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INITIAL COEFFICIENTS FOR A SUBCLASS OF BI-UNIVALENT
FUNCTIONS DEFINED BY SALAGEAN DIFFERENTIAL

OPERATOR

MURAT ÇAĞLAR AND ERHAN DENIZ

Abstract. In this paper, we investigate a new subclass Σn (τ , γ,ϕ) of ana-
lytic and bi-univalent functions in the open unit disk U defined by Salagean
differential operator. For functions belonging to this class, we obtain estimates
on the first two Taylor-Maclaurin coeffi cient |a2| and |a3|.

1. INTRODUCTION

Let A denote the class of functions f of the form

f(z) = z +

∞∑
k=2

akz
k (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. We also denote by S
the class of all functions in A which are univalent in U .
Salagean [18] introduced the following differential operator for f(z) ∈ A which

is called the Salagean differential operator:

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z)) (n ∈ N = 1, 2, 3, ...).

We note that,

Dnf(z) = z +

∞∑
k=2

knakz
k (n ∈ N0 = N ∪ {0}) . (1.2)

It is well known that every f ∈ S has an inverse function f−1 satisfying

f−1(f(z)) = z (z ∈ U)
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and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥ 1

4

)
where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ....

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are
univalent in U . Let Σ denote the class of bi-univalent functions in U given by (1.1).
Lewin [13] introduced the bi-univalent function class and showed that |a2| < 1.51.

Subsequently, Brannan and Clunie [2] conjectured that |a2| ≤
√

2. Netanyahu [15],
otherwise, showed that max

f∈Σ
|a2| = 4

3 . The coeffi cient estimate problem for each of

the following Taylor Maclaurin coeffi cients: |an| (n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is
still an open problem. Recently, several researchers such as ([1]-[7], [9]-[16], [17],
[19]-[24]) obtained the coeffi cients |a2|, |a3| of bi-univalent functions for the various
subclasses of the function class Σ . Motivating with their work, we introduce a new
subclass of the function class Σ and find estimates on the coeffi cients |a2| and |a3|
for functions in these new subclass of the function class Σ employing the techniques
used earlier by Srivastava et al. [19] and Frasin and Aouf [9].
Let ϕ be an analytic and univalent function with positive real part in U , ϕ(0) = 1,

ϕ′(0) > 0 and ϕ maps the unit disk U onto a region starlike with respect to 1 and
symmetric with respect to the real axis. The Taylor’s series expansion of such
function is

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + ..., (1.3)

where all coeffi cients are real and B1 > 0. Throughout this paper we assume that
the function ϕ satisfies the above conditions unless otherwise stated.

Definition 1.1. A function f ∈ Σ given by (1.1) is said to be in the class
Σn (τ , γ,ϕ) if the following conditions are satisfied:

1 +
1

τ

[
(Dnf (z))

′
+ γz (Dnf (z))

′′ − 1
]
≺ ϕ (z)

(0 ≤ γ ≤ 1, τ ∈ C/ {0} , n ∈ N, z ∈ U) and

1 +
1

τ

[
(Dng (w))

′
+ γw (Dng (w))

′′ − 1
]
≺ ϕ (w)

(0 ≤ γ ≤ 1, τ ∈ C/ {0} , n ∈ N, w ∈ U) , where the function g is given by g(w) =
f−1(w) = w − a2w

2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + ... and Dn is the
Salagean differential operator.

In this paper, we obtain the estimates on the coeffi cients |a2| and |a3| for
Σn (τ , γ,ϕ) as well as its special classes.
Firstly, in order to derive our main results, we need the following lemma.
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Lemma 1.1. [8] Let p(z) = 1 + c1z + c2z
2 + ... ∈ P, where P is the family of all

functions p, analytic in U , for which Re p(z) > 0 (z ∈U) . Then

|cn| ≤ 2; n = 1, 2, 3, ....

2. INITIAL COEFFICIENTS FOR THE CLASS Σn(τ , γ, ϕ)

Theorem 2.1. Let f(z) ∈ Σn (τ , γ,ϕ) be of the form (1.1). Then

|a2| ≤
|τ |
√
B3

1√∣∣∣3n+1τB2
1 (1 + 2γ) + 4n+1 (1 + γ)

2
(B1 −B2)

∣∣∣ (2.1)

and

|a3| ≤ B1 |τ |
(

B1 |τ |
4n+1 (1 + γ)

2 +
1

3n+1 (1 + 2γ)

)
. (2.2)

Proof. Since f ∈ Σn (τ , γ,ϕ) , there exist two analytic functions u, v : U → U , with
u(0) = v(0) = 0, such that

1 +
1

τ

[
(Dnf (z))

′
+ γz (Dnf (z))

′′ − 1
]

= ϕ (u (z)) (z ∈U) (2.3)

and

1 +
1

τ

[
(Dng (w))

′
+ γw (Dng (w))

′′ − 1
]

= ϕ (v (w)) (w ∈U) . (2.4)

Define the function p and q as following:

p(z) =
1 + u(z)

1− u(z)
= 1 + c1z + c2z

2 + c3z
3 + ...

and

q(w) =
1 + v(w)

1− v(w)
= 1 + b1w + b2w

2 + b3w
3 + ...

or equivalently,

u(z) =
p(z)− 1

p(z) + 1
=
c1
2
z +

1

2

(
c2 −

c21
2

)
z2 +

1

2

(
c3 +

c1
2

(
c21
2
− c2

)
− c1c2

2

)
z3...

(2.5)
and

v(w) =
q(w)− 1

q(w) + 1
=
b1
2
w+

1

2

(
b2 −

b21
2

)
w2 +

1

2

(
b3 +

b1
2

(
b21
2
− b2

)
− b1b2

2

)
w3....

(2.6)
If we use (2.5) and (2.6) in (2.3) and (2.4) along with (1.3), we have

1 +
1

τ

[
(Dnf (z))

′
+ γz (Dnf (z))

′′ − 1
]

= 1 +
1

2
B1c1z +

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ... (2.7)
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and

1 +
1

τ

[
(Dng (w))

′
+ γw (Dng (w))

′′ − 1
]

= 1 +
1

2
B1b1w +

[
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

]
w2 + .... (2.8)

It follows from (2.7) and (2.8) that

(1 + γ) 2n+1a2

τ
=

1

2
B1c1 (2.9)

3n+1 (1 + 2γ) a3

τ
=

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1 (2.10)

and

− (1 + γ) 2n+1a2

τ
=

1

2
B1b1 (2.11)

3n+1 (1 + 2γ)
(
2a2

2 − a3

)
τ

=
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1. (2.12)

From (2.9) and (2.11) we obtain

c1 = −b1 (2.13)

By adding (2.10) to (2.12) and combining this with (2.9) and (2.11), we get

a2
2 =

τ2B3
1 (b2 + c2)

4
[
3n+1τB2

1 (1 + 2γ) + 4n+1 (1 + γ)
2

(B1 −B2)
] . (2.14)

Subtracting (2.10) from (2.12), if we use (2.9) and applying (2.13), we have

a3 =
τ2B2

1b
2
1

22n+4 (1 + γ)
2 +

τB1 (c2 − b2)

4.3n+1 (1 + 2γ)
. (2.15)

Finally, in view of Lemma 1.1, we get results (2.1) to (2.2) asserted by the Theorem
2.1. �

3. COROLLARIES AND CONSEQUENCES

i) If we set

τ = eiβ cosβ
(
−π

2
< β <

π

2

)
and

ϕ(z) =
1 + (1− 2κ)z

1− z = 1 + 2(1− κ)z + 2(1− κ)z2 + ... (0 ≤ κ < 1)

which gives B1 = B2 = 2(1−κ), in Theorem 2.1, we can have the following corollary.
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Corollary 3.1. Let f(z) ∈ Σn
(
eiβ cosβ , γ, 1+(1−2κ)z

1−z

)
be of the form (1.1). Then

|a2| ≤

√
2 (1− κ)

3n+1(1 + 2γ)
cosβ (3.1)

and

|a3| ≤ 2 (1− κ)

(
(1− κ) cosβ

22n+1 (1 + γ)
2 +

1

3n+1 (1 + 2γ)

)
cosβ. (3.2)

Remark 3.2. For γ = 0, Corollary 3.1 simplifies to the following form.

Corollary 3.3. Let f(z) ∈ Σn
(
eiβ cosβ , 0, 1+(1−2κ)z

1−z

)
be of the form (1.1). Then

|a2| ≤
√

2 (1− κ)

3n+1
cosβ (3.3)

and

|a3| ≤ 2 (1− κ)

(
(1− κ) cosβ

22n+1
+

1

3n+1

)
cosβ. (3.4)

ii) If we set τ = 1 and

ϕ(z) =

(
1 + z

1− z

)α
= 1 + 2αz + 2α2z2 + ... (0 < α ≤ 1)

which gives B1 = 2α, B2 = 2α2, in Theorem 2.1, we can obtain the following
corollary.

Corollary 3.4. Let f(z) ∈ Σn
(

1, γ,
(

1+z
1−z

)α)
be of the form (1.1). Then

|a2| ≤ α
√

2

3n+1(1 + 2γ)α+22n+1 (1 + γ)
2

(1− α)
(3.5)

and

|a3| ≤
(

α2

4n (1 + γ)
2 +

2α

3n+1 (1 + 2γ)

)
. (3.6)

Remark 3.5. In its special case when γ = 0 in Corollary 3.4, we can get the
following corollary.

Corollary 3.6. Let f(z) ∈ Σn
(

1, 0,
(

1+z
1−z

)α)
be of the form (1.1). Then

|a2| ≤ α
√

2

α3n+1+22n+1 (1− α)
(3.7)

and

|a3| ≤
(
α2

4n
+

2α

3n+1

)
. (3.8)
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Remark 3.7. i: Putting n = 0 in Theorem 2.1, we obtain the corresponding
result given earlier by Deniz [7] (also Srivastava and Bansal [21]).

ii: Putting τ = 1, γ = 0, n = 0 in Theorem 2.1, we obtain the corresponding
result given earlier by Ali et al [1].

iii: Putting β = 0, n = 0 in Corollary 3.3 and γ = 0, n = 0 in Corollary 3.4,
we obtain the corresponding result given earlier by Srivastava et al [19].
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