Filomat 29:6 (2015), 1259–1267 DOI 10.2298/FIL1506259O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Initial Coefficient Bounds for a General Class of Bi-Univalent Functions

H. Orhan^a, N. Magesh^b, V. K. Balaji^c

^aDepartment of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey ^bPost-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India ^cDepartment of Mathematics, L.N. Govt College, Ponneri, Chennai, Tamilnadu, India

Abstract. Recently, Srivastava et al. [22] reviewed the study of coefficient problems for bi-univalent functions. Inspired by the pioneering work of Srivastava et al. [22], there has been triggering interest to study the coefficient problems for the different subclasses of bi-univalent functions (see, for example, [1, 3, 6, 7, 27, 29],). Motivated essentially by the aforementioned works, in this paper we propose to investigate the coefficient estimates for a general class of analytic and bi-univalent functions. Also, we obtain estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this new class. Further, we discuss some interesting remarks, corollaries and applications of the results presented here.

1. Introduction

Let $\mathcal A$ denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by S we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U} .

For analytic functions f and g in \mathbb{U} , f is said to be subordinate to g if there exists an analytic function w such that (see, for example, [13])

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)) $(z \in \mathbb{U})$.

This subordination will be denoted here by

 $f \prec q \qquad (z \in \mathbb{U})$

or, conventionally, by

 $f(z) \prec g(z)$ $(z \in \mathbb{U}).$

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Keywords. (Analytic functions, univalent functions, bi-univalent functions, starlike and convex functions, bi-starlike and bi-convex functions.)

Received: 29 November 2013; Accepted: 24 December 2013

Communicated by Hari M. Srivastava

Corresponding author: H. Orhan

Email addresses: orhanhalit607@gmail.com; horhan@atauni.edu.tr (H. Orhan), nmagi_2000@yahoo.co.in (N. Magesh), balajilsp@yahoo.co.in (V. K. Balaji)

In particular, when g is univalent in \mathbb{U} ,

$$f \prec g$$
 $(z \in \mathbb{U}) \Leftrightarrow f(0) = g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

Some of the important and well-investigated subclasses of the univalent function class S include (for example) the class $S^*(\alpha)$ of starlike functions of order α ($0 \leq \alpha < 1$) in \mathbb{U} and the class $\mathcal{K}(\alpha)$ of convex functions of order α ($0 \leq \alpha < 1$) in \mathbb{U} , the class $S^{\beta}_{\varphi}(\alpha)$ of β -spirallike functions of order α ($0 \leq \alpha < 1$; $|\beta| < \frac{\pi}{2}$), the class $S^*(\varphi)$ of Ma-Minda starlike functions and the class $\mathcal{K}(\varphi)$ of Ma-Minda convex functions (φ is an analytic function with positive real part in \mathbb{U} , $\varphi(0) = 1$, $\varphi'(0) > 0$ and φ maps \mathbb{U} onto a region starlike with respect to 1 and symmetric with respect to the real axis) (see [5, 11, 24]). The above-defined function classes have recently been investigated rather extensively in (for example) [9, 17, 25, 26] and the references therein.

It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U})$$

and

$$f(f^{-1}(w)) = w$$
 $(|w| < r_0(f); r_0(f) \ge \frac{1}{4}),$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} . Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). For a brief history and interesting examples of functions which are in (or which are not in) the class Σ , together with various other properties of the bi-univalent function class Σ one can refer the work of Srivastava et al. [22] and references therein. In fact, the study of the coefficient problems involving bi-univalent functions was reviewed recently by Srivastava et al. [22]. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two coefficients $|a_2|$ and $|a_3|$ in the Taylor-Maclaurin series expansion (1) were found in several recent investigations (see, for example, [1–4, 6–8, 12, 14, 16, 19–21, 23, 27, 29]). The aforecited all these papers on the subject were actually motivated by the pioneering work of Srivastava et al. [22]. However, the problem to find the coefficient bounds on $|a_n|$ (n = 3, 4, ...) for functions $f \in \Sigma$ is still an open problem.

Motivated by the aforementioned works (especially [22] and [3, 7]), we define the following subclass of the function class Σ .

Definition 1.1. Let $h : \mathbb{U} \to \mathbb{C}$, be a convex univalent function such that

$$h(0) = 1$$
 and $h(\overline{z}) = h(z)$ $(z \in \mathbb{U} \text{ and } \Re(h(z)) > 0).$

Suppose also that the function h(z) is given by

$$h(z) = 1 + \sum_{n=1}^{\infty} B_n z^n \qquad (z \in \mathbb{U}).$$

A function f(z) given by (1) is said to be in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$ if the following conditions are satisfied:

$$f \in \Sigma, \ e^{i\beta} \left((1-\lambda) \left(\frac{f(z)}{z} \right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} \right) < h(z) \cos\beta + i \sin\beta \quad (z \in \mathbb{U}),$$
(2)

and

$$e^{i\beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu} + \lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right) < h(w)\cos\beta + i\sin\beta \qquad (w \in \mathbb{U}),\tag{3}$$

where $\beta \in (-\pi/2, \pi/2)$, $\lambda \ge 1$, $\mu \ge 0$ and the function *g* is given by

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$
(4)

the extension of f^{-1} to \mathbb{U} .

Remark 1.2. If we set $h(z) = \frac{1+Az}{1+Bz}$, $-1 \leq B < A \leq 1$, in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta, h)$, we have $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta, \frac{1+Az}{1+Bz})$ and defined as

$$f \in \Sigma, \ e^{i\beta} \left((1-\lambda) \left(\frac{f(z)}{z} \right)^{\mu} + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu-1} \right) < \frac{1+Az}{1+Bz} \cos\beta + i \sin\beta \qquad (z \in \mathbb{U})$$

and

$$e^{i\beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)<\frac{1+Aw}{1+Bw}\cos\beta+i\sin\beta\qquad(w\in\mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2)$, $\lambda \ge 1$, $\mu \ge 0$ and the function g is given by (4).

Remark 1.3. Taking $h(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \le \alpha < 1$ in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, we have $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,\alpha)$ and $f \in \mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,\alpha)$ if the following conditions are satisfied:

$$f \in \Sigma, \ \Re\left(e^{i\beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu} + \lambda f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right) > \alpha \cos\beta \qquad (z \in \mathbb{U})$$

and

$$\Re\left(e^{i\beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right)>\alpha\cos\beta\qquad(w\in\mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2), 0 \leq \alpha < 1, \lambda \geq 1, \mu \geq 0$ and the function g is given by (4). It is interest to note that the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(0,\alpha) := \mathcal{N}_{\Sigma}^{\mu,\lambda}(\alpha)$ the class was introduced and studied by Çağlar et al. [3].

Remark 1.4. Taking $\lambda = 1$ and $h(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \leq \alpha < 1$ in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, we have $\mathcal{NP}_{\Sigma}^{\mu,1}(\beta,\alpha)$ and $f \in \mathcal{NP}_{\Sigma}^{\mu,1}(\beta,\alpha)$ if the following conditions are satisfied:

$$f \in \Sigma, \ \Re\left(e^{i\beta}f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right) > \alpha \cos\beta \qquad (z \in \mathbb{U})$$

and

$$\Re\left(e^{i\beta}g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right) > \alpha\cos\beta \qquad (w\in\mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2), 0 \leq \alpha < 1, \mu \geq 0$ and the function g is given by (4). We notice that the class $\mathcal{NP}_{\Sigma}^{\mu,1}(0, \alpha) := \mathcal{F}_{\Sigma}(\mu, \alpha)$ was introduced by Prema and Keerthi [16].

Remark 1.5. Taking $\mu + 1 = \lambda = 1$ and $h(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \le \alpha < 1$ in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, we have $\mathcal{NP}_{\Sigma}^{0,1}(\beta,\alpha)$ and $f \in \mathcal{NP}_{\Sigma}^{0,1}(\beta,\alpha)$ if the following conditions are satisfied:

$$f \in \Sigma, \ \Re\left(e^{i\beta}\frac{zf'(z)}{f(z)}\right) > \alpha \cos\beta \qquad (z \in \mathbb{U})$$

and

$$\Re\left(e^{i\beta}\frac{wg'(w)}{g(w)}\right) > \alpha\cos\beta \qquad (w \in \mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2), 0 \leq \alpha < 1$ and the function g is given by (4). In addition, the class $\mathcal{NP}^{0,1}_{\Sigma}(0, \alpha) := \mathcal{S}^*_{\Sigma}(\alpha)$ was studied by Li and Wang [10] and considered by others.

Remark 1.6. Taking $\mu = 1$ and $h(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \le \alpha < 1$ in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, we have $\mathcal{NP}_{\Sigma}^{1,\lambda}(\beta,\alpha)$ and $f \in \mathcal{NP}_{\Sigma}^{1,\lambda}(\beta,\alpha)$ if the following conditions are satisfied:

$$f \in \Sigma, \ \Re\left(e^{i\beta}\left((1-\lambda)\frac{f(z)}{z}+\lambda f'(z)\right)\right) > \alpha \cos\beta \qquad (z \in \mathbb{U})$$

and

$$\Re\left(e^{i\beta}\left((1-\lambda)\frac{g(w)}{w}+\lambda g'(w)\right)\right)>\alpha\cos\beta\qquad(w\in\mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2), 0 \leq \alpha < 1, \lambda \geq 1$ and the function g is given by (4). Further, the class $\mathcal{NP}_{\Sigma}^{1,\lambda}(0, \alpha) := \mathcal{B}_{\Sigma}(\alpha, \lambda)$ was introduced and discussed by Frasin and Aouf [6]

Remark 1.7. Taking $\mu = \lambda = 1$ and $h(z) = \frac{1+(1-2\alpha)z}{1-z}$, $0 \le \alpha < 1$ in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, we have $\mathcal{NP}_{\Sigma}^{1,1}(\beta,\alpha)$ and $f \in \mathcal{NP}_{\Sigma}^{1,1}(\beta,\alpha)$ if the following conditions are satisfied:

$$f \in \Sigma, \ \Re\left(e^{i\beta}f'(z)\right) > \alpha \cos\beta \qquad (z \in \mathbb{U})$$

and

$$\Re\left(e^{i\beta}g'(w)\right) > \alpha\cos\beta \qquad (w \in \mathbb{U}),$$

where $\beta \in (-\pi/2, \pi/2)$, $0 \leq \alpha < 1$ and the function g is given by (4). Also, the class $\mathcal{NP}^{1,1}_{\Sigma}(0, \alpha) := \mathcal{H}^{\alpha}_{\Sigma}$ was introduced and studied by Srivastava et al. [22].

In order to derive our main result, we have to recall here the following lemmas.

Lemma 1.8. [15] If $p \in \mathcal{P}$, then $|p_i| \leq 2$ for each *i*, where \mathcal{P} is the family of all functions *p*, analytic in \mathbb{U} , for which

 $\Re\{p(z)\} > 0 \qquad (z \in \mathbb{U}),$

where

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots$$
 $(z \in \mathbb{U}).$

Lemma 1.9. [18, 28] Let the function $\varphi(z)$ given by

$$\varphi(z) = \sum_{n=1}^{\infty} B_n z^n \qquad (z \in \mathbb{U})$$

be convex in \mathbb{U} . Suppose also that the function h(z) given by

$$\psi(z) = \sum_{n=1}^{\infty} \psi_n z^n \qquad (z \in \mathbb{U})$$

is holomorphic in U. If

$$\psi(z) \prec \varphi(z) \qquad (z \in \mathbb{U})$$

then

$$|\psi_n| \leq |B_1|$$
 $(n \in \mathbb{N} = \{1, 2, 3, \dots\}).$

1262

The object of the present paper is to introduce a general new subclass $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$ of the function class Σ and obtain estimates of the coefficients $|a_2|$ and $|a_3|$ for functions in this new class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$.

2. Coefficient Bounds for the Function Class $\mathcal{NP}^{\mu,\lambda}_{\Sigma}(\beta,h)$

In this section we find the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$.

Theorem 2.1. Let f(z) given by (1) be in the class $\mathcal{NP}_{\Sigma}^{\mu,\lambda}(\beta,h)$, $\lambda \ge 1$ and $\mu \ge 0$, then

$$|a_2| \le \sqrt{\frac{2|B_1|\cos\beta}{(1+\mu)(2\lambda+\mu)}} \tag{5}$$

and

$$|a_3| \leq \frac{2|B_1|\cos\beta}{(2\lambda + \mu)(1 + \mu)},$$
(6)

where $\beta \in (-\pi/2, \pi/2)$.

Proof. It follows from (2) and (3) that there exists $p, q \in \mathcal{P}$ such that

$$e^{i\beta}\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu} + \lambda f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right) = p(z)\cos\beta + i\sin\beta$$
(7)

and

$$e^{i\beta}\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu} + \lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right) = p(w)\cos\beta + i\sin\beta,\tag{8}$$

where p(z) < h(z) and q(w) < h(w) have the forms

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots \qquad (z \in \mathbb{U})$$
 (9)

and

 $q(w) = 1 + q_1 w + q_2 w^2 + \dots \qquad (w \in \mathbb{U}).$ (10)

Equating coefficients in (7) and (8), we get

$$e^{i\beta}(\lambda+\mu)a_2 = p_1\cos\beta \tag{11}$$

$$e^{i\beta} \left[\frac{a_2^2}{2} (\mu - 1) + a_3 \right] (2\lambda + \mu) = p_2 \cos\beta$$
(12)

$$-e^{i\beta}(\lambda+\mu)a_2 = q_1\cos\beta \tag{13}$$

and

$$e^{i\beta} \left[(\mu+3)\frac{a_2^2}{2} - a_3 \right] (2\lambda+\mu) = q_2 \cos\beta.$$
(14)

From (11) and (13), we get

$$p_1 = -q_1 \tag{15}$$

and

$$2e^{i2\beta}(\lambda+\mu)^2 a_2^2 = (p_1^2+q_1^2)\cos^2\beta.$$
(16)

Also, from (12) and (14), we obtain

$$a_2^2 = \frac{e^{-i\beta}(p_2 + q_2)\cos\beta}{(1+\mu)(2\lambda + \mu)}.$$
(17)

Since $p, q \in h(\mathbb{U})$, applying Lemma 1.9, we immediately have

$$|p_m| = \left|\frac{p^{(m)}(0)}{m!}\right| \le |B_1| \qquad (m \in \mathbb{N}),\tag{18}$$

and

$$|q_m| = \left|\frac{q^{(m)}(0)}{m!}\right| \le |B_1| \qquad (m \in \mathbb{N}).$$

$$\tag{19}$$

Applying (18), (19) and Lemma 1.9 for the coefficients p_1 , p_2 , q_1 and q_2 , we readily get

$$|a_2| \leq \sqrt{\frac{2|B_1|\cos\beta}{(1+\mu)(2\lambda+\mu)}}.$$

This gives the bound on $|a_2|$ as asserted in (5).

• •

Next, in order to find the bound on $|a_3|$, by subtracting (14) from (12), we get

$$2(a_3 - a_2^2)(2\lambda + \mu) = e^{-i\beta}(p_2 - q_2)\cos\beta.$$
(20)

It follows from (17) and (20) that

~

$$a_{3} = \frac{e^{-i\beta}\cos\beta(p_{2}+q_{2})}{(1+\mu)(2\lambda+\mu)} + \frac{e^{-i\beta}(p_{2}-q_{2})\cos\beta}{2(2\lambda+\mu)}.$$
(21)

Applying (18), (19) and Lemma 1.9 once again for the coefficients p_1 , p_2 , q_1 and q_2 , we readily get

$$|a_3| \leq \frac{2|B_1|\cos\beta}{(2\lambda+\mu)(1+\mu)}.$$

This completes the proof of Theorem 2.1. \Box

3. Corollaries and Consequences

In view of Remark 1.2, if we set

$$h(z) = \frac{1+Az}{1+Bz}$$
 $(-1 \le B < A \le 1; z \in \mathbb{U})$

and

$$h(z) = \frac{1 + (1 - 2\alpha)z}{1 - z} \qquad (0 \le \alpha < 1; \ z \in \mathbb{U}),$$

in Theorem 2.1, we can readily deduce Corollaries 3.1 and 3.2, respectively, which we merely state here without proof.

Corollary 3.1. Let f(z) given by (1) be in the class $\mathcal{NP}^{\mu,\lambda}_{\Sigma}(\beta, \frac{1+Az}{1+Bz})$, then

$$|a_2| \le \sqrt{\frac{2(A-B)\cos\beta}{(1+\mu)(2\lambda+\mu)}} \tag{22}$$

and

$$|a_3| \le \frac{2(A-B)\cos\beta}{(2\lambda+\mu)(1+\mu)},\tag{23}$$

where $\beta \in (-\pi/2, \pi/2)$, $\mu \ge 0$ and $\lambda \ge 1$.

Corollary 3.2. Let f(z) given by (1) be in the class $\mathcal{NP}^{\mu,\lambda}_{\Sigma}(\beta, \alpha), 0 \leq \alpha < 1, \mu \geq 0$ and $\lambda \geq 1$, then

$$|a_2| \le \sqrt{\frac{4(1-\alpha)\cos\beta}{(1+\mu)(2\lambda+\mu)}}$$
(24)

and

$$|a_3| \le \frac{4(1-\alpha)\cos\beta}{(2\lambda+\mu)(1+\mu)},\tag{25}$$

where $\beta \in (-\pi/2, \pi/2)$.

Remark 3.3. When $\beta = 0$ the estimates of the coefficients $|a_2|$ and $|a_3|$ of the Corollary 3.2 are improvement of the estimates obtained in [3, Theorem 3.1].

Corollary 3.4. Let f(z) given by (1) be in the class $\mathcal{NP}^{\mu,1}_{\Sigma}(\beta, \alpha)$, $0 \leq \alpha < 1$ and $\mu \geq 0$, then

$$|a_2| \le \sqrt{\frac{4(1-\alpha)\cos\beta}{(1+\mu)(2+\mu)}}$$
(26)

and

$$|a_3| \le \frac{4(1-\alpha)\cos\beta}{(2+\mu)(1+\mu)},$$
(27)

where $\beta \in (-\pi/2, \pi/2)$.

Corollary 3.5. Let f(z) given by (1) be in the class $\mathcal{NP}^{0,1}_{\Sigma}(\beta, \alpha), 0 \leq \alpha < 1$, then

 $|a_2| \le \sqrt{2(1-\alpha)\cos\beta} \tag{28}$

and

 $|a_3| \le 2(1-\alpha)\cos\beta,\tag{29}$

where $\beta \in (-\pi/2, \pi/2)$.

Remark 3.6. Taking $\beta = 0$ in Corollary 3.5, the estimate (28) reduces to $|a_2|$ of [10, Corollary 3.3] and (29) is improvement of $|a_3|$ obtained in [10, Corollary 3.3].

Corollary 3.7. Let f(z) given by (1) be in the class $\mathcal{NP}^{1,\lambda}_{\Sigma}(\beta, \alpha), 0 \leq \alpha < 1$ and $\lambda \geq 1$, then

$$|a_2| \le \sqrt{\frac{2(1-\alpha)\cos\beta}{2\lambda+1}} \tag{30}$$

and

$$|a_3| \le \frac{2(1-\alpha)\cos\beta}{2\lambda+1},\tag{31}$$

where $\beta \in (-\pi/2, \pi/2)$.

Remark 3.8. Taking $\beta = 0$ in Corollary 3.7, the inequality (31) improves the estimate of $|a_3|$ in [6, Theorem 3.2].

Corollary 3.9. Let f(z) given by (1) be in the class $\mathcal{NP}^{1,1}_{\Sigma}(\beta, \alpha), 0 \leq \alpha < 1$, then

$$|a_2| \le \sqrt{\frac{2(1-\alpha)\cos\beta}{3}} \tag{32}$$

and

$$|a_3| \le \frac{2(1-\alpha)\cos\beta}{3},\tag{33}$$

where $\beta \in (-\pi/2, \pi/2)$.

Remark 3.10. For $\beta = 0$ the inequality (33) improves the estimate $|a_3|$ of [22, Theorem 2].

References

- R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344–351.
- [2] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43 (2013), no. 2, 59-65.
- [3] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), no. 7, 1165–1171.
- [4] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Classical Anal. 2 (1) (2013), 49-60.
- [5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
- [6] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573.
- [7] S.P.Goyal and P.Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179–182.
- [8] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15–26.
- [9] Y. C. Kim and H. M. Srivastava, Some subordination properties for spirallike functions, Appl. Math. Comput. 203 (2008), no. 2, 838–842.
- [10] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495–1504.
- [11] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
- [12] N. Magesh and J. Yamini, Coefficient bounds for certain subclasses of bi-univalent functions, Internat. Math. Forum 8 (2013), no. 27, 1337–1344.
- [13] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
- [14] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abs. Appl. Anal., Volume 2013, Article ID 573017, 3 pages.
- [15] Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [16] S. Prema, B. S. Keerthi, Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal. 4 (2013), no. 1, 22–27.
- [17] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005), 9–15.
- [18] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
- [19] S. Sivaprasad Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, arXiv:1203.5480v1, 2012.

- [20] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, in *Nonlinear Analysis: Stability, Approximation, and Inequalities* (Panos M. Pardalos, Pando G. Georgiev, and Hari M. Srivastava, Editors), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607–630.
- [21] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), no. 5, 831–842.
- [22] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.
- [23] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, On certain subclasses of bi-univalent functions associated with hohlov operator, Global J. Math. Anal. 1 (2) (2013) 67-73.
- [24] H. M. Srivastava, S. Owa (Eds.), Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ, 1992.
- [25] H. M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett. 23 (2010), no. 7, 763–768.
- [26] Q.-H. Xu, Q.-M. Cai and H. M. Srivastava, Sharp coefficient estimates for certain subclasses of starlike functions of complex order, Appl. Math. Comput. 225 (2013), 43–49.
- [27] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990–994.
- [28] Q.-H. Xu, H.M. Srivastava, Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24 (2011) 396–401.
- [29] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461–11465.