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Initial condition issues on iterative learning control for non-linear
systems with time delay

Mingxuan Sun and Danwei Wang*

Most of the available results on iterative learning control address trajectory tracking
problem for systems without time delay. The role of the initial function in tracking
performance of iterative learning control for systems with time delay is not yet fully
understood. In this paper, asymptotic properties of a conventional learning algorithm
are examined for a class of non-linear systems with time delay in the presence of initial
function errors. It is shown that a non-zero initial function deviation can cause a lasting
tracking error on the entire operation. Impulsive action is one method to eliminate such
lasting tracking error but it is not a practical approach. As an alternative, an initial
rectifying action is introduced in the learning algorithm. The initial rectifying action is
®nite and used over a speci®ed interval. It is shown to be e� ective in the improvement of
tracking performance, in particular robustness and uniform convergence. The results
are further extended to systems with multiple time delays. An example is given and
computer simulations are presented to demonstrate the performance of the proposed
approach.

1. Introduction

Iterative learning control is a trajectory tracking
improvement technique for systems performing a pre-

scribed task repeatedly, which is characterized by repo-

sitioning, input updating and zero-error tracking in the

presence of unmodeled dynamics and/or parameters

uncertainties (Bien and Xu 1998, Moore 1998, Sun

and Huang 1999). A common assumption in iterative

learning control is that the initial condition at each
cycle is reset to the desired initial condition, or inside

a neighborhood of the desired initial condition (Arimoto

et al. 1984, Hauser 1987, Arimoto 1990, Heinzinger et

al. 1992, Saab et al. 1997). This requirement was relaxed

in Lee and Bien (1996), Wang and Cheah (1998) and

Sun et al. (1998a) so that the initial condition at each
cycle remains the same but di� erent from the desired

initial condition or within a neighborhood of any ®xed

point, under which asymptotic tracking is ensured. To

eliminate the e� ect caused by the initial condition

shifting, initial impulsive action is needed in a learning

algorithm (Porter and Mohamed 1991). The learning

algorithm enables zero-error tracking on the entire

operation interval. However, the use of an impulsive
action is not practical.

Up to now, most works focus on systems without

time delay. However, delays are inherent in many
applications such as batch processes, and remote con-

trolled robots, vehicles and man-machine systems.

Because of inaccuracy in estimation and/or uncer-
tainty of time delay, feedback controls are usually

unsatisfactory , especially in transient responses. This

motivates researches on iterative learning control for
systems with time delay (Sun et al. 1994, 1988b, Hideg

1995, Park et al. 1998). The convergence issues were

investigated for LTI systems with time delay (Hideg
1995, Park et al. 1998). In Sun et al. (1994), a higher-

order learning algorithm was studied for a class of
non-linear systems with time delay. However, the con-

sidered initial condition is simple but somewhat

obscure. Recently, Sun et al. (1998b) showed that

under certain conditions the output error is asympto-
tically bounded when the initial function at each cycle

is deviated from the desired initial function within an
admissible level. If the deviations are eliminated, uni-

form convergence of the system output to the desired

trajectory can be guaranteed.
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This paper aims to examine asymptotic properties of
iterative learning control for a class of non-linear
systems with time delay in the case where initial function
at each cycle need not be close to the desired initial
function as required in the published literature. First,
we consider the case where the initial function at each
cycle remains the same but di� erent from the desired
initial function. It is shown that a conventional learning
algorithm will lead to a constant tracking error, similar
to the case for systems with no time delay (Lee and Bien
1996). Then, we focus on the case where the initial func-
tion varies about a ®xed function. An initial rectifying
action is introduced in the learning algorithm to
improve tracking performance. A proof is provided to
analyse the robustness of the proposed learning algor-
ithm with respect to such initial function errors.
Compared with the initial impulsive approach (Porter
and Mohamed 1991), the initial rectifying action is
®nite and implementable. These results are also
extended to systems with multiple time delays. Finally,
numerical simulations are given to illustrate the theor-
etical results.

2. Problem formulation

Consider a class of non-linear systems with time delay
described by the state space equations

_xxk…t† ˆ f …xk…t†; xk…t ¡ ½†; t†

‡ B…xk…t†; xk…t ¡ ¼†; t†uk…t† …1†

yk…t† ˆ g…xk…t†; t†; …2†

where t is the time in the operation interval ‰0; T Š and k
is the number of operation cycles. For t 2 ‰0; T Š and for
all k, xk…t† 2 Rn, uk…t† 2 Rr and yk…t† 2 Rm are the state,
control input and output of the system, respectively.
Both ½ > 0 and ¼ > 0 are constant time delays. For
t 2 ‰¡·; 0Š; · ˆ max f½; ¼g; xk…t† ˆ Ák…t† and Ák…t† is
the initial function of the system.

Given a desired trajectory yd…t†; t 2 ‰0; T Š; the objec-
tive is to ®nd a control input such that the system output
follows the desired trajectory. A conventional learning
algorithm takes the form of

uk‡1…t† ˆ uk…t† ‡ L…yk…t†; t†… _yyd…t† ¡ _yyk…t††; …3†

where the learning gain L… ; † is piecewise continuous
and bounded on Rm ‰0; T Š. It was shown (Sun et al.
1994, 1998b) that if L… ; † is chosen such that

kI ¡ L…g…x…t†; t†; t†gx…x…t†; t†B…x…t†; x…t ¡ ¼†; t†k

µ » < 1; t 2 ‰0; T Š …4†

and

Ák…t† ˆ Ád…t†; t 2 ‰¡·; 0Š; k ˆ 0; 1; 2; . . . ; …5†

where Ád…t† is the desired initial function, then the
system output yk…t† converges uniformly to yd…t† on
‰0; T Š as k ! 1. Furthermore, if the initial function at
each cycle is allowed to deviate from Ád…t† such that

kÁd…t† ¡ Ák…t†k µ cÁd ; t 2 ‰¡·; 0Š; k ˆ 0; 1; 2; . . . ;

…6†

then the asymptotic bound of the output error
yd…t† ¡ yk…t† is a class-K function of cÁd .

This paper allows larger initial function deviations,
kÁd…t† ¡ Ák…t†k cÁd . However, the initial function

Ák…t† at each cycle aligns with a given function Á*…t†,
namely,

Ák…t† ˆ Á*…t†; t 2 ‰¡·; 0Š; k ˆ 0; 1; 2; . . . …7†

or within a ball centered at Á*…t†, i.e.

kÁ*…t† ¡ Ák…t†k µ cÁ; t 2 ‰¡·; 0Š; k ˆ 0; 1; 2; . . . ; …8†

We shall analyse the e� ect due to the initial function
errors on the converged system output and propose an
approach to eliminate such e� ect.

The following assumptions on the system (1±2) are
imposed.

A1. The desired trajectory yd…t† is di� erentiable on
[0, T].

A2. The functions f :Rn Rn ‰0; T Š ! Rn and
B:Rn Rn ‰0; T Š ! Rn r are piecewise continu-
ous in t; g:Rn ‰0; T Š ! Rm is di� erentiable in x
and t with partial derivatives gx… ; † and gt… ; †.

A3. The functions f … ; ; † and B… ; ; † are uniformly
globally Lipschitz in x on ‰0; T Š, i.e.
ka…x1…t†; x1…t ¡ ³†; t† ¡ a…x2…t†; x2…t ¡ ³†; t†k µ
la…kx1…t† ¡ x2…t†k ‡ kx1…t ¡ ³† ¡ x2…t ¡ ³†k†; for
t 2 ‰0; T Š, ³ 2 f½; ¼g and some ®nite constant
la > 0, a 2 ff ; Bg. The function B… ; ; † is uni-
formly bounded on Rn Rn ‰0; T Š with the
norm bound cB.

A4. The functions gt… ; †, gx… ; † are uniformly glob-
ally Lipschitz in x on ‰0; T Š, i.e.
ka…x1…t†; t† ¡ a…x2…t†; t†k µ lakx1…t† ¡ x2…t†k, for
t 2 ‰0; T Š and some ®nite constant la > 0,
a 2 fgt; gxg. The function gx… ; † is uniformly
bounded on Rn ‰0; T Š with the norm bound cgx.

A5. The input±output coupling matrix gx… ; †B… ; ; †
is of full column rank.

Because of the boundedness of gx… ; †, assumption
(A4) implies that g… ; † is uniformly globally Lipschitz
in x on ‰0; T Š. Assumption (A5) guarantees that there
exits a bounded L… ; † satisfying (4). In particular, let
L ˆ ¬‰…gxB†TgxBŠ¡1…gxB†T . We can ®nd ¬ 2 …0; 2† so
that » ˆ j1 ¡ ¬j < 1. The boundedness of L… ; † can be
concluded by boundedness of B… ; ; † and gx… ; †.
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In the sequel, k k is the vector norm de®ned as
kak ˆ max1µiµn jaij for an n¡dimensional vector
a ˆ ‰a1; . . . ; anŠT. For a matrix A ˆ faijg 2 Rm n; kAk
is the norm induced from the vector norm,
kAk ˆ max1µiµm

Pn
jˆ1 jaij j. The following ¶¡norm is

used for the analysis purpose.

De®nition 2.1: The ¶-norm for a vector-valued func-
tion b…t† 2 Rn; t 2 ‰0; T Š; is de®ned as

kbk¶ ˆ sup
t2‰0;T Š

fe¡¶tkb…t†kg

where ¶ > 0.

De®nition 2.2: The 1-norm for a vector-valued func-
tion b…t† 2 Rn; t 2 ‰0; T Š; is de®ned as

kbk1 ˆ sup
t2‰0;T Š

kb…t†k:

From both de®nitions, note that kbk¶ µ kbk1 µ
e¶Tkbk¶. The ¶¡ norm is thus equivalent to the 1¡
norm.

3. Conventional ILC and its constant tracking error

In this section, by exerting the control inputs generated
by the updating law (3), the system output is shown to
converge to a trajectory that is di� erent from the desired
trajectory by a constant, and this constant is determined
by the error between the initial function and the desired
initial function at time t ˆ 0.

Theorem 3.1: Given a desired trajectory yd…t†; t 2 ‰0; T Š;
let the system (1±2) satisfy assumptions (A1±5), and the
updating law (3) be applied. De®ne a trajectory

y*…t† ˆ yd…t† ¡ …yd…0† ¡ g…Á*…0†; 0††; …9†

with the initial function Á*…t†; t 2 ‰¡·; 0Š, being realiz-
able. If the learning gain is selected such that (4) holds
and the initial function at each cycle satis®es the align-
ment condition (7), the system output yk…t† converges
uniformly to y*…t† on ‰0; T Š as k ! 1.

Proof: The proof can be found in appendix A. &

Theorem 3.1 shows that the converged output trajec-
tory follows y*…t† that shifts from yd…t† with a ®xed
error, yd…0† ¡ g…Á*…0†; 0†; for all t 2 ‰0; T Š: The initial
function over the interval ‰¡·; 0† has no e� ect on the
converged output trajectory. This property implies that
the convergence of the updating law (3) can be guaran-
teed if g…Á*…0†; 0† ˆ yd…0† and the initial function on the
interval ‰¡·; 0† keeps the same at each repetition.

To examine the implications of Theorem 3.1, consider
the linear systems with time-delay described by

_xxk…t† ˆ Axk…t† ‡ A1xk…t ¡ ½† ‡ Buk…t† …10†

yk…t† ˆ Cxk…t†: …11†

The updating law (3) becomes

uk‡1…t† ˆ uk…t† ‡ L… _yyd…t† ¡ _yyk…t††; …12†

and the condition (4) reduces to

kI ¡ LCBk µ » < 1: …13†

The converged trajectory will be

y*…t† ˆ yd…t† ¡ …yd…0† ¡ CÁ*…0††: …14†

Note that similar convergence result is obtained for
linear systems without time-delay in Lee and Bien
(1996). As an extension, however, Theorem 3.1 implies
that by using the same learning algorithm, the conver-
gence of the learning algorithm is independent of the
time delay in the state variable, and the converged tra-
jectory does not depend on the initial function over the
interval ‰¡·; 0†.

4. ILC with initial rectifying action

To overcome the deviated convergence shown in
Theorem 3.1, a rectifying action at t ˆ 0 is added as
the third term in the updating law (3), in the following
form

uk‡1…t† ˆ uk…t† ‡ L…yk…t†; t†… _yyd…t† ¡ _yyk…t††

‡ ¯h…t†L…yk…t†; t†…yd…0† ¡ yk…0††; …15†

where ¯h:‰0; T Š ! R is de®ned as

¯h…t† ˆ
2
h

1 ¡ t
h

¡
t 2 ‰0; hŠ

0 t 2 …h; T Š

(
…16†

with
…h

0

¯h…s† ds ˆ 1

and h is a design parameter.
In the following, when the updating law (15) is

applied to the system (1±2), we are going to consider a
more realistic case where the initial function Ák…t† varies
within a ball centered at Á*…t†: The following theorem
speci®es asymptotic properties of the learning algor-
ithm.

Theorem 4.1: Given a desired trajectory yd…t†; t 2 ‰0; T Š;
let the system (1±2) satisfy assumptions (A1±5) and the
updating law (15) be applied. De®ne a trajectory

y*…t† ˆ yd…t† ‡
…t

h

¯h…s†ds…yd…0† ¡ g…Á*…0†; 0††; …17†

with the initial function Á*…t†; t 2 ‰¡·; 0Š, being realiz-
able. If the learning gain is selected such that (4) holds
and the initial function at each cycle satis®es (8), the
asymptotic bound of the output error y*…t† ¡ yk…t† is a
class-K function of cÁ on ‰0; T Š as k ! 1.
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Proof: As in the proof of Theorem 3.1 given in

appendix A, for the initial condition x*…t† ˆ Á*…t†;
t 2 ‰¡·; 0Š, let u*…t†; t 2 ‰0; T Š be the control input

which generates the trajectory y*…t†; t 2 ‰0; T Š and

x*…t†; t 2 ‰0; T Š: The notations in the proof of Theorem

3.1 are also adopted here. Using y*…t† de®ned in (17),

(15) can be written as

uk‡1 ˆ uk ‡ Lk… _yy* ¡ _yyk† ‡ Lk… _yyd ¡ _yy*†

‡ ¯hLk…g…Á*…0†; 0† ¡ yk…0†† ‡ ¯hLk…yd…0†

¡ g…Á*…0†; 0††

ˆ uk ‡ Lk… _yy* ¡ _yyk† ‡ ¯hLk…g…Á*…0†; 0† ¡ yk…0††;

which implies

¢*uk‡1
ˆ ¢u*k ¡ Lk‰g*t ‡ gx*… f * ‡ B*u*† ¡ gtk

¡ gxk… fk ‡ Bkuk†Š

¡ ¯hLk…g…Á*…0†; 0† ¡ yk…0††

ˆ …I ¡ LkgxkBk†¢u*k ¡ Lkfg*t ¡ gtk

‡ …g*x ¡ gxk†… f * ‡ B*u*†

‡ gxk‰… f * ¡ fk† ‡ …B* ¡ Bk†u*Šg

¡ ¯hLk…g…Á*…0†; 0† ¡ yk…0††:

Taking norms and applying the bounds and the

Lipschitz conditions, we have

k¢u*k‡1k µ kI ¡ LkgxkBkkk¢u*k…t†k ‡ kLkk‰kg*t ¡ gtkk

‡ kg*x ¡ gxkk k f * ‡ B*u*k

‡ kgxkk…k f * ¡ fkk ‡ kB* ¡ Bkk ku*k†Š

‡ k¯hkkLkkkg…Á*…0†; 0† ¡ yk…0†k

µ »k¢u*kk ‡ cL‰…lgt ‡ lgxc* ‡ cgxc1†k¢x*kk

‡ cgx…lf k¢x*k…t ¡ ½†k ‡ lBcu k¢x*k…t ¡ ¼†k†Š

‡ 2

h
cLlgk¢x*k…0†k; …18†

where cL is the norm bound for L… ; †;
c* ˆ supt2‰0;T Š k f * ‡ B*u*k, cu 7 supt2‰0;T Š ku*…t†k,

and c1 ˆ lf ‡ lBcu .

For evaluating the state errors of the right hand side
of (18), we integrate the state equations to obtain

¢x*k ˆ ¢x*k…0† ‡
…t

0

‰ f * ‡ B*u* ¡ … fk ‡ Bkuk†Š ds

ˆ ¢x*k…0† ‡
…t

0

‰ f * ¡ fk ‡ …B* ¡ Bk†u* ‡ Bk¢u*kŠ ds:

Taking norms and using their properties yield

k¢x*kk µ k¢x*k…0†k ‡
…t

0

…k f * ¡ fkk ‡ kB* ¡ Bkkku*k

‡ kBkkk¢u*kk† ds

µ k¢x*k…0†k ‡
…t

0

…c1k¢x*kk ‡ lf k¢x*k…s ¡ ½†k

‡ lBcu k¢x*k…s ¡ ¼†k ‡ cBk¢u*kk† ds: …19†

Note the facts that, for t 2 ‰0; ³Š with ³ 2 f½; ¼g,

…t

0

k¢x*k…s ¡ ³†k ds ˆ
…t¡³

¡³

kÁ*…s† ¡ Ák…s†k ds

µ ·cÁ; …20†

and for t 2 …³; T Š,
…t

0

k¢x*k…s ¡ ³†k ds ˆ
…0

¡³

kÁ*…s† ¡ Ák…s†k ds

‡
…t¡³

0

k¢x*k…s†k ds

µ ·cÁ ‡
…t¡³

0

k¢x*k…s†k ds: …21†

Combining (20) and (21) produces, for t 2 ‰0; T Š;
…t

0

k¢x*k…s ¡ ³†k ds µ ·cÁ ‡
…t

0

k¢x*k…s†k ds: …22†

Substituting (22) into (19) gives rise to

k¢x*kk µ …1 ‡ c1·†cÁ ‡
…t

0

…2c1k¢x*kk ‡ cBk¢u*kk† ds:

Then applying Bellman±Gronwall Lemma, we obtain

k¢x*kk µ …1 ‡ c1·†cÁe2c1 t ‡
…t

0

e2c1…t¡s†cBk¢u*kk ds;

…23†

which implies

k¢x*k…t ¡ ³†k µ …1 ‡ c1·†cÁe2c1…t¡³†

‡
…t¡³

0

e2c1…t¡³¡s†cBk¢u*kk ds; t 2 …³; T Š:

Because of e¡2c1³ < 1,

k¢x*k…t ¡ ³†k µ …1 ‡ c1·†cÁe2c1t

‡
…t

0

e2c1…t¡s†cBk¢u*kk ds; t 2 …³; T Š; …24†

which is also true for t 2 ‰0; ³Š since k¢x*k…t ¡ ³†k ˆ
kÁ*…t ¡ ³† ¡ Ák…t ¡ ³†k µ cÁ; t 2 ‰0; ³Š:
Now, substituting (23) and (24) into (18) produces
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k¢u*k‡1k µ »k¢u*kk ‡ cLc2cB

…t

0

e2c1…t¡s†k¢u*kk ds

‡ cLc2…1 ‡ c1·†cÁe2c1 t ‡ 2

h
cLlgcÁ

µ »k¢u*kk ‡ c3

…t

0

ec3…t¡s†k¢u*kk ds ‡ 1 ‡ ec3 t

2
c3cÁ;

where c2 ˆ lgt ‡ lgxc* ‡ 2cgxc1 and

c3 ˆ max

»
2c1; cLc2cB; 2cLc2…1 ‡ c1·†;

4

h
cLlg

¼
:

Multiplying both sides by e¡¶t with ¶ > 0 gives

e¡¶tk¢u*k‡1k µ »e¡¶tk¢u*kk

‡ c3

…t

0

e…c3¡¶†…t¡s†e¡¶sk¢u*kk ds

‡ e¡¶t ‡ e…c3¡¶†t

2
c3cÁ:

Taking supremum for t 2 ‰0; T Š and ¶ > c3 according to
the ¶-norm de®nition, we get

k¢u*k‡1k¶ µ ·»»k¢u*kk¶ ‡ c3cÁ; …25†

where ·»» ˆ » ‡ c3…1 ¡ e…c3¡¶†T†=…¶ ¡ c3†. Since » < 1, it
is possible to ®nd a ¶ > c3 su� ciently large such that
·»» < 1: Then (25) is a contraction in k¢u*kk¶. Iterating k
leads to

k¢u*kk¶ µ ·»»kk¢u*0k¶ ‡ 1 ¡ ·»»k

1 ¡ ·»»
c3cÁ:

When the iterations increase, k ! 1, the error k¢u*kk¶

is bounded in the sense that, due to ·»» < 1,

k¢u*kk¶ µ k¢u*0k¶ ‡
c3

1 ¡ ·»»
cÁ; k ˆ 1; 2; . . . ; …26†

lim sup
k!1

k¢u*kk¶ µ c3

1 ¡ ·»»
cÁ: …27†

Furthermore, using (23) and similar manipulations, we
have

k¢x*kk¶ µ …1 ‡ c1·†cÁ ‡ cB

1 ¡ e…c3¡¶†T

¶ ¡ c3

k¢u*0k¶ ‡ c3

1 ¡ ·»»
cÁ ; k ˆ 0; 1; . . . …28†

lim sup
k!1

k¢x*kk¶

µ 1 ‡ c1· ‡ cB

1 ¡ e…c3¡¶†T

¶ ¡ c3

c3

1 ¡ ·»»

Á !
cÁ: …29†

To obtain the result for y* ¡ yk, we use the fact that
g… ; † is uniformly globally Lipschitz in x on ‰0; T Š.
Therefore, ky* ¡ ykk¶ µ lgk¢x*kk¶ for some positive
constant lg and thus,

ky* ¡ ykk¶ µ lg…1 ‡ c1·†cÁ

‡ lgcB

1 ¡ e…c3¡¶†T

¶ ¡ c3

k¢u0*k¶ ‡
c3

1 ¡ ·»»
cÁ ;

k ˆ 0; 1; . . . …30†

lim sup
k!1

ky* ¡ ykk¶

µ lg 1 ‡ c1· ‡ cB

1 ¡ e…c3¡¶†T

¶ ¡ c3

c3

1 ¡ ·»»

Á !
cÁ: …31†

This completes the proof. &

Theorem 4.1 implies that a suitable choice of L… ; †
leads to that the system output converges to the trajec-
tory y*…t† for all t 2 ‰0; T Š as cÁ tends to zero. Based on
the de®nition of y*…t† in (17), y*…t† ˆ yd…t†; t 2 …h; T Š:
Uniform convergence of the system output to desired
trajectory yd…t† is achieved on …h; T Š, while the con-
verged output trajectory on ‰0; hŠ is speci®ed by the
initial rectifying action which can be viewed as a tran-
sient from initial position to the desired trajectory. The
speci®ed trajectory in the interval ‰0; hŠ is for initial rec-
tifying and the later part for trajectory tracking.

It is already known (Sun et al. 1994, 1998b) that when
the conventional learning algorithm is used, the asymp-
totic bound of the output error between yd…t† and yk…t†
is a class-K function of cÁd ; the bound on the initial
function error Ád…t† ¡ Ák…t†. The asymptotic bound of
the output error will be very large when the initial func-
tion at each repetition is in the neighborhood of Á*…t†
and kÁd…t† ¡ Á*…t†k ¾ cÁd ; t 2 ‰¡·; 0Š. On the other
hand, Theorem 4.1 shows that when the proposed initial
rectifying action is applied, the tracking error will be a
class-K function of cÁ and thus substantially reduced
after t h. It indicates that the initial rectifying action
in our proposed learning algorithm helps to improve
tracking performance.

Note that ¯h…t† will be the Dirac delta function when
h ! 0. For this case, the resulting control input contains
impulsive action at t ˆ 0 so that zero-error tracking is
achieved along the whole span of operation interval in
the absence of initial function errors. Our work exam-
ines the way to avoid impulsive action by introducing
the initial rectifying action. In the implementation, the
selection of h should be done based on the trade-o�
among factors such as the resulting control input, tran-
sient response and the error bounds given in (26±31).

For 0 µ t < ¼; (4) can be rewritten as

kI ¡ L…g…x…t†; t†; t†gx…x…t†; t†B…x…t†; Á*…t ¡ ¼†; t†k

µ » < 1:

This implies that the su� cient condition for robustness
and convergence of the learning algorithm (15) depends
on the initial function of the system. However, the
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design of L… ; † is clearly independent of the time delay

½ .
The results in Theorems 3.1 and 4.1 are suitable for

the following non-linear systems with measurement
delay

_xx…t† ˆ f …x…t†† ‡ B…x…t††u…t† …32†

y…t† ˆ g…x…t ¡ ½††; …33†

and feedback control is used in the manner

u…t† ˆ c…y…t†; yd…t†; t† ‡ v…t†; …34†

and v…t† is the learning control part. State equation of
the closed-loop system is then given by

_xx…t† ˆ ·ff …x…t†; x…t ¡ ½†; t† ‡ B…x…t††v…t†; …35†

where

·ff …x…t†; x…t ¡ ½†; t†

ˆ f …x…t†† ‡ B…x…t††c…g…x…t ¡ ½††; yd…t†; t†:

Since the learning update is o� -line,

·yy…t† ˆ y…t ‡ ½†

ˆ g…x…t†† …36†

is available after each operation and can be considered
as the output signal of the new formed system.

5. Extension to systems with multiple time delays

The above results can be extended to a class of non-
linear systems with multiple time delays, which is
described by

_xxk…t† ˆ f …xk…t†; xk…t ¡ ½1†; . . . ; xk…t ¡ ½n1
†; t†

‡ B…xk…t†; xk…t ¡ ¼1†; . . . ; xk…t ¡ ¼n2
†; t†uk…t† …37†

yk…t† ˆ g…xk…t†; t†; …38†

where t 2 ‰0; T Š; ½i > 0; i ˆ 1; . . . ; n1 and ¼i > 0; i ˆ 1;
. . . ; n2 are constant time delays. For t 2 ‰0; T Š and for
all k, xk…t† 2 Rn, uk…t† 2 Rr and yk…t† 2 Rm. For
t 2 ‰¡·; 0Š, · ˆ maxf½i; i ˆ 1; . . . ; n1; ¼i; i ˆ 1; . . . ; n2g,
xk…t† ˆ Ák…t†:

For the realizable trajectory y*…t† de®ned in (17), let
u*…t† and x*…t† be the control input and the state, re-
spectively. Assume that the functions f and B be uni-
formly globally Lipschitz in x on ‰0; T Š, i.e.

ka…x1…t†; x1…t ¡ ³1†; . . . ; x1…t ¡ ³ni
†; t† ¡ a…x2…t†;

x2…t ¡ ³1†; . . . ; x2…t ¡ ³ni
†; t†k µ la‰kx1…t† ¡ x2…t†k

‡ kx1…t ¡ ³1† ¡ x2…t ¡ ³1†k ‡ ‡ kx1…t ¡ ³ni
†

¡ x2…t ¡ ³ni
†kŠ;

for t 2 ‰0; T Š; ³ 2 f½; ¼g; ni 2 fn1; n2g and some ®nite

constant la > 0, a 2 f f ; Bg. Performing manipulations

similar to those in the proof of Theorem 4.1 yields, in

parallel to (19),

k¢x*kk µ k¢xk
*…0†k ‡

…t

0

‰lf …k¢xk
*k ‡ k¢xk

*…s ¡ ½1†k

‡ ‡ k¢xk
*…s ¡ ½n1

†k† ‡ lBcu …k¢xk
*k

‡ k¢xk
*…s ¡ ¼1†k

‡ ‡ k¢xk
*…s ¡ ¼n2

†k† ‡ cBk¢uk
*kŠds:

Note the fact that

…t

0

k¢x*k…s ¡ ³†k ds µ ·cÁ ‡
…t

0

k¢x*k…s†k ds;

where ³ 2 f½i; i ˆ 1; . . . ; n1; ¼i; i ˆ 1; . . . ; n2g; which

leads to

k¢xk
*k µ ‰1 ‡ …lf n1 ‡ lBcu n2†·ŠcÁ

‡
…t

0

‰…lf …n1 ‡ 1† ‡ lBcu …n2 ‡ 1††k¢xk
*k

‡ cBk¢uk
*kŠ ds:

De®ning c1 ˆ lf …n1 ‡ 1† ‡ lBcu …n2 ‡ 1† and applying

Bellman±Gronwall Lemma give rise to

k¢x*kk µ ‰1 ‡ …lf n1 ‡ lBcu n2†·ŠcÁec1t

‡
…t

0

ec1…t¡s†cBk¢u*kk ds

k¢x*k…t ¡ ³†k µ ‰1 ‡ …lf n1 ‡ lBcu n2†·ŠcÁec1t

‡
…t

0

ec1…t¡s†cBk¢u*kk ds:

Now we can make the same claims as in Theorem (4.1).

For the control design one can choose L… ; † properly
such that

kI ¡ L…g…x…t†; t†; t†gx…x…t†; t†B…x…t†;

x…t ¡ ¼1†; . . . ; x…t ¡ ¼n2
†; t†k µ » < 1;

which depends on Á…t ¡ ¼i† as 0 µ t < ¼i; i ˆ 1; . . . ; n2.

6. Simulation illustrations

The following example and simulations are presented to

illustrate the theoretical results of this paper. Consider

the non-linear system with time delay
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_xx1;k…t†

_xx2;k…t†

_xx3;k…t†

2

664

3

775 ˆ

x2;k…t ¡ ½† ‡ x3;k…t†

x1;k…t† ‡ x3;k…t ¡ ½†

x1;k…t ¡ ½† ‡
1

1 ‡ j…t ¡ ½†x2;k…t†j

2

66664

3

77775

‡

0 1

1 0

sin ……t ¡ ¼†x2;k…t ¡ ¼†† cos ……t ¡ ¼†x1;k…t ¡ ¼††

2

664

3

775
u1;k…t†

u2;k…t†

" #

y1;k…t†

y2;k…t†

" #
ˆ

2x2;k…t† ‡ sin …tx2;k…t††

x1;k…t†

" #

;

where ½ ˆ ¼ ˆ 0:5, xi;k…t† ˆ Ái;k…t†, i ˆ 1; 2; 3; t 2
‰¡0:5; 0Š: Let the desired trajectories be given as

y1;d…t†
y2;d…t†

µ ¶
ˆ

12t2…1 ¡ t†
12t…1 ¡ t†2

" #

; t 2 ‰0; 1Š:

Note that the non-linear functions 1=1 ‡ jtzj; sin …tz†,
and cos …tz† are all uniformly globally Lipschitz in z
and uniformly bounded for all t 2 ‰¡0:5; 1Š and for all
z 2 R. It is thus concluded that gx and B satisfy assump-
tions (A3) and (A4). Because gxB is a full rank matrix,
the learning gain in (4) is chosen as

L ˆ
¬

2 ‡ t cos …tx2;k† 0

0 

2

4

3

5:

We should select ¬ 2 …0; 2† and  2 …0; 2† to satisfy
max fj1 ¡ ¬j; j1 ¡  jg < 1. In this example ¬ ˆ 0:8 and

 ˆ 0:8 are selected. Simulations are conducted for the
following three cases.

6.1. Convergence

Let the initial functions be Ái;k…t† ˆ t and

Ái;k…t† ˆ 2t; i ˆ 1; 2; 3; t 2 ‰¡0:5; 0Š; respectively. The
updating law (3) is applied with the initial controls

u1;0 ˆ 0 and u2;0 ˆ 0 for all t 2 ‰0; 1Š: De®ne the per-

formance index Jk ˆ supt2‰0;1Š kyd…t† ¡ yk…t†k1: The

iteration stops when the tracking index Jk < 0:005.

For both cases, this requirement of tracking perform-

ance is achieved at the sixth iteration. Figures 1 and 2

show the tracking histories and the resulting control
inputs respectively. The e� ect of the time delays is

clearly shown by the turning points in the control

inputs at the time t ˆ 0:5, but uniform convergence

of the system outputs to the desired trajectories is

guaranteed due to the zero initial function errors at

t ˆ 0.
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(a)

Figure 1. Responses when the conventional learning algorithm is used with the initial function ci;k(t) 5 t. (a) Tracking errors, (b)

control input uk(t) at the sixth iteration.

(b)



6.2. Divergence and initial rectifying

The initial functions at each iteration are chosen as

Ái;k…t† ˆ 2t ‡ 2; i ˆ 1; 2; 3; t 2 ‰¡0:5; 0Š. There exist

initial function errors at t ˆ 0. Figure 3 shows resulting

output trajectories at the sixth iteration when applying

the updating law (3), in which the output trajectories

track the desired trajectories with the error de®ned by
(9). Figure 4 shows resulting output trajectories at the

eighth iteration when applying the updating law (15)

with h ˆ 0:2. The output trajectories uniformly con-

verge to the desired trajectories on the interval
‰0:2; 1Š. Meanwhile, the tracking performance
Jk ˆ supt2‰0:2;1Š kyd…t† ¡ yk…t†k1 < 0:005 is achieved at
the eighth iteration.

6.3. Robustness

Let the initial functions be Ái;k…t† ˆ
t ‡ 1 ‡ 0:01randn, i ˆ 1; 2; 3; t 2 ‰¡0:5; 0Š and Ái;k…t† ˆ
2t ‡ 2 ‡ 0:01randn, i ˆ 1; 2; 3; t 2 ‰¡0:5; 0Š; respectively.
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(a) (b)

Figure 2. Responses when the conventional learning algorithm is used with the initial function ci;k(t) 5 2t. (a) Tracking errors, (b)

control input uk(t† at the sixth iteration.

(a)

Figure 3. Output trajectories when the conventional learning algorithm is used with the initial function ci;k(t) 5 2t 1 2. (a) Output

trajectory y1(t) at the sixth iteration, (b) output trajectory y2(t) at the sixth iteration.
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Randn is a generator of random scalar with normal

distribution, mean=0, and variance=1 (white
Gaussian noise). The performance index is still de®ned

as Jk ˆ supt2‰0:2;1Š kyd…t† ¡ yk…t†k1 and the repetitions

are conducted until k ˆ 50. It can be observed from

®gure 5 that the tracking errors generated by using the

updating law (3) move with the initial function errors

and will become very large when the initial functions
at each iteration are far away from the desired initial

functions. However, ®gure 6 indicates that due to the

initial rectifying action, better tracking performance is

obtained by using the proposed updating law (15)
regardless of the tracking on the interval ‰0; 0:2Š.

7. Conclusion

In this paper, the trajectory tracking problem is formu-
lated and solved using iterative learning control method-
ology for a class of non-linear systems with time delay.
It is shown that the tracking performance can be poor
due to an initial function shifting when a conventional
learning algorithm is applied. An initial rectifying action
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Figure 4. Output trajectories when the proposed learning algorithm with initial rectifying action is used with the initial function
ci;k(t) 5 2t 1 2. (a) Output trajectory y1(t) at the eighth iteration, (b) output trajectory y2…t† at the eighth iteration.
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(b)

Figure 5. Tracking errors when the conventional learning algorithm is used in the presence of random initial function errors.

(a) ci;k(t) 5 t 1 1 1 0:01randn, (b) ci;k(t) 5 2t 1 2 1 0:01randn.



is introduced for performance improvement and a proof
is provided for analysing its robustness and convergence
against initial function errors. The theoretical and simu-
lation results show that the robustness performance of
the learning algorithm can be improved by the initial
rectifying action. Whenever the initial function of the
system is reset to a ®xed function that needs not close
to the desired one, uniform convergence of the system
output to the desired trajectory is guaranteed also due to
the initial rectifying action.

A.1. Appendix A

Proof of Theorem 3.1: Given the initial condition
x*…t† ˆ Á*…t†; t 2 ‰¡·; 0Š, denote u*…t†; t 2 ‰0; T Š as the
control input satisfying

y*…t† ˆ g…x*…t†; t† …A:1†

_xx*…t† ˆ f …x*…t†; x*…t ¡ ½†; t† ‡ B…x*…t†; x*…t ¡ ¼†; t†u*…t†;

…A:2†

where x*…t†; t 2 ‰0; T Š is the corresponding state. For
simplicity, the following notations are used:
f * ˆ f …x*…t†, x*…t ¡ ½†; t†, fk ˆ f …xk…t†, xk…t ¡ ½†; t†,
B* ˆ B…x*…t†; x*…t ¡ ¼†; t†; Bk ˆ B…xk…t†; xk…t ¡ ¼†; t†,
g*t ˆ gt…x*…t†; t†; gtk ˆ gt…xk…t†; t†; g*x ˆ gx…x*…t†; t†;
gxk ˆ gx…xk…t†; t†; Lk ˆ L…yk…t†; t†; ¢u*k ˆ u*…t† ¡ uk…t†;
and ¢x*k ˆ x*…t† ¡ xk…t†: Using the de®nition of y*…t†
in (9), (3) can be written as

uk‡1 ˆ uk ‡ Lk… _yy* ¡ _yyk† ‡ Lk… _yyd ¡ _yy*†

ˆ uk ‡ Lk… _yy* ¡ _yyk†;

which implies

¢u*k‡1 ˆ …I ¡ LkgxkBk†¢u*k

¡ Lkfg*t ¡ gtk ‡ …g*x ¡ gxk†… f * ‡ B*u*†

‡ gxk‰… f * ¡ fk† ‡ …B* ¡ Bk†u*Šg:

Taking norms and applying the bounds and the

Lipschitz conditions, we have:

k¢u*k‡1k µ »k¢uk*k ‡ cL‰…lgt ‡ lgxc* ‡ cgxc1†k¢x*kk

‡ cgx…lf k¢x*k…t ¡ ½†k ‡ lBcu k¢x*k…t ¡ ¼†k†Š;

…A:3†

where cL is the norm bound for L… ; †;
c* ˆ supt2‰0;T Š k f * ‡ B*u*k, cu 7 supt2‰0;T Š ku*…t†k,

and c1 ˆ lf ‡ lBcu :
For evaluating the state errors on the right hand side

of (A.3), we integrate both sides of (1) and (A.2) and use

(7) to obtain:

¢x*k ˆ
…t

0

‰ f * ¡ fk ‡ …B* ¡ Bk†u* ‡ Bk¢u*kŠ ds:

Taking norms and using their properties yield:

k¢x*kk µ
…t

0

…c1k¢x*kk

‡ lf k¢x*k…s ¡ ½†k ‡ lBcu k¢x*k…s ¡ ¼†k

‡ cBk¢u*kk†ds: …A:4†
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Figure 6. Tracking errors when the proposed learning algorithm with initial rectifying action is used in the presence of random initial

function errors. (a) ci;k(t) 5 t 1 1 1 0:01randn, (b) ci;k(t† 5 2t 1 2 1 0:01randn.



Note that for t 2 ‰0; ³Š with ³ 2 f½; ¼g:
…t

0

k¢x*k…s ¡ ³†k ds ˆ
…t¡³

¡³

kÁ*…s† ¡ Ák…s†k ds

ˆ 0; …A:5†
and for t 2 …³; T Š:

…t

0

k¢x*k…s ¡ ³†k ds ˆ
…0

¡³

kÁ*…s† ¡ Ák…s†k ds

‡
…t¡³

0

k¢x*k…s†k ds

ˆ
…t¡³

0

k¢x*k…s†k ds: …A:6†

Combining (A.5) and (A.6) produces
…t

0

k¢x*k…s ¡ ³†k ds µ
…t

0

k¢x*k…s†k ds; …A:7†

where t 2 ‰0; T Š: Substituting (A.7) into (A.4) gives rise
to

k¢x*kk µ
…t

0

…2c1k¢x*kk ‡ cBk¢u*kk†ds:

Then applying Bellman±Gronwall Lemma, we obtain:

k¢x*kk µ
…t

0

e2c1…t¡s†cBk¢u*kk ds; …A:8†

which implies

k¢x*k…t ¡ ³†k µ
…t¡³

0

e2c1…t¡³¡s†cBk¢u*kk ds; t 2 …³; T Š:

Because of e¡2c1³ µ 1,

k¢x*k…t ¡ ³†k µ
…t

0

e2c1…t¡s†cBk¢u*kk ds; t 2 …³; T Š; …A:9†

which is also true for t 2 ‰0; ³Š since
k¢x*k…t ¡ ³†k ˆ kÁ*…t ¡ ³† ¡ Ák…t ¡ ³†k ˆ 0; t 2 ‰0; ³Š:
Now, substituting (A.8) and (A.9) into (A.3) produces:

k¢u*k‡1k µ »k¢u*kk ‡ cLc2cB

…t

0

e2c1…t¡s†k¢u*kk ds;

where c2 ˆ lgt ‡ lgxc* ‡ 2cgxc1. De®ning c3 ˆ
maxf2c1; cLc2cBg and multiplying both sides by e¡¶t

…¶ > 0† lead to:

e¡¶tk¢u*k‡1k µ »e¡¶tk¢u*kk

‡ c3

…t

0

e…c3¡¶†…t¡s†e¡¶sk¢u*kk ds:

Taking supremum for t 2 ‰0; T Š and ¶ > c3 according to
the ¶-norm de®nition, we get:

k¢u*
k‡1k¶ µ ·»»k¢u*kk¶; …A:10†

where ·»» ˆ » ‡ c3…1 ¡ e…c3¡¶†T†=…¶ ¡ c3†. Since » < 1, it
is possible to ®nd a ¶ > c3 su� ciently large such that

·»» < 1: Then, (A.10) is a contraction in k¢u*kk¶. When

the iterations increase, k ! 1, we obtain k¢u*kk¶ ! 0
so that uk ! u* uniformly on ‰0; T Š as k ! 1.
Furthermore, from (A.8) and using similar manipula-
tions give

k¢x*kk¶ µ cB

1 ¡ e…c3¡¶†T

¶ ¡ c3

k¢u*kk¶:

Therefore, xk converges to x* uniformly on ‰0; T Š as
k ! 1. To obtain the result for yk, we use the fact
that g… ; † is Lipschitz in x and the uniform convergence
of ¢x*k. This completes the proof. &
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