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Abstract. Bioinformatics applications are one of the most relevant and
compute-demanding applications today. While normally these applica-
tions are executed on clusters or dedicated parallel systems, in this work
we explore the use of an alternative architecture. We focus on exploiting
the compute-intensive characteristics offered by the graphics processors
(GPU) in order to accelerate a bioinformatics application. The GPU
is a good match for these applications as it is an inexpensive, high-
performance SIMD architecture.

In our initial experiments we evaluate the use of a regular graphics
card to improve the performance of RAxML, a bioinformatics program
for phylogenetic tree inference. In this paper we focus on porting to the
GPU the most time-consuming loop, which accounts for nearly 50% of
the total execution time. The preliminary results show that the loop code
achieves a speedup of 3x while the whole application with a single loop
optimization, achieves a speedup of 1.2x.

1 Introduction

The demands from the game application market have been driving the develop-
ment of better and faster architectures. One such example is the development of
the Graphics Cards and more specifically the Graphics Processing Units (GPU).
The GPUs are the responsible entities for drawing the fast moving images that
we observe on the computer screens. To achieve those real-time realistic anima-
tions, the GPUs must perform many floating-point operations per second. As
such, and given that the work performed by the GPUs is dedicated to these
applications, the GPUs are forced to offer many more computational resources
than the general purpose processors (CPU). Given the characteristics of these
applications, performance can easily be improved from the use of vector units,
i.e. using the SIMD programming model. In some way these GPUs have similar
characteristics with the classical supercomputers (e.g. Cray supercomputers).
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While the first GPU models were only capable of handling graphics operations,
as they were hardwired, the latest models offer the capability of executing user
code. This was originally done for users, and game writers in particular, to be
able to write their own graphics operations. Nevertheless, the programmability
has opened the power of the GPU for other non-graphics applications. This has
lead to the rising interest in a new research field known as General Purpose
Computation on Graphics Processing Units or GPGPU [1].

Although different manufacturers offer different models of GPUs, the inter-
face exported for their programming is standard and supported by the graph-
ics card drivers. Currently the two major standards for the GPU interface are
OpenGL [2] and DirectX [3]. Because these interfaces were written for program-
ming graphics operations, they are not trivial to be used by general-purpose ap-
plications. Consequently, there are some efforts into making environments and
tools that make the GPU programming easier for general-purpose applications.
One such environment is BrookGPU [4]. Brook makes some extensions to ANSI
C in order to support the execution of general-purpose applications on the GPU,
making it relatively easy to port an application.

Several general-purpose applications have been mapped to the GPU: dense
matrix multiply [5], linear algebra operations [6], sparse matrix solvers for con-
jugate gradient and multigrid [7], and database operations [8] among others.

In this paper we present our initial experiments in porting a bioinformatics
application, RAxML, to execute on the GPU. RAxML is a program for inference
of evolutionary trees based on the Maximum Likelihood method. After profiling
RAxML’s execution we focused on the porting to the BrookGPU environment of
a single loop which accounts for nearly 50% of the original execution time. With
this program we study the applicability of BrookGPU to real-world applications
as RAxML has approximately 10000 lines of source code. In our experiments
we compared the execution on a mid-class GPU (NVIDIA FX 5700LE) with a
high-end CPU (Pentium 4 3.2GHz). The results show that the loop code may be
accelerated by a factor of 3 when executing on the particular GPU. Given that
we only optimized a single loop and also that we did not make a considerable
effort yet into eliminating all the overheads, the overall improvement observed
for the complete application is of 20%. These results are very encouraging and
show that the GPU is a cost-effective solution for this application.

This paper is organized as follows: Section 2 presents the GPU architecture,
its characteristics and limitations, along with its programming environment.
Section 3 describes the bioinformatics application and its porting to the GPU.
Section 4 shows the experimental setup and Section 5 discusses the experiments
and results obtained. Finally the conclusions are presented in Section 6.

2 Graphics Processing Unit

2.1 Architecture

The GPU is an interesting architecture as it offers a large degree of parallelism
at a relatively low cost. Its operations are similar to the well known vector
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processing model. This model is also known from Flynn’s taxonomy [9] as Single
Instruction, Multiple Data or SIMD. As such, it is natural that the GPU will be
able to perform well on many of the applications that in the past were executed
on vector supercomputers.

Another characteristic of the simple parallel architecture of the GPU is that
it allows for its performance to grow at a rate faster than the well known Moore’s
law. In fact the GPU has been increasing at a rate of 2.5 to 3.0x a year as opposed
to 1.4x for the CPU.

64bit 64bit 64bit 64bit

Input from  CPU

Host interface 

Vertex processing 

Triangle setup 

Pixel processing 

Memory Interface 

Fig. 1. GPU architecture

The general architecture of the GPU is depicted in Figure 1. Notice that the
GPU includes two different types of processing units: vertex processors and pixel
(or fragment) processors. This terminology comes from the graphics operations
that each one is responsible for. For example, the vertex processor performs
mathematical operations that transform a vertex into a screen position. This
result is then pipelined to the pixel or fragment processor, which performs the
texturing operations.

2.2 Programming Environment

As mentioned before, programming the GPU in an high-level language is a
recent development. The first high-level language programming environments
were developed for graphics applications in mind. Such examples are Cg from
NVIDIA [10] and OpenGL Shading Language [11]. Although helpful, they make
the job of mapping a general purpose application a considerable task. Therefore,
some research teams are working on developing high-level language program-
ming environments for general purpose programming. One such environment is
BrookGPU [4] from Stanford University.

Brook is an extension to the standard ANSI C and is designed in order to
facilitate the porting of general purpose applications to the GPU. The main
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differences from the standard C language are the introduction of the concept of
stream variables, and kernel and reduction functions. The programming model
offered by BrookGPU for the functions to be executed on the GPU is a streaming
model. In this model a function processes streams, i.e. sequences of data, but
operates on a single element at a time.

Using Brook, a function that is executed on the GPU, can be of two types:
kernel and reduction. The former is a general function that accepts multiple
input and output parameters which may be of type stream or not. The latter
is a function that takes only one stream parameter and returns a single stream
output or scalar value. This is used to execute the known reduction operations
such as a sum of all the values in a stream.

Finally, BrookGPU has the advantage that it is necessary to write the code
once and its runtime will take care of selecting the correct implementation. For
example, the same code can execute either on the CPU, or the GPU, using the
OpenGL or the DirectX interface. In addition, it also provides an indirection
layer such that the user does not need to be aware if the card has a NVIDIA or
an ATI chip, for example.

3 GPU-RAxML

3.1 RAxML

RAxML (Randomized Axelerated Maximum Likelihood) [12,13] is a program for
inference of evolutionary (phylogenetic) trees from DNA sequence data based on
the Maximum Likelihood (ML) Method [14].

Phylogenetic trees are used to represent the evolutionary history of a set
of n organisms. An alignment with the DNA or protein sequences of those n
organisms can be used as input for the computation of phylogenetic trees. In a
phylogeny the organisms of the input data set are located at the tips (leaves)
of the tree whereas the inner nodes represent extinct common ancestors. The
branches of the tree represent the time which was required for the mutation of
one species into another new one.

The inference of phylogenies with computational methods has many impor-
tant applications in medical and biological research, such as e.g. drug discovery
and conservation biology [15]. Due to the rapid growth of sequence data over
the last years it has become feasible to compute large trees which comprise more
than 1.000 organisms. The computation of the tree-of-life containing representa-
tives of all living beings on earth is considered to be one of the grand challenges
in Bioinformatics.

The fundamental algorithmic problem computational phylogeny faces is the
immense amount of alternative tree topologies which grows exponentially with
the number of organisms n, e.g. for n = 50 organisms there exist 2.84 ∗ 1076 al-
ternative trees (number of atoms in the universe ≈ 1080). Thus, for most biologi-
cally meaningful optimality criteria the problem is NP-hard. Moreover, there is a
speed/quality trade-off among the various evolutionary models which have been
devised for tree reconstruction. This means that a phylogenetic analysis with an
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elaborate model such as ML requires significantly more time but yields trees with
superior accuracy than Neighbor Joining [16] or Maximum Parsimony [17,18].
However, due to the higher accuracy it is desirable to infer complex large trees
with ML.

The current version of RAxML incorporates novel fast hill climbing and sim-
ulated annealing heuristics and is, to the best of our knowledge, the currently
fastest and at the same time most accurate program for phylogenetic inference
with ML on real world sequence data. Moreover, it has significantly lower mem-
ory requirements than comparable implementations [19]. Finally, like every ML-
based program, RAxML exhibits a source of fine-grained loop-level parallelism
in the likelihood functions which consume over 90% of the overall computation
time (see Section 3.2).

3.2 RAxML Profiling

Before porting the application to BrookGPU we profiled its execution time in or-
der to identify the most time-consuming portions of the code. We concentrated
our analysis on the loops that had been parallelized for the OpenMP version
of RAxML [20]. For each loop we added instructions to measure the time con-
sumed by the corresponding loop execution and also to measure its frequency.
The execution time was measured with accuracy using the processor’s hardware
performance counters [21]. The results obtained for the test150 input data set
(see Section 4) are presented in Figure 2.

These results show that the most time-consuming piece of code is loop2,
which is visited 4489449 times and accounts for 47% of the total execution time.
Equally important is the fact that the five loops that were identified in the
profiling phase account altogether for 90% of the total execution time. Also, an
analysis of the code shows that the code of the loops is vectorizable without
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Fig. 2. Execution time and loop frequency profile of RAxML for test150
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major changes. Consequently, the profiling results indicate that this application
has a good potential for speedup when ported to the GPU.

3.3 Porting RAxML to the GPU

Based on the results presented in the last Section, in our initial experiments
we focus on porting loop2 to execute on the GPU. To achieve this goal we use
the BrookGPU system as presented in Section 2.2. This porting is a good case-
study for studying the applicability of BrookGPU as a platform for real-world
applications as RAxML is composed of approximately 10000 lines of source code.

In BrookGPU there are two types of source files: regular C++ (or C) source
files (.c files) and Brook source files (.br files). The latter are the ones containing
the code that is to be executed on the GPU. The code to execute on the GPU has
to be included in special functions named kernel. These kernel function perform
the same set of operations on different data elements belonging to the same
stream of data.

The first step in porting the application is to identify the code to execute on
the card. To be effective this has to be a loop in the original source code. Once
this loop is identified, a pre-condition for it to be ported to the GPU is that there
are no dependencies in the data accesses in the loop’s operations across different
iterations. This means that the data accesses in a certain iteration are different
from the ones in any other iteration, therefore independent, and consequently
iterations may safely be executed in parallel, without resulting in any conflicts.
In practice this is the definition of a loop being vectorizable. For our example
an excerpt of the code is presented in Figure 3.

...

for (i = 0; i < tr->cdta->endsite; i++) {

fxqr = tr->rdta->freqa * lqa[i] + tr->rdta->freqg * lqg[i];

fxqy = tr->rdta->freqc * lqc[i] + tr->rdta->freqt * lqt[i];

fxqn = fxqr + fxqy;

...

lpa[i] = sumaq * (zzr * (lra[i] - tempi) + tempj);

...

}

...

Fig. 3. Original loop2 code

After the verification that the loop code is vectorizable, we need to identify
the data accessed within an iteration. Simple variables will not be changed but
arrays will have to be transformed into streams. In addition, we need to deter-
mine if the data is accessed in a read-only, write-only, or read-write fashion.

The next step is to extract the loop code and create a kernel function with it.
The function parameters are the variables as identified in the previous step. In
addition, the keyword out needs to be used for all returning parameters. Notice
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that this function, as it contains the code to be executed on the GPU, needs to
be placed in a separate file, a Brook file (.br), in order for the corresponding code
to be correctly generated by the system. For our example mentioned above, the
Brook kernel function is the one presented in Figure 4.

kernel void

second_loop(float4 lq<>, out float lp_x<>, ...

float i_freqa, float i_freqg, float i_freqc, float i_freqt,...)

{

float fxqr, fxqy, fxqn;

...

fxqr = i_freqa * lq.x + i_freqg * lq.y;

fxqy = i_freqc * lq.z + i_freqt * lq.w;

fxqn = fxqr + fxqy;

...

lp_x = sumaq * (zzr * (lr.x - tempi) + tempj);

...

}

Fig. 4. Brook kernel function for loop2 code.

In the original code, the loop code is replaced with a function call to the
new kernel function. In addition, it is necessary to pack the arrays into streams
before the kernel call and unpack the output streams into regular arrays after
the kernel call. The packing function is called streamRead and the unpacking one
streamWrite. For our example the code looks like the one presented in Figure 5.

...

streamRead(lq, lq_array);

second_loop(lq,lp_x,...,i_freqa,i_freqg,i_freqc,i_freqt,...);

streamWrite(lp_x, lpa);

...

Fig. 5. Application with call to kernel function

It is necessary to note that this procedure may not be straightforward in all
cases as the use of the graphics card imposes some limitations. Examples of such
limitations are the size of the stream used, the type and number of parameters
that may be passed to the kernel function, and the operations performed within
the kernel function. A detailed analysis of some of these limitations and proposed
solutions is presented in [22].

4 Experimental Setup

For the experiments presented in this paper we used one graphics card and
one computer setup. The graphics card used was a NVIDIA GeForce FX 5700
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LE [23]. This card has a NV36 graphics processor clocked at 250MHz, 128MB
DDR video memory clocked at 200MHz and the data transfers with the PC are
done through the AGP interface. The NV36 processor includes 3 vertex and 4
pixel pipelines [24].

As for the computer system we used a high-end Intel Pentium 4 3.2GHz based
system with 1GB RAM.

The application used is RAxML as described in Section 3.1. The input data
set used in these experiments is composed of an alignment of 150 sequences or
organisms where each organism is represented by a DNA sequence of a length
of 1269 nucleotides. This input set is named test150.

The environment used was BrookGPU version 0.3 [4] as described in Sec-
tion 2.2. For the experiments, Brook was compiled using the Intel C++ compiler
with the release compile flag, i.e. with full code optimizations.

For the experiments we compare the execution time of running the code on
the regular CPU of the system and on the GPU of the graphics card. We measure
these two situations using the same code as the BrookGPU runtime allows the
user to decide where the code should be executed depending on the value of an
environment variable (BRT RUNTIME). If we set the variable BRT RUNTIME
to cpu the code will execute on the system’s CPU while if we set the variable to
nv30gl it will execute on the card’s GPU.

5 Experimental Results

As previously described, in this preliminary study we focused on porting one
loop, loop2, from the original code to execute on the GPU. The speedup obtained
from executing the modified application on the GPU comparing to the execution
on the CPU is shown in Figure 6.
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In this Figure we present four bars separated into two groups: Loop on the
left, which represents the results for the speedup of the loop2 loop code; and
GPU-RAxML on the right, which represents the results for the speedup of the
complete RAxML application compared to the execution on the CPU. In the
latter group we have three bars: two dark ones representing predicted speedup
and a lighter one representing measured speedup. From left to right, the first bar,
all-perf, represents the predicted speedup for the complete application, assuming
that all loops have been ported to the GPU and that each loop achieves the same
speedup as the one observed for loop2. The second bar, loop2-perf, represents the
predicted speedup for the complete application, assuming that only loop2 has
been ported to the GPU. Both predicted values have been determined using
Amdahl’s law, the profiling information, as well as the speedup measured for
loop2. Finally, the third bar, loop2-real, represents the speedup measured for the
whole application in the situation where only loop2 has been ported to the GPU.
Notice that both the loop2 and predicted speedup values do not take into account
any extra overheads of sending and receiving data to and from the GPU, hence
the suffix perf for perfect speedup, while the loop2-real includes all overheads.

From the results in the Figure 6 it is possible to observe that the use of the
GPU is very effective. For the code of the loop we optimize, the GPU achieves
a speedup of nearly 3x. It is important to notice that the GPU used is not a
high-end model while the CPU used is a high-end model. As a consequence, this
is not a very fair comparison for the GPU. A more realistic setup would have
either a high-end GPU or a lower-end CPU. This would result in a much larger
advantage for the GPU.

Regarding the overall application speedup, notice that the observed real
speedup is only 1.2, i.e. the GPU performs only 20% better than the CPU.
Nevertheless, this is 86% of the perfect speedup of 1.4. The 14% of the “lost”
speedup is due to data transfer and other overheads related to the preparation
of the data to be sent and received from the GPU. At this point we did not
concentrate in eliminating these overheads as we are still studying the potential
for the use of the GPU for this application. In the near future we will study some
changes to the original program in order to reduce these overheads and bring
the real speedup closer to the pref one. In addition, we are currently porting the
rest of the loops to the GPU and therefore we expect an increase in the observed
speedup that could reach the predicted value of 2.3 shown in the all-perf bar.

Notice that the speedup observed is even more impressive when we consider
the cost and power consumption of the processors used. If we consider the price
information in PriceWatch [25], the NVIDIA 5700LE card costs approximately
US$75 while the Pentium 4 US$200, i.e. 2.7 times more expensive. Further-
more, while the NVIDIA chip consumes approximately 24W [26], the Pentium
4 3.2GHz consumes approximately 5.5x more power, as it consumes more than
130W. This leads to the conclusion that the use of the GPU is a very cost- and
power-effective solution for this type of application.
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6 Conclusions

In this paper we presented our initial experiments in evaluating the potential of
porting a bioinformatics application to execute on the Graphics Processor Unit.
For the preliminary results presented in this paper we focused on porting to
the BrookGPU environment a single loop from the RAxML application, which
typically accounts for nearly 50% of the original execution time.

In our experiments, we compared the execution on a mid-class GPU (NVIDIA
FX 5700LE) with a high-end CPU (Pentium 4 3.2GHz). In the experiments per-
formed, the loop code achieved a speedup of 3x when executing on the GPU
compared to the high-end CPU. Although this has resulted in only an improve-
ment of 20% in the overall application, this value will increase as we port the
rest of the loops to the GPU and perform some code modifications to reduce
certain overheads.

Overall, the loop speedup results are very encouraging and lead us to conclude
that the GPU is a solution that is able to achieve high-speedup with lower cost
and less power consumption compared to high-end systems.
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