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INITIAL-BOUNDARY VALUE PROBLEMS
FOR THE EQUATION utl = (a(ux))x + (a(ux)uxl)x + f*

By

K. KUTTLER and D. HICKS

Michigan Technological University, Houghton, Michigan

Abstract. Existence and uniqueness theorems are proved for global weak solutions
of initial-boundary value problems corresponding to the equation

u„ = {o{ux))x + {a{ux)uxl)x + /

under assumptions that do not require smoothness or monotonicity of a. The ini-
tial data are not assumed to be smooth, the boundary data are allowed to be time
dependent, and / is only assumed to be in L2.

1. Introduction. An equation used to model the longitudinal displacement in a
homogeneous bar of uniform cross section and unit length is

utt — (o'(Wjr))jc + S2Uxxi, X € (0, 1), t £ [0, T\ (1-1)
The question of the existence and uniqueness of solutions to (1.1) augmented with
boundary conditions and initial conditions of various types has been dealt with in
several papers. Among these are [4-11], These papers all establish the existence and
uniqueness of global, classical solutions to (1.1). In each paper, a is assumed to be
either quite smooth or monotone. The initial data are also taken to be very smooth.
More recently, (1.1) has been considered under assumptions that allow a to possess
corners and fail to be monotone [2, 3, 18]. The initial data are also much rougher in
these papers, which obtain weak rather than classical solutions to (1.1).

In this paper we consider a slightly more general equation,

Utt = {o{ux))x + {a{ux)uxt)x +f (1.2)

where a(V) > d for all V and a is continuous, the function / being a body force
which is only assumed to be in L2((0, 1) x (0, T)). The assumptions made on a are
similar to those used in [2, 3] and the initial data are also the same.

It makes good sense physically to consider the situation where a nonzero time-
dependent force is applied to one or both ends of the material. Also, this force need
not be continuous. The mathematical model for this realistic physical problem would
be (1.2), initial data

u(0,x) — uq(x) e Wl°°(0,1), u,(0,x) = u\(x) e L2(0,1), (1.3)
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along with boundary conditions of the form

u(t, 1) — 0, (1.4.1)
a{ux{t,0)) + a{ux{t,0))uxt{t,0) = k0{t), (1-4.2)

or of the form

a(ux{t,0)) + a{ux{t,0))ux,{t,0) = k0(t), (1.5.1)
a{ux{t, 1 )) + a{ux{t, 1 ))uxt(t, 1) = k,(t), (1.5.2)

where k, is only assumed to be bounded and measurable. The existence and unique-
ness theory for (1.2), (1.3), and either (1.4) or (1.5) is currently unsolved in the
available literature [20]. The solution of this problem when a(V) > S > 0 is the
main goal of this paper.

One might also consider the boundary conditions

u(t, 1) = b\(t), u(t,0) = bo{t). (1.6)
If o is assumed to be globally Lipschitz, these boundary conditions may be obtained
[12], but this assumption is overly restrictive for us in this paper. In the special case
where bj(t) = 0, the problem (1.2), (1.3), (1.6) may be shown to be well posed and
the details are worked out in [15] without an assumption of a positive lower bound
for a. Therefore, we omit the boundary conditions (1.6) and note that these type of
conditions are less interesting than (1.4) and (1.5) because the thing that can actually
be controlled at the ends of the material is not the displacement but the force.

Because of the discontinuities of k,, the roughness of the initial data, and the
lack of smoothness of a and a, the traditional methods of obtaining estimates on
local classical solutions are not easily applicable. Instead, we have chosen to estimate
global weak solutions of an approximate problem obtained by adding the assumption
that a is globally Lipschitz. This approximate problem may be dealt with by using
elliptic regularization and the Galerkin method. The solution to it has just barely
enough regularity to allow us to obtain estimates on ux. The basic ideas used are
generalizations of those in [2], but because of the weakness of the solutions to this
approximate problem, the implementation of these ideas requires careful attention
to measurability questions.

Section 2 discusses a variational formulation for the approximate initial-boundary
value problems and gives a proof of existence and uniqueness which is based on an
abstract theorem whose proof is found in Sec. 5. Section 3 obtains the necessary
estimates on the solutions to the approximate problem. Section 4 uses these esti-
mates to obtain existence and uniqueness for the initial-boundary value problems
of interest. For E a Banach space, L2(a,b\E) is the space of strongly measurable,
square-integrable functions. The notation — will denote weak or weak* convergence,
while —♦ will mean strong convergence.

2. The approximate problem. In this section, we prove existence and uniqueness
theorems for global weak solutions of initial-boundary value problems for the equa-
tion

Utt = {^{ux))x -\- iya(ux)uxt)x f (2.1)
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with initial conditions

u{0,x) = u0(x), M0e Wloo(0, 1), (2.2.1)

Ut(0,x) = u\(x), «i E L2(0, 1), (2.2.2)

and boundary conditions which are sufficiently general to include

w(U) = 0, (2.3.1)
o{ux{0, t)) + a{ux{0, t))uxt{0, t) = k0{t), (2.3.2)

or

o{ux{0,t)) + a{ux{0,t))uxt{0,t) = k0(t), (2.4.1)
o(ux(\,t))+a(ux(\,t))uxt(\,t) = k\(t), (2.4.2)

where kj is only assumed to be bounded and measurable. The problem solved is
called the approximate problem because

fv
For some Oo> W(V) = / (cr(s) + uq) ds is bounded below, (2.5.1)

Jo
a is bounded, and \a(V\) - a(V2)\ <K\V\- V2\, (2.5.2)

assumptions that will be weakened later in Sec. 3. We also assume that a is contin-
uous and that

0 < 8 < a(V) < M0 < oo. (2.5.3)
Our approach is abstract. To motivate the definitions that we will use, let b(t,x) =
*o(/)(l - x) 4- ki(t)x and suppose

- / / ut(t,x)<pt(t,x)dxdt + / / [a{ux{t,x)) - b(t, x)]<px{t, x)dxdt
Jo Jo Jo Jo

+ [ [ a{ux{t,x))uxt{t,x)<px{t,x)dxdt=( [ {f(t,x) + bx{t,x))(p{t,x)dxdt,
Jo Jo Jo Jo ^2 6 1)

u,u,,ux,uxt are in L2((0, T) x (0, 1)), (2.6.2)

for all (p e Cq°(0, T; E) where E is a closed subspace of //' (0, 1) containing CqX3(0, 1).
Thus, in particular, (2.6) holds if (p € Cg°((0, T) x (0, 1)), which implies that u is
a weak solution of (2.1). Integrating (2.6.1) by parts formally yields the variational
boundary conditions

(o{ux(t, 1)) - ki{t) + a{ux{t, 1 ))ux,(t, 1 ))<p{t, 1 )dt = 0, (2.7.1)L
LT

a{ux{t, 0) - k0{t) + a(ux(t, 0))uxt{t, 0))<p{t, 0) dt = 0, (2.7.2)

with (2.7) holding for all (p e Cq°(0, T;E). If E = //'(0,1) these conditions yield
(2.4). If E = {u e Hl(0, 1) : «(1) = 0}, the boundary conditions (2.3) are obtained.
These formal manipulations may all be made precise ([19] or [16]) but we shall regard
(2.6) along with the initial data as the fundamental object of our study.
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Letting E be the closed subspace of //1 (0, 1) just described, we shall let H =
L2(0, 1) and identify H and H'. Therefore,

E C H = H' C E'. (2.8)

For u e E and t e [0, T], let Q{u), N(t, ■), and M be operators mapping E to E'
given by

(Q{u)w, v) = {a{ux)wx,vx)H, (2.9.1)
{N(t, w), v) = {a{wx) - b(t, ■), vx)H, (2.9.2)

(Mw,V) = {p{Wx),Vx)H, (2.9.3)

where ^

fi(V)= [ a(s) ds. (2.10)
Jo

For h e L'(0, T\E'), h' may be defined as an ^'-valued distribution by the rule
-T

h'{(p) = ~ f h(t)<p'(t) dt (2.11;
J o

for all <p e C™(0, T). Also let CV = L2(0, T\E) and if u e 'V consider Q(u), N, and
M to be operators from to 'V = L2(0, T; E') defined by

(Q(u)w)(t) = Q(u(t))w(t), (2.12.1)
{Nw){t) = N(t,w{t)), (2.12.2)
(Mw)(t) = M(w(t)). (2.12.3)

With the above conventions and definitions, we can state the following theorem.

Theorem 1. Let u\ e H, uq e E, and g e 'V'. Then there exists a unique solution
u to

u" + Nu + Q{u)u' = g in 'T', (2.13.1)
m(0) = u0, (2.13.2)
m'(0) = h,, (2.13.3)

u G L°°(0, T\E), u! e ^nL°°(0, T\H). (2.13.4)
A theorem similar to Theorem 1 is proved in [13] but there are some differences

here and so we have chosen to present a proof. This is done in Sec. 5 to avoid
obscuring the main ideas.

Lemma 1. Suppose u, u' e L2(a, b;E) and let «,(•, •) and utx{-, •) be Borel measurable
representatives for «'(■)(•) and (du'{-)/dx) (•), respectively. Also define

ux(t,x)= / utx{s, x) ds + u'0(x), (2.14.1)
J a

u{t,x)= f u,(s, x) ds + u0(x). (2.14.2)
J a
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Then

(1) u{t, •) = u(t) a.e., u,[t, ■) = u'(t) a.e.,
(2) ux(t, ■) = ^ a.e., ulx{t, •) = a.e.,
(3) ux = jfc(u) in sense of distributions,
(4) utx = jj{ut) in sense of distributions.

Lemma 2. Let u be the measurable representative of the solution of Theorem 1
with g = f + bx € L2(0,T-,H) described in Lemma 1. Then (2.6) holds for each
<P e C0°°(0, T-E).

Proof. Let <p e C^°(0, T,E) and use (2.13.1) to write

(u", (p)j '/ + (Nu, + (Q(u)u', <p)y<y — {f + bx, (2.15)

Consider the first term of (2.15):

{u",(p)r,r= [ [ (u"(t),(p'{s))dsdt
Jo Jo

= J J (u"(t),<p'{s)) dtds

= - [ (u'(s),<p'{s)) ds + [ (u'{T),(p'{s)) ds
Jo Jo

= - f {u'{s),<p'(s))ds
Jo

= -[ [ u,(s, x)(p,(s, x) dx ds from (2.13.4) and (2.8). (2.16)
Jo Jo

Note that u'{T) makes sense because u! and u" are both in •V' = L2{0, T-E'). This
yields the first term of (2.6) and it is clear from (2.8), (2.9), and (2.13) that formula
(2.6) is obtained.

Earlier we demonstrated that integrating (2.6) by parts and choosing E appropri-
ately will yield boundary conditions of various sorts. It remains to discuss the initial
conditions. For u the solution of Theorem 1, m e 7, «' e f, and u" e CV'. There-
fore [14] we may conclude that u equals a function in C(0, T\E) a.e. and u' equals
a function in C(0, T\H) a.e. Therefore, the manner in which the initial conditions
are satisfied may be described by

u(t) - v0(t) and u'(t) = vi(t) if t £ D, m{D) = 0, (2.17)
v0 e C(0, T\E), V[ e C(0, T,H), (2.18.1)
lim |V[(?) - ux\h + ||v0(0 - u0\\E = 0. (2.18.2)
(—►0

If u is the measurable representative of u from Lemma 1 it follows that

v0(0 = «(*.■). u,{t, ■) = v\{t) a.e. (2.18.3)
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Lemma 3. If u is Borel measurable and satisfies (2.18), (2.6), then if v(t) = u(t, •),

v'(t) = u,(t, ■) a.e., (2.19.1)
v" e "V, and v solves (2.13) with g = f + bx. (2.19.2)

Proof. Let e Cq°(0, T) and let w e E.

( [ v(t)*¥'(t)dt,w\ dt = [ 4"(t)(v(t),w)E,Edt
\J o / e'e Jo

= f xiJI(t)(v(t),w)ff dt — [ f u(t,x)w(x)x¥'(t)dx dt
Jo Jo Jo

= -[ [ u,(t, x)w(x)y¥(t) dxdt
Jo Jo

-<-f
Since w e E is arbitrary, (2.19.1) is proved. Now apply (2.6) to <p{t,x) = 4,(r)w(x),

(f v'(t)*¥'(t)dt,w\ = f (Nv, <p) dt + f (Q(v)v', <p) dt - [ (g,<p)dt
\J o /Jo Jo Jo

= { j\Nv{t) + <2(v)v'(0 - g(tmt) dt, w)

where g = f + bx. Since w is arbitrary

-v" = Nv + G(v)v' - g.

This proves (2.19.2).

Corollary 1. There exists a unique solution u to the problem (2.18) and (2.6).

Proof. The existence comes from Lemma 2. To obtain uniqueness, use Lemma 3
and the uniqueness part of Theorem 1.

3. Estimates for the approximate problem. In this section we will estimate the
solution of Theorem 1 assuming that for some constants oq and R > 0,

(e(V) + oq)P{V) > 0 if |K| > R. (3.1)
Let life,(01 + |*b(f)| < L for all t and from now on let g = f + bx. Also define

W(V)= fV (o{s) + oq) ds (3.2)
Jo

and assume
a < u'0(x) < b. (3.3)

Lemma 4. Let q and qt both be in L2((0, T) x (0, 1)). Then there exists a measurable
set D with m(D) = 0 such that for x £ D, t —> q(t,x) is equal to a continuous
function a.e. t and if <y(0, x) is the value of this continuous function at t = 0,

q(t, x) — q(0, x) + f q,(s,x)ds a.e. t. (3.4)
Jo
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Lemma 5. For u the solution of Theorem 1.

\u'{t)\2H + 2 f W(ux(t,x))dx + 2d [ \utx{s,-)\h ds - 2 [ W(u'0(x))dx-\ux\2H
J 0 J 0 J 0

- 2(L + |(T0|) \utx(s, •)!// ds < 2||^||i2(0,r;//) (^' !"'(■?)&<&) 7 . (3.5)

Proof. Multiply (2.13.1) by «' and integrate by parts. Let -7 < W(V) for all V.
Such a constant exists because of (3.1) and (3.2).

Corollary 2. For u the solution of Theorem 1

\u'(t)\2H<C, (3.6.1)
where

C = ^27 + 2^' W{u'Q{x))dx + \ux\2h + ||g||2 + T[L+^)2^ eT. (3.6.2)

Proof. This follows from (3.5) and Gronwall's inequality.
For the rest of the section we shall assume that

{H6//'(ai):«(l) = 0}C£ (3.7)

Lemma 6. Let u be the measurable representative of the solution of Theorem 1
described in Lemma 1 and let

q{t,x)= [ u,(t,z)dz+ [ k0(s)ds- [ f f{s,z)dzds-f}{ux(t,x)) + Oot. (3.8)
Jo Jo Jo Jo

Then
qt(t,x) = o0 + o{ux(t,x)). (3.9)

Proof. Let cp € Cq°((0, T) x (0, 1)) and consider - /0r fQl q{t,x)(pt{t,x)dxdt. The
use of Fubini's theorem and integration by parts along with (2.6.1) applied with
¥(/, jc) = fx' cp{t, z) dz in place of (p will yield

- / q(t, x)<p,(t, x) dx dt = / / (a(ux(t,x)) + a0)cp(t,x)dxdt
Jo Jo Jo Jo

and this proves the lemma. It is because of (3.7) that ¥(f, x) given above may be
used in (2.6.1).

Using Lemmas 4 and 6, there exists a set of measure zero, D, such that for x £ D,

q(t,x)= [ o0 +cr{ux(s,x))ds + q(0,x) a.e. t, (3.10.1)
Jo

where ^
q{Q,x)= [ U\(z) dz - fi(u'0(x)). (3.10.2)

Jo
From (3.6.1) and Lemma 1,

/ ut(t,z)dz+ / k0(s)ds- / / f(s,z)dzds + aot
Jo Jo Jo Jo

< C + LT + ||/||i.2(o,t-h)+ |oq|7" a.e. (3.11)
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Let

C, = 2{\u\\h + \P(a)\ + \fi{b)\ + fi(R) - P(~R) + C + LT + \\f\\Vf + \a0\T). (3.12)
Thus |q{t,x) + P(ux{t,x))\ < C\/2 a.e. t.

Lemma 7. For all x <£ D, \q{t,x)\ < C\ a.e. and

\P(ax{t.x))\<~ for all/. (3.13)

Proof. Let x £ D and let q(t, x) = /0' a0 + o(ux(s, x)) ds + q{0,x) for all t. Thus
|<7(0,jc)| < C\. If q(t,x) > Ci for some t, there exists a e [0, T] with q(a,x) = C\
and q(t,x) > Ci for all / e [a, a + e]. Therefore, for t e [a, a + e],

q{t,x) — Ci+ / cr0 + u{ux{s, x)) ds
J a

and it follows that, in a subset of [a, a + e] having positive measure, the inequality
(3.11) holds and also

a0 + a{ux{t, x)) > 0, (3.14.1)
q(t,x) — q(t,x). (3.14.2)

Since (3.11) holds, -P(ux(t, x)) > C\/2 and therefore

P{ux{t,x)) < —C\/2 < < 0. (3.15)
But (3.15) implies (3.1), which requires that a(ux(t,x)) + Go < 0, contradicting
(3.14.1). Therefore, q(t,x) < C\ for all t e [0, T], A similar argument shows
q(t,x) > —C\ for all t. From (3.11) and (3.10.1), \fi(ux(t,x))\ < 3C\/2 a.e. From
(2.14.1) of Lemma 1, \(l(ux[t,x))\ < 3Cj/2 for all t 6 [0, T] and this completes the
proof of Lemma 7.

4. The exact problem. In this section we use the results of the previous section to
obtain existence and uniqueness theorems for (2.1), (2.2) and boundary conditions
which include (2.3) and (2.4) under the assumptions

a is continuous and 0 < S < a(V) < M0, (4.1)
a is Lipschitz on every bounded interval, (4.2.1)

and for some constant er0 and R > 0,

(.a{V) + <j0)P{V)>0 if |K| > R. (4.2.2)
Also assume

a < u'0(x) < b for all x e (0, 1), (4.3.1)
Mt)\ + \ko{t)\ < L for all t, (4.3.2)
ko and k\ are measurable, (4.3.3)
m, ei2(0, 1), u0gE, (4.3.4)

where E c //'(0, 1) is a closed subspace satisfying

E 2 {u € Hl(0, 1) : m(1) = 0}. (4.3.5)
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For m > 0 define
( <T(V) if |F| < m,

Om{V) — % a(m) if V> m, (4.4)
t a{-m) if V< -m.

Thus am is globally Lipschitz.
In this section let um be the solution of Theorem 1 with a replaced with am in the

definition of N and let um be the measurable representative of Lemma 1. Assume

m > R (4.5)

and define

Wm(V) = f (am{s) + (Tq) ds. (4.6)
J o

Therefore, Wm is decreasing for V < -R and increasing for V > R. Since Wm
coincides with W on [-/?, /?], it follows that Wm has a minimum which does not
depend on m. Therefore

\u'm(t)\2H < C (4.7)

where C is given in (3.6.2) and does not depend on m. From Lemma 7 there exists
a set Dm with m(Dm) — 0 such that for all x £ Dm,

\P{umx{t,x))\ < \CX for all t (4.8)

where Ci depends only on u\, u$, R, min{W(V)), f, ko, and k\. Thanks to (4.1),
(4.8) implies

\Umx{t,x)\<\Ci/8 a.e. (4.9)

Now assume

(4.10)

Theorem 2. Suppose (4.1), (4.2), and (4.3) hold. Then there exist a unique solution,
u, to (2.6), (2.18) and a constant N such that \ux{t,x)\ < N a.e.

Proof. Let m > ma\(R, 3Ci/(2S)) and consider um. The function um satisfies (2.6)
and (2.18) with om in place of a. But by (4.9) \umx(t,x)\ < 3Ci/(2<5) < m a.e. and
so am{umx{t,x)) = a{umx{t,x)) a.e. Let u = um.

Corollary 3. The conclusion of Theorem 2 remains true if (4.1) is replaced with
the weaker assumption

a is continuous, S < a(V). (4.11)

Proof. Let M > max{a(F): V € [-3C,/(2<5),3^/(2(5)]} and let aM{V) =
min(a(F), M). If u is the solution of (2.6), (2.18) described in Theorem 2 after re-
placing a with aM, then (4.9) implies \ux(t, x)\ < 3Ci/(2S) a.e. and so aM(ux{t, x)) —
a(ux(t,x)) a.e. This proves Corollary 3.

We shall now give the examples of initial-boundary value problems obtained from
Theorem 2.



402 K. KUTTLER AND D. HICKS

Example 1. Let E = H](0, 1). Then if u is the solution described in Theorem 2,
u is a weak solution of

utt = o{ux)x + {a{ux)uxl)x + f (4.12.1)

u{0, x) = Uo(x), (4.12.2)
ut(0,x) = Ui(x), (4.12.3)

a{ux{t,0)) + a(ux{t,0))uxl(t,0) = k0{t), (4.12.4)
a{ux{t, \)) + ot{ux{t, 1 ))uxt{t, 1) = k\(t). (4.12.5)

Example 2. Let E = {u e Hl(0, 1): m(1) = 0}. Then u solves (4.12.1)—(4.12.4)
and

u(t, 1) = 0. (4.13)

5. Proof of Theorem 1. Let N(t, ■), M, and Q be described in Sec. 2.

Lemma 8. For v,u e E,

||tf(M0-.tf(f(v)||£, <^||m-v||£, (5.1.1)
\\Mu-Mv\\e> < M0\\u- v||£, (5.1.2)

<^llw _ vlli — {Mu - Mv, u - v) < M0\\u - v|||, (5.1.3)
and if u,u' e L2(a,a + T\; E) where T\ > 0 and «' is understood in the sense of
^'-valued distributions ((2.11), (2.8)), then

M{u{t)) = M(u(a))+ f Q{u{s))u'(s)ds. (5.1.4)
J a

(Note that u{a) has meaning because u, u' are in L2(a,a + T\ \E).)

Proof. Parts (5.1.1)—(5.1.3) are obvious. Let (p e Co°(a,a + T\) and let v e E.
Also let a and ux be given in Lemma 1, and let b — a + T\.

M{u{t))q>'{t)dt,vj = J (M(u{t)), v)<p'(t) dt

= [ [ P(ux{t,x))vx{x)<p'(t)dxdt
Ja JO

= [ f P{ux{t,x))<p'(t)vx{x)dtdx
J 0 Ja

= -[ f a{ux{t,x))ulx{t,x)<p{t)vx{x)dxdt
J a JO

= -[ {Q{u{t,-))ul{tr),v)<p{t)dt
J a

= fa Q{u(t))u'{t)(p{t)dt,v^. (5.2)
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Since v e E was arbitrary, it follows that

(.Mu)' = Q{u)u' (5.3)
and therefore (

M (u(t)) = M(u{a)) + [ Q(u(s))u'(s) ds a.e. (5.4)
Jo

We need a few more definitions. Let T\ satisfy

0 < Ti < 1, Se~iTl - KTi > 5/2, (5.5)

and let {En} be a sequence of finite-dimensional subspaces of E satisfying

E = |^J E„, En+i 2 En for all n. (5.6)
n<oc

Let «o e E and u\ e H be given and let {uo«} and {u\„} be sequences satisfying

^0n> "in € En, (5.7.1)
lim IIu0„ - u0\\e + \u\„ - ux\H = 0. (5.7.2)

n—>oc

Also, for g given in L2(a, a + T\\E'), let

fn{t)= f g{s) ds + M(u0n) + U\n, (5.8.1)
J a

f{t)= [' g(s)ds + M(u0) + ul. (5.8.2)
J a

Thus limn-^oo \ \fn - f\\o(a,a+Tl-,E') = 0. Let {wj,..., w„} be a basis for En satisfying
(wk, wr)H = 5kr.

Lemma 9. There exists a unique function un satisfying

un,u'ne L2{a,a + TuEn), (5.9.1)

and for all w e En,

{u'n{t),w)H + (^j N{s,un(s))ds,w^ + (Mun(t),w) = a.e., (5.9.2)

un{a) = w0«. (5.9.3)

Proof. Let u„{t) = ykil)wk and let s/: L2(a, a + Ti;R") —► L2(a, a + T^R")
be defined by

(j/y)r{t) = Ja (n -wr^ds+ (m ,wr). (5.10)

Thus, u„ is a solution to (5.9) if and only if y(t) solves

y' + j/y = F in L2(a, a + Tu Rn), (5.11.1)

y(a) = yo. (5.11.2)
y,y' e L2(a,a + T\\Rn), (5.11.3)
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where
yOr = (U0n. wr)H, Fr{t) = (fn{t), Wr). (5.12)

Letting y(t) = eA(,_a)z(t), it follows that y solves (5.11) if and only if z solves

z' + Az + J^z = e-A(-a)F (5.13.1)

z(fl) = yo (5.13.2)
z,z1 e L2{a,a + TuRn) (5.13.3)

where
= e~^'-aW (e^~a)z)(t). (5.14)

Using the equivalence of all norms on R" and (5.5), a little analysis yields for all
y, z e L2{a, a + T{ -R"),

((A/+J^)y-(A7 + ^)z,y - z) mw+w) ^ '/lly-2!!2 (5-15)
for some t) > 0, the norm in (5.15) being the norm of L2(a, a + T\; R").

It follows from [14, 17] that there exists a unique solution z to (5.13). Therefore
there exists a unique solution to (5.11) and consequently there exists a unique solution
to (5.9). This proves Lemma 9.

Since y, y' are in L2(a,a + T\\Rn), y is absolutely continuous and y(t) — yo +
fa y'(s) ds. It follows that for w e En

(Mu„(t), w) = f {Qun{s)u'n{s),w) ds + (M(u0n),w). (5.16)
J a

Therefore, from (5.8.1), (5.12), (5.10), (5.11.1) yields
/*(•)

y'r= Ir{s) ds + (u\n, Wr)H (5.17)
J a

where 7r( ) G L2{a,a+ T\) is given by

{g{s). wr) - (Q(u„(s))u'„(s), wr) - (N{s, u„(s)), wr). (5.18)

It follows that y" exists and is in L2(a, a + T\\ R"). Thus y'r(a) makes sense and equals
("in. wr)n. Differentiating (5.17), we have proved the following lemma.

Lemma 10. The function, un, of Lemma 9 satisfies for all w e En:

{Kit), w)H + {N(t, w) + (Q(un{t))u'n{t), w) = {g(t), w) a.e., (5.19.1)
u'n{a) = ui„, (5.19.2)
u„{a) = u0n, (5.19.3)

< € L2(a, a + T\\ H) c L2{a, a + TX\E'), (5.19.4)
un,u'neL2{a,a + TuE). (5.19.5)

For t e [a, a + 7\] and w( ) a simple function, (5.19.1) implies

[ («'„'(s), w(s))h ds + f (N(s, u„(s)), w(s)) ds + f {Q(un{s))u'„(s),w{s)) ds
J a J a J a

= [ {g{s),w{s))ds. (5.20)
J a
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Therefore (5.20) holds for all w e L2(a, a+T\\En). Replacing w by u!n and integrating
by parts,

K(0l// + 2/ W{unx{t,x))dx + 23 [
J 0 J a

'\du'n(s)\ , 21 "w| ds - \u\n\
H

'| du'n{s)

dx

2[ W(u'0n(x))dx-2(L+\o0\) f
JO J a dx

< 2||^||L2(a,a+r,;£') I \\u'nWu-(a,t\H) +

ds
H

du'n
dx L1(a,V,H)J

(5.21)

Let - J be the lower bound of (2.5.1). The boundedness of a implies | f0' W(u'0fl(x)) dx|
< CiHuoflllf. a quantity which is bounded independent of n. Therefore, there exists
a constant which does not depend on t e [a, a + T\] or n such that

lwn(0l// +
d<
dx

2 du'
- 2(L + |CT01 + llgll)

L2(a,t,H) dx L2(a,t;H)

<C2+ f\u'n(s)\2Hds. (5.22)
J a

Here C2 > 27 + ||g|||2(ai<|+7.|;£<) + |/0' W{u'0n(x))dx\ + \ul\2H.
It follows from (5.22) and Gronwall's inequality that \u'n(t)\n is bounded inde-

pendent of n and t. Therefore (5.22) implies that \\du'n/dx\\Li(aa+Ti.H) is bounded
independent of n. Summarizing this, there exists a constant C3 which does not de-
pend on n or t such that

K(0U +
This implies

du'
dx

< C3. (5.23)
L-(a,a+T\\H)

\\u'n\\L2(a,a+T,-E) + 11 un \\L°°(a.a+T,-E) + 11 u'n I \L°°(a.a+Ti ;H) < Q (5.24)

where C4 does not depend on n.
Let A : L2(a, a + T\\E) —► L2(a, a + T\\E') be given by

Au(t) = f N(s,u(s))
J a

ds + Mu(t). (5.25)

Thanks to the size of T\, A is monotone. It is also clear that A is hemicontinuous
(lim,_0(^(w + tw), v) = (Au, v)) and bounded. For convenience, define

^ = L2(a,a + ri;£), <%n = L2{a, a + T,; En), %* = L2{a,a + T{\H). (5.26)

By (5.9), the following holds for all w e ^n:

(w'„, w)r + {Aun, w)# = (/„, w)v, (5.27.1)
u„{a) = u0n. (5.27.2)
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Because of (5.24) there is a subsequence still denoted by u„ satisfying

un —- u in L°°(a, a + T\\E),
u'n —>■ u' in %,

u'n —' u' in L°°(a, a + Tx\H), (5.28)
Au„ —>■ £ in

u„(a) u(a) in H.
Now un(a) — Uon and Mo„ —* «o >n E. Since u„(a) — «(a) in //, it follows that
Mo = «(«) and ||«n(a) - M(tf)IU —» 0.

By density of (J«<00 in (5.27.1), (5.8), and (5.28) imply £ = f-u'. Also

{Au„, un)& < (fn, un)% + \\un{a) - u{a)\2H

+ («', m)^ - («', m„)^ - (u'„, u)r. (5.29)

Therefore \\mn^00{Aun, un)% < (fu)% - (u',u)^ = {£,,u)%. Since A is type M [17],
it follows that Au = £ = f-u'.

Lemma 11. Let uq e E, u\ e //, and let g = L2(a, a + T\ ;E'). Then there exists
a unique solution to

u" + Nu + Q(u)u' - g in (5.30.1)
u(a) = Mo. (5.30.2)
u'(a) = Mi, (5.30.3)

u,u'e&, u £ L°°(a,a + T\\E), u' e L°°(a,a + Ti~,H). (5.30.4)

Proof. The discussion preceding Lemma 11 has shown the existence of a solution
m satisfying (5.30.4) and

u'+ Au = f w(0) = m0. (5.31)

Since A is strictly monotone, the solution to (5.31) is unique [14]. (This is even true
in a larger class of functions than those of (5.30.4).) However, since u' e , Lemma
8 implies

Au(t) — f N(s,u{s))ds + f Q(u(s))u'(s) ds + M{u0), (5.32)
J a J a

and it follows that u" e W and (5.30) holds. This proves Lemma 11.
Proof of Theorem 1. Choose T\ small enough that de~STt - KT\ > 8/2 and use

Lemma 11 to solve (5.30.1)-(5.30.3) on [0, T\], obtaining a solution which satisfies
(5.30.4) with a = 0. Next use u{T\) e E and u'{T\) e H as new initial data and
solve (5.30.1)—(5.30.3) with these new initial data on [T\,2T\\. Continuing in this
way proves Theorem 1.
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