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Abstract: Memristor-based systems can exhibit the phenomenon of extreme multi-stability, which
results in the coexistence of infinitely many attractors. However, most of the recently published
literature focuses on the extreme multi-stability related to memristor initial conditions rather than
non-memristor initial conditions. In this paper, we present a new five-dimensional (5-D) two-
memristor-based jerk (TMJ) system and study complex dynamical effects induced by memristor and
non-memristor initial conditions therein. Using multiple numerical methods, coupling-coefficient-
reliant dynamical behaviors under different memristor initial conditions are disclosed, and the
dynamical effects of the memristor initial conditions under different non-memristor initial conditions
are revealed. The numerical results show that the dynamical behaviors of the 5-D TMJ system are
not only dependent on the coupling coefficients, but also dependent on the memristor and non-
memristor initial conditions. In addition, with the analog and digital implementations of the 5-D
TMJ system, PSIM circuit simulations and microcontroller-based hardware experiments validate the
numerical results.

Keywords: memristor; jerk system; initial condition; extreme multi-stability; dynamical effect;
circuit implementation

1. Introduction

In general, a nonlinear dynamical system can exhibit chaotic dynamics for specific
system parameters and initial conditions [1,2]. To generate chaotic attractors, various
nonlinear oscillation circuits and dynamical systems have been proposed successively
and studied comprehensively [3–7]. These nonlinear circuits and systems mainly include
fractional-order Logistic map [8], no-equilibrium hyperchaotic multi-wing system [9],
high-dimensional chaotic and hyper-chaotic systems [10,11], memristive Rulkov neuron
model [12], memristor-based hyperchaotic maps [13], hidden and self-excited Lorenz-
like system [14], memristive hyperchaotic autonomous system [15], asymmetric electrical
synapse-coupled neurons model [16], memcapacitive oscillator [17], hybrid diode-based
jerk circuit [18], two-memristor-based Chua’s circuit [19], and so on. For normal cases,
the nonlinear circuits and systems have several determined equilibrium points and their
attractors are self-excited from unstable equilibrium points [20]. However, when having
time-varying equilibrium [21–23] or line/plane equilibrium [19,24–27], the nonlinear cir-
cuits and systems demonstrated the coexisting behaviors of infinitely many attractors,
resulting in the emergence of special extreme multi-stability.

In recent years, memristor-based chaotic circuits and systems have been broadly inves-
tigated, since memristor is a special nonlinear circuit component with memory effect and
synaptic plasticity [19,28,29]. This particular type of chaotic circuit and system is conduc-
tive to deriving coexisting infinitely many attractors. Such coexistence of infinitely many
attractors means initial-condition-related extreme multi-stability [30–32]. To implement
the initial-condition-related extreme multi-stability, an effective and simple method is to
introduce memristor into an existing dynamical system to construct a new memristor-based
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dynamical system, which is different from the method of using periodic trigonometric
function to realize the initial condition-boosted infinitely many attractors in some special
boostable systems [33,34]. In fact, the memristor-based dynamical system has a total bifur-
cation route to chaos with the evolution of the initial conditions [19] and can display the
coexistence of various types of attractors [27]. However, most of the recently published
literature only focuses on the extreme multi-stability related to the initial conditions of
memristors [35–38], and little on the extreme multi-stability related to the initial conditions
of non-memristors. In this paper, we present a new 5-D TMJ system and emphatically
study complex dynamical effects induced by the initial conditions of memristors and
non-memristors therein. Thus, the dynamical effects of the initial conditions on the 5-D
TMJ system are disclosed comprehensively, which have not been wholly reported in the
previously published literature.

The rest of this paper is arranged as follows. Section 2 first presents a 5-D TMJ system
and then studies complex dynamics related to the coupling coefficients. Section 3 focuses on
the dynamical effects of memristor and non-memristor initial conditions on the TMJ system.
With the analog and digital implementations, PSIM circuit simulations and experimental
measurements are carried out to validate the numerical simulations in Section 4. Finally,
the paper is summarized in Section 5.

2. The TMJ System with Complex Dynamics

This section first presents a new 5-D TMJ system and then studies complex dynamics
related to the coupling coefficients using multiple numerical methods.

2.1. Mathematical Modeling

A jerk system is a third-order ordinary differential equation. It is of the following form:

...
x = J(

..
x,

.
x, x) (1)

J(·) is a nonlinear function. Since the mathematical model in (1) represents the cubic time
derivative of variable x, it is named the ‘jerk’.

A simple jerk system used in this paper is improved from [39] and its general jerk
form can be described as follows:

...
x = −a

.
x− b

..
x + a(x− x3) (2)

where a and b are two positive control parameters.
Denote x = x1, ẋ = x2, and ẍ = ax3, respectively. The simple jerk system in (2) can be

rewritten as: 
.
x1 = x2.
x2 = ax3.
x3 = −x2 − bx3 + (x1 − x3

1)
(3)

where x1, x2, and x3 are three state variables. Therefore, the simple jerk system is a three-
dimensional nonlinear dynamical system.

The simple jerk system in (3) only has a cubic polynomial nonlinearity of state
variable x1. On this basis, and referring to [35], a new 5-D TMJ system is presented in
this paper, which is achieved by replacing the cubic polynomial in brackets with one
memristor and introducing another memristor into the first equation.

For an input x and an output y, a flux-controlled memristor with state variable ϕ can
be described as: {

y = W(ϕ)x
.
ϕ = x

(4)

The memductance W(ϕ) in (4) is selected as a threshold nonlinear function bounded
above and below, which can be expressed by:

W(ϕ) = tanh(ϕ) (5)
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Thus, the 5-D TMJ system is established using the above two memristors as:

.
x1 = x2 − k1tanh(x5)x3.

x2 = ax3.
x3 = −x2 − bx3 − k2tanh(x4)x1.

x4 = x1.
x5 = x3

(6)

where x4 and x5 represent the inner state variables of two memristors, and k1 and k2
represent two changeable coupling coefficients. Therefore, the system modeled by (6) is a
5-D nonlinear dynamical system. Besides, the initial conditions are defined as ICs = (x1(0),
x2(0), x3(0), x4(0), x5(0)), in which the first three initial conditions IC1 = (x1(0), x2(0), x3(0)) are
called the non-memristor initial conditions and the last two initial conditions IC2 = (x4(0),
x5(0)) are called the memristor initial conditions.

To aim at the revelation of extreme multi-stability, two positive control parameters
in (6) are kept unchanged as a = 2.5 and b = 0.8. When the initial conditions are fixed as
ICs = (10−9, 0, 0, 1, 0) and the two changeable coupling coefficients are determined as k1 = 1
and k2 = 2.3, the 5-D TMJ system can generate a representative chaotic attractor, whose
phase portraits in two different planes are depicted in Figure 1. Here, a MATLAB ODE45
algorithm with time-step 0.01 and time-span (400, 1000) is utilized. The results show that
chaotic dynamics can be established in the 5-D TMJ system.

Figure 1. Phase portraits of the representative chaotic attractor in two different planes: (a) phase
portrait in the x2–x3 plane, and (b) phase portrait in the x4–x5 plane.

2.2. Coupling Coefficient-Reliant Complex Dynamics

Bifurcation diagram and Lyapunov exponent (LE) spectra of a dynamical system are
taken as two dynamical indicators to characterize the type of bifurcation scenario giving
rise to chaos. To show complex dynamical behaviors in system (6) intuitively, the two-
parameter bifurcation diagram and dynamical map are numerically simulated in the k1–k2
plane, as shown in Figure 2, where the initial conditions are fixed as ICs = (10−9, 0, 0, 1, 0).
The two-parameter bifurcation diagram is plotted by measuring the periodicities of the
state variable x1 based on a MATLAB ODE45 algorithm with time-step 0.01 and time-span
(400, 1000) and the two-parameter dynamical map is depicted by calculating the maximal
Lyapunov exponent (LE) based on Wolf’s Jacobi method.

In Figure 2a, the red block labeled CH represents chaos, the black block labeled UB
represents unbounded behavior, the white block labeled P0 represents stable point, the
yellow block labeled MP represents multi-period with the periodicity greater than 8, and
the other color blocks labeled P1 to P8 represent period-1 to period-8. Meanwhile, in
Figure 2b, the pink–red–yellow–cyan blocks with positive maximal LE denote chaotic
behaviors and the blue blocks with zero maximal LE denote stable-point behaviors with
different positions or periodic behaviors with different periodicities. Besides, the dynamical
distributions described by Figure 2a,b are consistent with each other, which clarifies how
the dynamical behaviors evolve in the k1–k2 plane. As can be seen from Figure 2, chaotic
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behaviors with several periodic windows appear in the center left part of the pictures,
implying the existence of tangent bifurcations and chaos crises; the dynamical behaviors
have the transitions from P1 to P2, to P4, and to P8, demonstrating the occurrence of
period-doubling bifurcations.

Figure 2. Two-parameter bifurcation diagram and dynamical map in the k1–k2 plane for ICs = (10−9,
0, 0, 1, 0): (a) bifurcation diagram, and (b) dynamical map.

To demonstrate the dynamical effects of the initial conditions, the initial conditions
of the 5-D TMJ system are considered as ICs = (1, 0, 0, 1, 0) and (0, 1, 0, 1, 0). In other
words, the memristor initial conditions are kept as IC2 = (1, 0), while the non-memristor
initial conditions are set to IC1 = (1, 0, 0) and (0, 1, 0), respectively. For these two different
cases of the initial conditions, the dynamical distributions of the 5-D TMJ system vary
greatly in the parameter intervals concerned. Under these two sets of initial conditions,
the two-parameter bifurcation diagrams are numerically simulated in the k1–k2 plane, as
shown in Figure 3. Looking at the dynamical distributions in Figures 2a and 3, it is easy
to see that they are quite different from each other. This shows that the initial conditions
of different state variables have great influence on the dynamical behaviors of the 5-D
TMJ system.

Figure 3. Two-parameter bifurcation diagrams in the k1–k2 plane for two sets of different initial
conditions: (a) ICs = (1, 0, 0, 1, 0), and (b) ICs = (0, 1, 0, 1, 0).

To describe the evolution of its dynamical behaviors with respect to the single-
parameter interval, the single-parameter bifurcation diagram and LE spectra are employed.
The initial conditions are set as ICs = (10−9, 0, 0, 1, 0) for simplicity.

First, the coupling coefficient k2 is set as a fixed value of 2.3, and the coupling coefficient
k1 varies within the interval (0.2, 2). Second, k1 = 1, and k2 varies within the interval (1.8, 2.6).
The single-parameter bifurcation diagrams and the corresponding LE spectra are simulated
by MATLAB software and their results are depicted in the lower half and the upper half of
Figure 4, respectively. Note that the single-parameter bifurcation diagrams in the lower
half of Figure 4 are acquired by plotting the local maxima of state variable x1 according
to the coupling coefficients that are increased in slight steps. When increasing k1 or k2, it
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is found that the 5-D TMJ system under consideration can undergo abundant bifurcation
scenarios and exhibit rich dynamical behaviors.

Figure 4. Single-parameter bifurcation diagrams and corresponding LE spectra with respect to
different coupling coefficients: (a) k2 = 2.3, k1 ∈ (0.2, 2), and (b) k1 = 1, k2 ∈ (1.8, 2.6).

Take the case in Figure 4a as an example to illustrate the bifurcation route to chaos
of the 5-D TMJ system. When increasing k1, the running orbit begins with unbounded
behavior at k1 = 0.2, transfers into bounded chaotic behavior at k1 = 0.24, and rapidly
degenerates into periodic behaviors via a serial of period-doubling bifurcation. Afterwards,
the running orbit breaks into chaos by tangent bifurcation at k1 = 0.29. In the relatively wide
interval k1 ∈ (0.29, 1.25) the 5-D TMJ system mainly works in chaos state, but accompanied
by some periodic window behaviors. The largest periodic window with period-4 appears
in the interval k1 ∈ (0.78, 0.88), during which the chaos crisis and tangent bifurcation
happen naturally. When further increasing k1, the running orbit ultimately degenerates into
periodic behaviors via serial period-doubling bifurcation. Meanwhile, for positive maximal
LE, the 5-D TMJ system evolves irregularly in the folded space of a chaotic attractor, while
for zero maximal LE, the 5-D TMJ system oscillates regularly on a limit cycle.

Consequently, the 5-D TMJ system can exhibit complex dynamical behaviors that are
reliant on to the coupling coefficients, and its dynamical distributions in the parameter
plane are greatly affected by the initial conditions of the system.

3. Memristor and Non-Memristor Initial-Condition Effects

This section focuses on the dynamical effects of the memristor and non-memristor
initial conditions on the 5-D TMJ system through theoretically exploring the stability distri-
bution of the plane equilibrium point and numerically investigating the initial-condition-
related extreme multi-stability.

3.1. Stability Distribution for Plane Equilibrium Point

The equilibrium point plays an essential role in the dynamical behaviors of the system
and it can be solved by setting the right-hand side of the system equations to zero. Thus, a
plane equilibrium point can be easily obtained from system (6) and it can be described by:

S0 = {(x1, x2, x3, x4, x5)| x1 = x2 = x3 = 0, x4 = µ, x5 = η } (7)

where µ, η are two arbitrary constants, representing the initial positions of the equilibrium
point S0.
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Evaluated at the equilibrium point S0, the Jacobian matrix J of system (6) can be
derived as follows:

J =


0 1 −k1tanh(η) 0 0
0 0 a 0 0

−k2tanh(µ) −1 −b 0 0
1 0 0 0 0
0 0 1 0 0

 (8)

It is obvious that the equilibrium point S0 has two zero roots and three nonzero roots,
similar to that reported in [36]. For the nonzero roots, the corresponding cubic characteristic
equation can be derived from the Jacobian matrix of system (6) at S0 as:

P(λ) = λ3 + m1λ2 + m2λ + m3 = 0 (9)

where

m1 = b
m2 = a− k1k2tanh(µ)tanh(η)
m3 = ak2tanh(µ)

For the three nonzero roots, Routh–Hurwitz criteria for the above cubic characteristic
equation are given by:

m1 > 0, m3 > 0, and m1m2 −m3 > 0 (10)

If the three criteria of (10) are satisfied, the equilibrium point S0 is stable and a point
attractor appears; otherwise, S0 is unstable and periodic or chaotic behaviors may occur in
system (6).

The two changeable parameters are determined as k1 = 1 and k2 = 2.3, the initial
parameter µ is varied in the region (−0.5, 1), and the initial parameter η is evolved in the
region (−3, 3). According to the conditions given in (10), the stability distribution identified
by the three nonzero roots in the µ–η plane can be depicted, as shown in Figure 5. The
different color blocks are used to divide three categories of stability regions consisting
of the unstable region I, stable region II, and unstable region III. The equilibrium point
S0 located in the region I and region III is the unstable saddle-focus (USF), whereas S0
in the region II is the stable node-focus (SNF). Besides, the three nonzero roots marked
by 0P3N represent the three negative real parts with no positive real part, and the three
nonzero roots marked by 1P2N and 2P1N represent the one and two positive real parts,
respectively. Particularly, the boundary marked by HB line between the region II and region
III is the Hopf bifurcation (HB) line. Therefore, different types of attractors’ behaviors may
emerge in the different stability regions, such as point, periodic, chaotic, and unbounded
behaviors, demonstrating that the dynamical behaviors are extremely dependent on the
initial positions of the equilibrium point S0, i.e., the initial conditions of two memristors.

Figure 5. For the three non-zero roots, the stability distribution in the µ–η plane, where k1 = 1 and k2 = 2.3.
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Due to the existence of two zero roots, the aforementioned SNF for S0 is critically
stable, indicating that the stability of system (6) cannot be effectively judged only by the
three nonzero roots [19]. Just for intuition’s sake, the initial conditions are determined
as ICs = (10−9, 0, 0, µ, η). For different values of µ and η located in different regions of
Figure 5, the three nonzero roots, stability regions, and attractor types are numerically
simulated, as listed in Table 1. Consequently, for different values of µ and η, various kinds
of attractors appear in system (6), leading to the emergence of extreme multi-stability.

Table 1. For different values of µ and η, the nonzero roots, stabilities, and attractor types.

µ, η Nonzero Roots Stabilities Attractor Types

−0.7, 1 0.7398, −0.7699 ± j2.0261 USF (1P2N) Infinite
−0.6, 1 0.6908, −0.7454 ± j1.9786 USF (1P2N) Chaotic attractor
−0.5, 1 0.6308, −0.7154 ± j1.9236 USF (1P2N) Period-2 attractor
−0.2, 1 0.3495, −0.5747 ± j1.7080 USF (1P2N) Point

0, 0 0, −0.400 ± j1.5297 SNF (0P3N) Point
0.2, 0 −0.4836, −0.1582 ± j1.5238 SNF (0P3N) Point

0.36312, 0 −0.8002, ±j1.5812 HB point Point
0.4, 0 −0.8571, 0.0286 ± j1.5963 USF (2P1N) Period-1 attractor
0.9, 0 −1.3043, 0.2522 ± j1.7590 USF (2P1N) Period-4 attractor
1, 0 −1.3503, 0.2752 ± j1.7797 USF (2P1N) Chaotic attractor

1.25, 0 −1.4323, 0.3161 ± j1.8181 USF (2P1N) Infinite

The results from Figure 5 and Table 1 demonstrate that, with the variations of the
memristor initials µ and η, system (6) derives multiple stability distributions and presents
complex dynamical behaviors. Particularly, the unbounded behavior appears in system (6)
under a very large region of memristor initial conditions, meaning that system (6) is less
robust to the initial conditions. Besides, the stable-point attractors also appear in the
unstable region I, and are triggered by the two zero roots of S0.

3.2. Initial-Condition-Related Extreme Multi-Stability

The local basin of attraction is the attracting region of a steady-state attractor in the
plane of two initial conditions, within which any initial conditions will settle down to the
attractor. The above analysis results indicate that the 5-D TMJ system can produce extreme
multi-stability dependent on the memristor initial conditions. Thus, the memristor initial
conditions are taken as two invariant measures for classifying the coexisting infinitely many
attractors’ behaviors [27,40]. Note that the local basin of attraction is colorfully drawn by
calculating the periodicities of the state variable x1 based on a MATLAB ODE45 algorithm
with time-step 0.01 and time-span (400, 1000), regardless of the structure and position of
the generated attractor.

The representative parameters are determined as a = 2.5, b = 0.8, k1 = 1, and k2 = 2.3,
and the memristor initial conditions are denoted as IC2 = (x4(0), x5(0)) = (µ, η). To depict the
local basin of attraction, we examine the periodicities of the state variable x1 at each point
in the µ–η plane. For two sets of tiny non-memristor initial conditions of IC1 = (10−9, 0, 0)
and IC1 = (−10−9, 0, 0), the local basins of attraction in the µ–η plane are measured and the
results are shown in Figure 6. The color blocks represent the memristor initial conditions
that trigger the trajectories of different dynamical behaviors, which are exactly the same as
those used in Figure 2a. As a result, the 5-D TMJ system can exhibit complex dynamical
behaviors closely dependent on the memristor initial conditions, indicating the emergence
of extreme multi-stability therein.

Particularly, as revealed in Figure 6, the local basins of attraction with IC1 = (10−9, 0,
0) and (−10−9, 0, 0) are very different. The attracting regions in Figure 6a are completely
symmetric with respect to µ, while the right half of the attracting regions in Figure 6b
is exactly the same as that in Figure 6a, but the left half is unbounded. This is shocking
that completely different dynamical behaviors appear in the µ–η plane when the initial
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condition x1(0) is slightly varied. Unfortunately, the dynamical mechanism is quite difficult
to be identified based on the mathematical model of system (6).

Figure 6. Local basins of attraction in the µ–η plane for two sets of tiny non-memristor initial
conditions IC1 = (x1(0), x2(0), x3(0)): (a) IC1 = (10−9, 0, 0), and (b) IC1 = (−10−9, 0, 0).

Moreover, because there are extremely small differences in the initial condition x1(0),
the dynamical distributions depicted by Figure 6a are different from those depicted by
Figure 2, but the dynamical distributions depicted by Figure 6b are similar to those depicted
by Figure 5. This is an unexpected and very interesting result.

For manifesting dynamical effects of the non-memristor initial conditions, two sets
of large non-memristor initial conditions of IC1 = (1, 0, 0) and IC1 = (0, 1, 0) are employed.
Accordingly, the local basins of attraction in the µ–η plane are measured and their results
are shown in Figure 7. As can be seen, with the changes of the non-memristor initial
conditions, the left and right attracting regions appeared in the cases of tiny non-memristor
initial conditions are connected as a whole, and the bounded behaviors are mainly confined
to the lower plane regions of the memristor initial conditions. In brief, the simulated results
further demonstrate that the non-memristor initial conditions have a great influence on the
dynamical behaviors of the 5-D TMJ system.

Figure 7. Local basins of attraction in the µ–η plane for two sets of large non-memristor initial
conditions IC1 = (x1(0), x2(0), x3(0)): (a) IC1 = (1, 0, 0), and (b) IC1 = (0, 1, 0).

Referring to the local basin of attraction revealed in Figure 6a, the memristor initial
condition-induced attractors are measured to verify the coexistence of infinitely many
attractors in the 5-D TMJ system. For some representative memristor initial conditions IC2,
the phase portraits of the induced attractors in the x4–x5 plane are depicted in Figure 8,
where the stable point attractors are marked by the symbol “*”. For better visual effect,
only partial phase portraits of the induced attractors are simulated in Figure 8, but they
sufficiently demonstrate the memristor initial-condition-related extreme multi-stability. In
fact, more phase portraits of the induced attractors with different structures, periodicities,
and positions can be numerically measured from the 5-D TMJ system, indicating the
appearance of the coexisting infinitely many attractors’ behaviors.



Mathematics 2022, 10, 411 9 of 13

Figure 8. For fixed IC1 = (10−9, 0, 0), numerically measured phase portraits of the memristor
initial condition-induced attractors in the x4–x5 plane with different values of IC2. The top pictures
demonstrate the periodic and chaotic attractors with the period-doubling bifurcation scenario, the
middle pictures illustrate the chaotic attractors with different structures and positions, and the bottom
pictures represent the stable point and unstable period-1 attractors with different positions.

4. Analog and Digital Implementations

This section designs an analog circuit and a digital microcontroller-based hardware
platform for implementing the 5-D TMJ system. The PSIM circuit simulations and experi-
mental measurements acquire the memristor initial condition-induced attractors to validate
the numerical simulations.

4.1. Analog Circuit Design and PSIM Circuit Simulations

PSIM (Power Simulation) circuit simulations are employed to verify the dynamical
effects of the initial conditions on the 5-D TMJ system using a physical circuit. Based on the
mathematical model given in (6), an analog implementation circuit in a jerk-circuit form is
designed for the 5-D TMJ system and its circuit schematic is shown in Figure 9. Here, the
memristor used in system (6) is implemented equivalently by the circuit module shown
at the top of Figure 9, where the −tanh(·) module can be defined by a function module in
PSIM software. When the two capacitor voltages v3 and v1 are taken as the input voltages
of two memristors, respectively, the generated currents i1 and i2 can be expressed as:

i1 = g1tanh(v5)v3/Rk1, τ0dv5/dt = −v3 (11)

i2 = g2tanh(v4)v1/Rk2, τ0dv4/dt = −v1 (12)

where τ0 = RC is the integration time constant, v4 and v5 stand for the capacitor voltages of
the memristor circuit modules, g1 and g2 represent the multiplier gains of the memristor
circuit modules, and Rk1 and Rk2 are used for adjusting the two coupling coefficients.

Usually, the multiplier gains g1 and g2 are fixed as 1, and the integration time constant
τ0 = RC set to 10 kΩ × 100 nF = 1 ms. Thus, the resistances Ra and Rb in the main circuit
are determined by Ra = R/a and Rb = R/b, and the resistances Rk1 and Rk2 in the memristor
circuit modules are obtained by Rk1 = R/k1 and Rk2 = R/k2. For the representative control
parameters a = 2.5 and b = 0.8, as well as the coupling coefficients k1 = 1 and k2 = 2.3,
the four resistances can be calculated as Ra = 4 kΩ, Rb = 12.5 kΩ, Rk1 = 10 kΩ, and
Rk2 = 4.3478 kΩ. Besides, two inverters should be connected to the capacitor voltage
terminals of the memristor circuit modules to achieve the same results of circuit simulations
and numerical simulations.
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Figure 9. Analog implementation circuit in a jerk-circuit form for the 5-D TMJ system.

The three initial capacitor voltages in the main circuit are preset as v1(0) = 1 nV,
v2(0) = 0 V, and v3(0) = 0 V, and only the two initial capacitor voltages v4(0) and v5(0)
of the memristor circuit modules are adjustable to acquire the desired phase portraits.
Corresponding to the numerical simulations shown in Figure 8, the phase portraits of
the induced attractors in the plane of v4 and v5 are simulated by PSIM software and the
measured outputs under different values of v4(0) and v5(0) are displayed in Figure 10, where
IC2 = (v4(0), v5(0)). Therefore, the circuit simulations in Figure 10 validate the memristor
initial condition-induced attractors revealed in Figure 8, indicating the feasibility of the
designed circuit.

Figure 10. PSIM simulated phase portraits of the memristor initial condition-induced attractors in
the plane of v4 and v5 with fixed IC1 = (v1(0), v2(0), v3(0)) = (1 nV, 0 V, 0 V), and varied IC2 = (v4(0),
v5(0)) (unit: V), demonstrating the appearance of the coexisting infinitely many attractors’ behaviors.

4.2. Digital Hardware Platform and Experiments

Based on a pony-size and low-cost microcontroller, a digitally circuit-implemented
hardware platform can be developed for the 5-D TMJ system, in which STM32F407VET6
microcontroller with 32-bit RISC core and DAC8563 digital-to-analog (D/A) converter are
utilized. According to the mathematical model given in (6), a discrete-time mathematical
model is built by means of the fourth-order Runge–Kutta algorithm, which can be coded
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in C language and uploaded to the microcontroller. All the system parameters and non-
memristor initial conditions are determined in advance, and only the memristor initial
conditions are adjusted to acquire the desired phase portraits using a digital oscilloscope.

Figure 11 displays the digitally circuit-implemented hardware platform for the 5-D
TMJ system and the memristor initial condition-induced attractors acquired by the digital
oscilloscope. Similarly, following the numerical simulations shown in Figure 8, the phase
portraits of the induced attractors in the plane of v4 and v5 are acquired, as shown in
Figure 12, where the memristor initial conditions IC2 = (v4(0), v5(0)) are changed as different
values according to those given in Figure 8. Therefore, the experimentally acquired results
in Figure 12 validate the numerical results well, reflecting the feasibility of the digitally
circuit-implemented hardware platform.

Figure 11. The digitally circuit-implemented hardware platform for the 5-D TMJ system and the
induced attractor acquired by the digital oscilloscope.

Figure 12. Experimentally acquired phase portraits of the memristor initial condition-induced
attractors in the plane of v4 and v5 with fixed IC1 = (v1(0), v2(0), v3(0)) = (1 nV, 0 V, 0 V), and varied
IC2 = (v4(0), v5(0))(unit: V).



Mathematics 2022, 10, 411 12 of 13

5. Conclusions

In this paper, a new 5-D nonlinear dynamical system based on two memristors was
presented by introducing two memristors to a simple jerk system, and its complex dynamics
related to the coupling coefficients under different memristor initial conditions were studied
using multiple numerical methods. Emphatically, the dynamical effects of the memristor
and non-memristor initial conditions on the 5-D TMJ system were explored by theoretical
analyses and numerical simulations, which were validated by PSIM circuit simulations
and microcontroller-based hardware experiments. However, because of the two zero
roots caused by the plane equilibrium point, the dynamical mechanism of the initial-
condition effects on the 5-D TMJ system cannot be effectively explained only by the stability
distributions of the three nonzero roots. To address this issue, an incremental integral
reconstitution model can be used for elaborating the dynamical mechanism of the initial-
condition effects [19,35], which deserves further study.
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