2.2) are distinct, or the following conditions are true:

(a)   There exist uniformly bounded and invertible matrix functions   U(co2, s, co),

V{co., s, co)  both of which are  C°°  with C°°  uniformly bounded inverse for Res >

K > 0, all co.,co, for any  K > 0.  Moreover, 3  a constant 5    > 0 with

(2.24) l)-lA-1{Bia>2+ s+ Cko)U = (   ^   ¿*
22

with Re L j j > SjTj, Re LJ2 < - S{r]

(2.25) V~lB~\Aiú>.+ s+ Cico)V =
Kn    Ku

K 0      K22

Re Kj j > 8,77, Re K22 < - ^271-
(2.4) Assumption.   Any real eigenvalue of A~  B  is negative.

Notice this implies that  I + p = m.
Lemma (4.1) below will show that strict hyperbolicity is sufficient for (2.24)

and (2.25) to be valid. Of course, it is not necessary, e.g. the operator defined in

(2.19).
The next assumption is the critical one.

(2.5) Assumption.    The equation

(2.26) (/_t     )4>=gCO ,S °

posesses a solution $ for any  g{y)   which is smooth with bounded support, having
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the property

(2.27)(a) f™\A(y,co, s)\2dy< Kj J^
'x2

p=0 i)V> 'dy{l+ |oj|2+ \s\2)    \

fot all real co, s = r¡ + i¿;, with r¡ > 0 where the estimate is true, independent of

oj, s  and g with  K, > 0, K2 > 0, K,   real, all universal constants.

We shall call this left inverse (/ - T, and for technical reasons we

(2.27)(b)
Jo" \{y0■My> dy

K2U)

<x^fr    Z\(y^)Pg(y)   dy(i + \co\i+\s\2)K>U)dy,

for all /',= 0, 1, 2, . . ., 77 > 7/. > 0, and all oj,  £.  Moreover, we assume similar

estimates are valid for the adjoint operator ((/ - TM   )~  )*.

Under all these assumptions, it is not too hard to obtain our first main theorem

merely by solving the equation in the manner discussed above in (2.10) to (2.18)

and using some of the estimates we shall derive below.

However, this method will not be applicable in the case of variable coeffi-

cients.  Moreover, the existence of a symmetrizer has an independent abstract

interest.

The operators (y (d/dy)r appear in a somewhat disguised fashion in

Kondrat ev's paper [4] on elliptic equations in conical regions. We introduced

them here for technical reasons which concern certain multiplicities of eigenvalues

of the matrices in (2.24) and (2.25).  We are not sure if there exist cases in which

K2 = 0 does not suffice, but  K~ > 0 does. (K2   is the constant appearing on the

right-hand side of (2.27)(a).)
In order to check the solvability of (2.26), with estimate (2.27), we must

analyze certain singular integral equations which, in general, are rather difficult

to handle.  However, sometimes exact solutions of these equations can be obtained,

e.g. Kupka and Osher [71.  The algebra which must be checked in the Kreiss condi-

tion is often itself quite nontrivial.  Thus, it is not surprising that the singular

integral equations arising here often require special analysis.  We expect to dis-

cuss this matter in a forthcoming paper.

(2.6) Definition.    Let S(x, y, co, s)  be the Fourier-Laplace transform of any

vector function u(x, y, x, t).   We shall obtain estimates on/      Jz/(x, y, co, s)\  dxdy

which are true for each co, s.

Define for fixed ru, s

(2-28)       W\2p_Q- f^1 de ¡~(l+\co\2+  \s\2)Vrdr   £   \(r £Ju(r, 6, co,
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Q is some real number, P is a nonnegative integer, and let {{û, v))p 0  be the

analogous inner product.

For functions defined on the boundary, e.g. g(y, co, s), define

<"»   w.o-rt|(^)'«— 5) dx{l  +   |cu|2 +   U!2)0

and {g, f)p q  is the analogous inner product.

We also let i(0, y, co, s) = û„  (y, co, s), û(x, 0, co, s) = uß  (x, co, s), and

{S, v) be the inner product on L (- <*>,  co), ((£, v))  on L2[(- co, 00) x (0, 77/2)].

Main Theorem I. Under all the assumptions so far stated, there exists an a

priori inequality for smooth solutions to (2.1), (2.3), (2.6) of the type

(2.30) (77- K3)||«12i0 + |SBj|2i0 + \uB2\l0 < K4\\F\\liQ + K5\g\2PiQi + K6\b\l^

for all r¡ > K,  > 0, where the  K., P, Q, and P., Q. depend only on the coeffi-
cients of the equation and the boundary conditions.

In order to prove our next Main Theorem which involves the symmetrizer, we

must introduce polar coordinates in the x, y dependence. The transformed equa-

tion becomes, for F = 0:

(2.31 )    {B cos 6~ A sin Q)ue + [(B sin 6 + A cos d)rûr+ {Cico - s)m] = 0.

Next, make the change of variables  r = e      ,-°o<A<c«, and let e     û = v. We

thus have:

{A sin 6 - B cos 6)vq + {A cos 6 + B sin 6)vx
(2.32)

+ [A cos 6 + B sin 6 + [s - Cico]e~,l]v = 0.

Let M {6, 6J, s, •)  be the differential operator defined on LA- 00, 00)  by

(2.33)      -M(6, co, s, .)0Aa cosÖ+ß sin 0)(~+ l\ + [s - Ctoje-Mî.

We may now state our next Main Theorem.

Main Theorem II.   Under all the assumptions, there exists K such that

K(ö, co, s, ,)[A sin 0 - B cos 6]   is a symmetric operator valued function of 6, co, s

on LA- 00, °o)  having the following properties:

(1) For any fixed pair of functions û, v in C°° (- «3,  00) O  A(- oo, 00),

(v, Kû) is a C00 function of 6 for fixed co, s, and each derivative is a continu-

ous function of co  and s, bounded by a constant times  (1 + |<u|    + \s\   )  to some

power.

(2) K  obeys the operator equation on C°° (- °°, °°) O   A(- °o, t»)5

(2-34) I i? (J{[¿ sin 0 _ B cos 0]) + Re HM = 0,
2 do

in fact
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(235) K = {A sin 0 - B cos 6)JNJ*,

with N  independent of 0, and

(2.36) (a) A

Hence

™(/*U sin 0 - B cos 0]) + /*M = 0.

(2-36)(b) t|([A sin 0 - B cos 0]/) + M*/ = 0.
Thus

^K(/4 sin 0- ß cos 0)

= -^[(A sin 0 - B cos 0)/]/V/*[A sin 0 - B cos 0]

(2.3-) + (A sin 0 - B cos 0)JNrzj(j*[A sin 0- B cos 0])

= -M*J NJ*[A sin 0 - B cos 0] - [A sin 0 - S cos d]]NJ*M

= _m*K*- Km = -2 Re Hm.
(3)  At 0 = 77/2, for any function v  obeying

vHK co, s) -Svn{\, co, s) = e-Xg(e~x, co, s),

there exists positive constants rL,  K,, such that

(d,}i(rr/2)d)>82(ex/2v, ex/2ï)

(2.38) P2 Q
- k6 v (e-*/2(a/axv'|, e-A/2(0/0AVgKi + |oj|2 + \s\2) ».

7=0

At 0=0, for any function 7J  obeying

(T¿?)m(A, oj, 5) - R(Tt7)IVU, oj, s) = e"Xî(e_X, oj, 5),

there exist positive constants 5,,  K-., such that

{v, H(0)ñ9) > 53(ex/2?, e>/2f0

(2.39) o
-K,   £  (e-X/2{d/d\Yb, e~k/2(d/dXYh)(l + |oj|2 + |s|2)   2.

7=0

III. Proof of Main Theorem I using the symmetrizer.   We begin by considering

the auxiliary problem

(3.1) Ad   + Bv   + {Cico-s)v= F,       x, y>0,x y

with the boundary conditions

(3.2) ?'(0, y, oj, s) = 0,       (TD) ln(y, 0, oj, s) = 0.
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If we inner product the equation with  v, integrate over x, y > 0, and take the real

part of both sides, we have

(3.3)        (i-«)B^5,9+xg|îbii2i0+ic9iîb2i2>o<j«f)iiFe2i.o.
Next, multiply (3.1) by r{d/dr), and use the fact that
(3 4) /L —     JL   —     ÂL d   d        d      d      d

dr dx      dx   dr      dx dr ay       dy    dr      dy
Let {r{d/dr))'v = v('\ etc.

If /' = 1, we have

(3.5)    Av(l) + Bv(l)+ {Cico-s)d(1)= F(l) + Av   + Bv    = F(1) + F - {Cico- s)v;
x y x y '

v        satisfies the same boundary condition as  v.  Thus, we can obtain the a

priori estimate

(3-6) <K(i)[||F(1)||0>0+ ||P«Sfl]+ K^ll^o.o

<KU)\\ßlX,o+KM^Wl,v
We may proceed inductively in order to obtain, for any /', the estimate

^•7)     (v-<)\\t(n\\i,o+ k8i»b(;To,ca ^r4%o<KU)^np\\i-

A similar technique works for the adjoint problem:

(3-8) Av   + Bv   - [ + CÍCO+ s]d = F,x y

with the boundary conditions

(3-9) tu(0, y, co, s) = 0,       (T5)IV(x, 0, co, s) = 0.

The work of L. Sarason on weak = strong [13], these a priori inequalities, and

Assumption 2.4 guarantee the existence of a strong solution, v, to (3.1) for which

these estimates are valid.

Thus, we consider the function

(3.10) w=u-v,

w  satisfies

(a)    Awx + Bwy + {Cico- s)w = 0,

(3.11) (b)    w^-Sw^-v^ + S$i+g=gv

(c)    {TwR )m- R(TwR)ly = -{TdR )m+ R(Tvfí)lv+h=h..B2 B2 .n2 a2

Again, we inner product equation (a) with w, and integrate over x,  y > 0.  We thus

obtain, taking real parts,
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(3-12) ('i)HS.O^K10laB1l5.O+iCIllÄB2l20.O-

If we can obtain the estimate

(3.13)    \\\l.0 + \*B2\l.0$ M^lf*,^ <   l«!^,^ j   \dB$rd \h\l    y  ),P2.Q2

then we can use the estimates in (3.7) to obtain an estimate for  w  of the type

sought for û.  Finally, we add this to (3.3) to obtain the desired estimate for û.

All we now need do is to obtain estimate (3.13) for w.  We know that

e     w{e     ,0, fù, s) - p(\, 0, co, s)   satisfies

(a)      (A sin 0 - B cos d)pe + [A cos 0 f ß sin 0]px

[A cos 0 + B sin 0 t- [s - Cico]e~X]p = 0.
(3.14)

(b) p[(\, 77/2, oj, .v) - Spn{\, 77/2, oj, .s-)      c   Xgl(c'k, co, s),

(c) (V/l)ln(A, 0, to, s) - R(Tt5)1v(A, 0, oj, s) = e_X¿1(p-X, oj, s).     .

Multiply equation (3.14)(a) by K, then inner product with  p and integrate  d0d\, 0

from 0 to 77/2, À from  - °°  to 00, and take the real part. Notice

((/>, M(0)(A sin 0 - B cos 0)/V)

= ((p, W/00)[(H(0)(,4 sin 0 - ß cos 0))?]))

- ((/3, U0/00XK(0)(A sin 9-B cos 0))]?))
(3.15)

(pB , K{tt/2)Apb ) 1 {pB , K(0)ß?ß )

- {(p, K(0)[A sin 0 - 0 cos 0]^))

- ((£, (rV00)(M(0)(A sin « - li cos 0))/^).
Thus

Re((/?, H(0)(/1 sin 0- ß cos 0)/5ö))

(3.16) -- V2(pn , K(rr/2)Apn ) + V2(pR , Ji(0)Bpfí )
1 "i °2 2

- ({ß,V2Wd0)ui(A sin 0 - ß cos 0))/3)).
Thus, if we add this to

(3.17) -Re(£, Ha#),

we get, using (2.34),

(3.18) (S    . H(t7/2)A/;r ) + {p. , K(0)BpR ) - 0./51 öl "2 2

We then use (2.38), (2.39) and merely replace  À  by   - In r, with p{\, 0, oj, s) =

e     w(e     , 0, oj, s).  The result is immediate.
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Thus we need only to construct the symmetrizer H(0, co, s).

IV. Construction of the symmetrizer.

(4-1) M*(0, co, s) - [{A cos 0 + B sin d)((d/d\) - l) - (s + Czcu)e-X].

We are seeking an operator valued function of 0, w and s which obeys

(2.36) (b).   Thus we let the operator equation in (b) operate on a function  v (A).

(4-2) /?(A) = g(\, 6, co, s).

Then (2.36)(b) becomes

{A cos 6 + B sin d)g+ (A sin 6 - B cos 0)01/00

(4.3) + (A cos 8 + B sin 6)dg/d\ - (A cos A ß sin 0)g

- (s + C7új)e~*g = 0.

If we revert back to (x, y)  coordinates, we have g  satisfying

(4.4) Agx + Bgy + [s + Cico]g = 0.

We are now concerned with obtaining solutions to this homogeneous equation

which are bounded in x, y > 0 uniformly in s  and co.  For this we need the follow-

ing technical lemma.

(4.1)  Lemma.    // (2.1) is a strictly hyperbolic system, then there exists a

uniformly bounded matrix function  U(a>2, s, co)  which is  C°*  in its variables for

T) > K > 0, all ai     co, and with an inverse of the same type, such that 3   a constant

8l> 0 with

(2.24') U-1A-l{BicD2+s+ Cico)U=(L n    Ll2J,
2 \ °     ¿W

where  Re Lu > S.7], Re L22 < - 8^.

An analogous statement was formulated in Assumption 2.3 for B~ [Aico.+s + Cico)

and is, of course, also valid.

Proof.   Let ¿A (&),, £, co). It is clear that for |£| < 1  there exists a C°°

transformation  Í7, such that

(4.5) U-1A-l(Bico2+ s+ Cico)U= I    U j

with the L's  having the appropriate bounds. We shall consider |£| >lA, then

piece it together.  Following Kreiss [6], we replace
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AL = A-1(Bico7+s+ Cico)= \Ç\M.(Ç', r¡') = \CWV-
(4.6)

C-C/\C\,    í' = i/K|.
We can construct a  i! for 7/ > r¡0 > 0, with r¡0  any positive constant. Thus we

need only consider  U in the neighborhood of every point C   = Cn> T]   = 0. Kreiss

[6] and Ralston [10] have  shown that there exists a smooth W, with

(4.7) W~lM\W

K
where  Re  /Vj- <- 2^7?, Re /Vj j > 23^; for 7/ = 0, £' = £q, / > 2,

(4.8) M.(¿¿, 0)

k.  is purely imaginary, k. /= k.  if / ¡¿ /,

(4.9) M.(C, r,') = M.(¿¿, 0) + JN.iO + 0((r,')2) + Ey(£').

where  £ .(£ )   has purely imaginary entries, £.(£») = 0, and the element in the

lower left corner of N {¿, ), which we call n   . , has nonzero real part.7 s L

For each block AL, consider the characteristic equation

Det(Alf -*')= Det(AI;' - k!. - (*' - k'.))

(4.10) = (*'. _ k')s + i»"1,',,   , + '*(£' - C>   ,
7 'si 0      s 1

+ odT,'i2 + K'-g2),
Re nsl ¿0,lmmsl = 0.

Thus the roots are

(4.11) k! = k'. - l-P-W'st- W - <>*,+ ocivi2 + K* -¿¿I2)]1*.

This means that, if |£' - £'0\ < k(¿,'0)[t]']   , the roots of M, split up with l/2s,

l/2(s + 1), or l/2(s - 1), having positive real part if 77   > 0. The remainders then

have negative real part.

Let

<4-12) *-4-f*-V«,1-í'<í'-íX1],A.
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Then the eigenvectors are

(4.13) $.t= (1, a, a2,. ,a*AT + o(\v\2/3 + \c - c\z'n0

where for r = 1, 2,.. •, s  different branches of  a  are taken. *>-
We may use these eigenvectors to construct a bounded transformation  U. with

a bounded inverse  U .   , both of which are smooth in the region  0 < 77   < k. AC'r),

\C   - £0\ < ^13(^0^' except for an algebraic branch point at Ç  = ¿jQ, r¡ = 0,suchthat

UP
(4.14) (Y-lM.ÏÏ.

7   ;

Re m['¡ > 25^, Re M^ < - 25^.
We may do this for each block and for each  A.  The result then follows by

the compactness of the unit ball \ç \ = 1.    Q.E.D.
We may now use this lemma in order to obtain the solutions to (4.4).  Fourier

transform (4.4) with respect to y, multiply by A"   , then make the change of

variables g = Uh.  Then (4.4) becomes

(4.15)

hence

(4.16)

h +

b =

'II

0

'12

'2 2
h= 0,

exp(-Lnx)ij

where  h.   is some (m - I)  vector valued function of A,, s, co).  We define

(4.17) = F" U
'exp{-Ll{x)hl

0

as a function which obeys (4.4).

We may proceed in the same way and obtain

"exp(-f\ lly)h2
(4.18) V 0

where  h?  is some  (m - p)  vector valued function of (<i)j, s, co), g2   is a vector

valued function obeying (4.4). We now switch back to A, 0 coordinates and obtain

1
■si 3   xsin 6)dfjj.

(4.19)

^J_^exp(^2

' expl-L , XcúAe~   cos 6)h Aco., s, co)
U{co2)
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and view this as an operator valued function of 0 acting on functions of A in
C{—oe,   oe)    O  LÀ- .oo,   oo) .

For any such function v(X), let

(4.20) £j(oj2, co, s) = J °°    vAk) exp(-/oj2A)i/A.

We may define

(4.21)

where

/j(0, oj, s, • )v = J™     kjid, co, s, A, r)v{r)dr

k.(0, co, s, A, r)

<4-22> -if"   dco2U(co2)\°    CX277 J -oo ¿ 0

p(-L,,e~* cos 0 + ioj.,(e x sin 0))11

}

Finally, we have  / .   which is an integral operator of the same type.  Its kernel is

kS\0, oj, s, A, r)

(4.23)
—   f       dco^l \l! (ojJ exp(/oj,(A- e   r sin 0)).
2rrJ~~       2[expl_L*ie-^cosö)    oj

Proceeding in the same manner for  / ,, we may then obtain  /2(0)  which is

an integral operator of the same type, with

¿2(0, oj, s, A, r)

(4.24) -   P
277    i-

dco
¿TT    J -oo

exp(-K*ne-rsind)     0'
V ico) exp(/oj„(A-e   rcos 0)).

We must consider now

(4.25)
"V# ^* ^!(!

/ = /, + ;2 •

In this construction for / .   and / .   we notice that we may premultiply by any

operator on  L2(- ■*>, °°)  independent of 0, then the result still satisfies (2.36) (a).

At  0 = 77/2, we consider

/>/2)/l£=F^_ 7-1
V /.:[? t (oj.) exp(/oj-(A- e"'))Av(r)¿r,

(4.26) "exp(-<,e-r)    0
II

0 0
V*(co2)Av{r)dr.72*(n/2)Av= FM-2\X £

We make the change of variables r = - In f     We then have, letting

(4.27)
,     N       5 (-In x.)

#*,)=  -L,       *,>0,       /S(x) = 0,       x.<0,
1
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(4.28)

Vin/Mv-FJ^    ^*U2)AFi_2P(x1),

,       frxrexp(-K*u(co2)xl)dxl     Ol
-xJo   |_ 0 QjV {co2)Ap(Xl)J*{n/2)Av= F

At 0 = 0, we have

(4.29)
ft*»-??-»/."[exp(.L.i(I2ui)&i jsswi-,),

In the expression (4.28) for /*(77/2)Av, suppose

(4.30) p(x,).
^(Xj)

OU,)
Then

(4.31) F/*U/2)A„ = [°    °]^2)a[^2)= [Ôi(12)]^2)-

Kreiss' condition is exactly that the matrix  Q.{co2, co, s)  is uniformly invertible

for all co 2, co, s, Re s > 0. Thus we let

(4.32) J*(6)= P+F~l 1/ JFA(Ö)'0      Q-\C02, 6), s)J x

(4.33)

where  P+  is the orthogonal projection on  LA- <», oo)   defined by

P+ZUj) = /(xt),        *j>0'

P+/(x1) = 0, Xj<0.

Next, in the expression (4.2) for J A0)Bv, suppose

R&Xi))(4.34)

We then have

/>Uj) = r
<p(xr)

x2).

Again, Kreiss' condition is exactly that the matrix Q2ico2, co, s)  is uniformly

invertible.  Thus we let

(4.36)
, ["Q7 Uj-,, co, s)      0

;*(ö)=p+f-M        2L o o.
FL*(0).
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We now seek an operator   N  such that if p  satisfies (4.30), then

(4-37) (]*(n/2)Av, NJ*(n/2)Av) > S2|p| 2_0,

and, if p  satisfies (4.34), then

(4-38) (j*{0)Bv,NJ*(0)Bv)<-82\p\l0.

We first discuss the operator /?(77/2)At7  for  p satisfying (4.30).

We solve the equation

Au   + Bu   +{Cico-s)u= Ap{y)8(x-0),
x y '    J

(4.39)
y>0,       {Tu)m - R(Tu)w = 0    aty=0.

Fourier transform in xt multiply by B~

(4.40) u   + B~\Aico2+ Cw-s)u= B~lAp(y).

Then let  û = B-V*-1w.
We have, using (2.25),

(4.41) V(k*       ^)u=V*Ap{y),       y > 0.
Thus

/ -rexp(X*n(y-S))[V*A^)]Ivi/5
(4.42) U=( * 0) +

Vexp(K22y)«ni;    ^jy exp(K*2(y_s))[[l/*4/,(s)][i[ + k*2t7iv(s)]¿

Kreiss' condition states that we can use the boundary conditions at y = 0 to

solve uniquely for  "ITI-  Thus

(4-43) F72*(77/2)A¿;= [J   °]v*bi/(o).

But

(4.44) w(0) =T*(/Jf),
so finally, using (4.37),

P+(Tt7(x, 0, oj, s))IV\      /T22$
(4.45) j;(n/2)Av

We may proceed in the analogous fashion to compute  /j(0)ßi for p(*j)

satisfying (4.35),

(4-46) J>)Bv=(p    (n    ° v   W//YJi \P+a(0, y, oj, s)n/     \Jn.A/
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Thus,

(4-47) ^,s=TiiT22'

where T        was defined in (2.17).cúiS

Let
¡Nu   Nn\

(4.48) ,V=I    ^ 1;      Nn, N22 are symmetric.
V    12       22/

Equation (4.37) becomes

(4.49) OiiTiA2Ile<2T.A'V22>S2

and (4.38) becomes

(4.50) -Afn- 2Re NnTn - T\^22T22 > Sr

Pre and post multiply (4.49) by  T22  and  7"2 ,   respectively and add to (4.50). We
have

^ T«VnA,,5 - Hn + 2 Re TX,(T^-1) > 52(7^27-22 + l).

Let

(4.52) ^jv.-^ug^^^-,

and

(4.53) Nn = -S2.

Thus

N21 = 52(/+T*1Tn)+Re52(-T22 - 7*, 7^(7^ - l)~ 1Tn
(4 54)

= 52[l-Re(T22+r*)(Tu>s-l)-An],

and

^2=4l[T22-7íT^(T«..-l)"1

_12(It    _ t*1(t      _ i)-1 _ 7*).

V. Verification of the estimates.   We shall now verify conditions (1), (2) and

(3) of Main Theorem II. We begin by noticing that the operator 7*       involves

scalar operators of the form

(5.1) q(co  , s, co) I      exp(-A(w2, s, co)x)x!f(x)dx,
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where  A and q are  C°° functions of all their variables if s = r) + iç, r¡ > t/„ > 0,

except for certain algebraic  branch points where multiple eigenvalues of

B~ {\ico? - s + Cico)

occur.  However, because of (2.25), we have

(5.2) \x' exp(-A(oj2, s, co)x)q(co2, s, oj)| < Kj expi-S^rj),       x > 0.

Let x = 1/Re A(oj2, s, oj); we then have

(5.3) \q((o2, s, oj)| < Kl2[Re A(oj2, s, co)]'.

If we integrate (5.1) by parts  j times, we obtain

(5.4)
^(oj2, s, oj) / t9 V    •

j       exp(-A(oj2, s, co)x)[—j (x'f{x))dx
A?(oj?, s, co

We need now to estimate the operator

(5.5) J~ exp(-A(oj2, s, co)x)f{x) = PxFf,

i.e. we view this as an operator acting on the Fourier transform of /:

(5.6) f™ exp(-ico2x)f(x)dx= Ff=  f(co2)

which takes oj2 into - z'A(oj2, s, co). In order to estimate this, we shall transform

the lower half plane into the unit circle and then use Theorem 1 of Carleson [l].

Notice

(5.7) [//=/
/.U+l)\    2K
VU-1)7(1-«)

is a unitary map of L2[0, oo]   one-to-one onto H     of the circle. We seek the trans-

formation which takes f(i(z + \)/{z - 1))(1/(1 - z)) into f{- ik{i{z + l)/{z-l)))(!/(! -z)\

Let

(5.8) M = ~U-i)
Then the transformation in question is

(z + 1)            _,.  .       z + i
p    \z) = -r.

(5.9) Tg = g(p-H-iA(p(z)))) p'(z)

p'(p-H-¿A(pU))))

The function A is an eigenvalue of ß~  (A/oj2 + Czoj - s)  with positive real part.

We can show therefore, as   (x>2 I 0 that the function A(1/oj2) has a Puiseux

expansion for some positive integer p.
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À-,
(5-10) A(1A) = — + T kxüL'*-1

W2 7=1

with A_j / 0.
We can differentiate this and obtain

CO

(5-11) X'(co2) = A_, +  X A.(l - ;/>X«u2)-**.
7 = 1

Thus, the function - z'A(cu2)  is one-to-one if co2 > M(s, co), also if &>. <- M(s, «),

where

(5.12) MU, o>) < M0(l + \s\2 + |W|2)Ql/2

for some  öi > 0.
We shall only estimate the operator in (5.5) for co2 > M.   This corresponds to

bounding

(5.13) j\(/A(-zA(M^))))|2 -^-f-^
lAp-H-ittpiJ0))))}

for e> 0j > 0.  By the one-to-one property of A, we may make the change of

variables

(5.14) z = /A(AA)~ VA)Ï = ei6,        Q<0<0V

0.15) |pU)A| -      ,   '^ ,

so we must bound

(5-i6) r i/c^)i2—i—,Jr |A'((-ArV0?)))|
where T  is the curve defined by A14)

H0) = R{d)ei4>(9).

According to Carleson's result [l], we need only estimate

(5.17) 1   pm (RAi-/A-'(/))(lP'(0)|2 + \R(d)\2(cp'(d))2),/2 de_
1 Jo |A'((-7A)-Hp(R(0)e^(ö))))|

Thus, we shall have as a bound

(5.18) SUp—.-_    (oi co2> M(co, s).
|A'(«2, s, co)\

Similar reasoning works for a>2 < - M(co, s).  This quantity can also be bounded by

a constant multiple-of (1 + \co\    + \s\   )      .  Thus we have shown
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(5-19) IVlo,o<K3l/lp22,Q22-

A similar argument works for T        We next consider T'      which involves sums of

scalar operators of the form

(5.20) x7 -exp(-A(oJ2, s, co)x)q(co2, s, co)f(co2)dco2,        x>0,

where  q  obeys (5.3). We may replace

(5.21) f(a>2) = Af+{l-A)f,
where  A(co2. co, s)  is in  C°°,

A = 1     if  |oj j| > M(s, co) + 1,

A = 0    if  |oj,| < Al(s, oj),      0 < A < 1.

The quantity involving  (1 - A) f can be easily estimated appropriately.  We thus

wish to estimate

(5.22) xl   I       exp(-A(oJ2, s, co)x)qf(co2)dco2.

We may integrate by parts  j times, and obtain

(5.23) f°° exp(-A(oj„ s, co)x)U- —- )  q(co  , s, co)f(co )dco   .
JM        r 2 \cho2  A (oj2, s, co)/

We can use (5.3), (5.10) and (5.11) to obtain the same estimate as for 7'22,

modulo different  K,   and  Q22-  Of course, a similar argument is valid for T...

In order to estimate products of these operators we must consider the effect

of {x(d/dx)Y on them.   Because of Assumption (2.3) or Lemma  (4.1), we may

differentiate (5.1) with respect to oj2, and the effect will be only an increase in

bound of the form  K,(l + |oj|2 + |s|2)   3'    .  Thus we are considering expressions

of the form

(5.24)    j"1  dx   I dco    exp(;'«J2y - A(oj2, s, to)x){co2y)'q{co2, s, co)y—{xTf(x))j dx,

y > 0 and  q is uniformly bounded.  Integrate by parts  / times with respect tooj2,

we have (modulo constants)

(5.25)       Í     dx  I       exp(/oJ2y) (-t--) [w72 exp(-A(oj2, s, új)x)í7(oj2, s, oj)](—]U7('
2>

This becomes a sum of terms of the form

(5.26)    J "° dx J °^ exp{ico2y-)ico2,s,co)x)[cot'2xp q\.co2, s, oj)]i^-j {xrf(x))dx,
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p = 0, 1,.. ., /, where  qp   is bounded by (1 + |tul2 + \s\2)   0   /<(*>)_    Next integrate

2 i Q(p)by parts  p times in x, recall that (1 + \co\    + |s\z)   !     > co2/X(co2, s, co). We then

have terms of the form

(5-27)    J~ ¡^ exP(^2y-A(o72, s, o>))?p(co v s, co)(-£) * **<**>/(*)«&.

We thus have shown

(5.2«) IVIp,Q<K3(P'2)|/Ip'(p,Q),q'(Q,P)-

Next, we apply (x(0/0x))r to (5.20), obtaining terms of the form

(5.29) x'+'-f   f ~   exp(-A(w2, s, co)x)>Ar-p)q{co2, s, co)f(co2)<ka2,

then integrate by parts  r + j - p times in oj2. An estimate of the type (5.28) for

7    / then follows. Similar arguments hold for  T..f and  T..f.
We must also consider the  0 dependent operators in order to verify condition

(1) of Main Theorem II.  This just becomes a matter of showing that terms of the

form
/   O \ f oc

(5.30) wTà")   q(ù)2,s,cu)\      exp(-\(a>2, s, co)x cos 6+ico2x sin 9){cos 0yx!f{x)dx

exist as maps of C°°(0, co) D LAO, A  into L {— oo, co).

If X{co2)/ico2  does not approach an eigenvalue of B~  A  which is positive

and equals tangent  0, then our previous integration by parts technique works.

This is indeed the case because of our "modified ellipticity" Assumption

(2.4).  This is the only place we need it in this work.

Condition (2) of Main Theorem II is valid because of our construction of the

symmetrizer.
Condition (3) is valid if the boundary conditions are homogeneous.  We must

merely examine the effect of the inhomogeneities in the boundary terms.  Thus we

are considering

(5-31) (¿, U{„/2)Av),
for

<e

v = v   + v„.
8 B

-x)\      /Se-Xp{e-X)

y<

Thus we have

(532) (A, H(rr/2)AdR) + 2 Re(A, H(n/2)Av) + (v, H(n/2)Av).
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We may now estimate the last two terms with the help of Schwarz' inequality,

the estimates involving  7'jj  and 7*22  and their adjoints and Assumption (2.5).

The result follows in the same way at  0=0.

VI. Comments.   It is clear that we may estimate all norms of the solution

||2||p q |£„|„, „,   merely by multiplying (2.6) by r(d/dr) and proceeding induc-

tively, following the procedure used in the beginning of §3.  Moreover, we can

then use the polar coordinate form of the equation to estimate the 0  derivatives

in terms of L2  norms of {r(d/dr))p{\ + \co\     + \s\   )yr      times a lower 0  derivative

of F and P , Q   norms of positive powers of r times / and g.

The scalar wave equation

u      + u      - 77,, = F,        x, y, t > 0,xx yy It ' ■"      —     '

u(x, y, 0) = 0,

(6-1) uJLx, y, 0)=0,

*x-4/3z/y = g(y),    *=0,

u   - 4/3u   = h{x),      y = 0,

will admit no reasonable estimate, since

(6.2) g«(-4x-3y+57)= u{x,y, t)

will solve the equation with initial data approaching  0 as  q —» oo, while the solu-

tions blow up for any positive   t   in an exponential fashion as   q—> oo.

However, the reduced wave equation

(6.3) uxx + uyy -s2u=F

with the same boundary condition, and s  fixed, will, by the work of Kondrat ev,

admit certain reasonable a priori estimates modulo a finite number of eigenfunc-

tions of the homogeneous equation.  The difference, of course, is due to the fact

that these estimates depend on s  and trouble develops as the imaginary part of

s  becomes unbounded.
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