
ARTICLE
doi:10.1038/nature09837

Initial genome sequencing and analysis of
multiple myeloma
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Multiple myeloma is an incurablemalignancy of plasma cells, and its pathogenesis is poorly understood. Here we report
the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new
and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These
include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in
histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kB
signalling was indicated by mutations in 11 members of the NF-kB pathway. Of potential immediate clinical relevance,
activatingmutations of the kinase BRAFwere observed in 4%of patients, suggesting the evaluation of BRAF inhibitors in
multiplemyelomaclinical trials. These results indicate that cancergenome sequencing of large collections of sampleswill
yield new insights into cancer not anticipated by existing knowledge.

Multiple myeloma is an incurable malignancy of mature B-lymphoid
cells, and its pathogenesis is only partially understood. About 40% of
cases harbour chromosome translocations resulting in overexpression
of genes (including CCND1, CCND3, MAF, MAFB, WHSC1 (also
called MMSET) and FGFR3) via their juxtaposition to the immuno-
globulin heavy chain (IgH) locus1. Other cases exhibit hyperdiploidy.
However, these abnormalities are probably insufficient for malignant
transformation because they are also observed in the pre-malignant
syndrome known as monoclonal gammopathy of uncertain signifi-
cance. Malignant progression events include activation of MYC,
FGFR3, KRAS and NRAS and activation of the NF-kB pathway1–3.
More recently, loss-of-function mutations in the histone demethylase
UTX (also called KDM6A) have also been reported4.
A powerful way to understand the molecular basis of cancer is to

sequence either the entire genome or the protein-coding exome, com-
paring tumour to normal from the same patient to identify the acquired
somatic mutations. Recent reports have described the sequencing of
whole genomes from a single patient5–9. Although informative, we
hypothesized that a larger number of cases would permit the identifica-
tionof biologically relevant patterns thatwouldnot otherwise be evident.

Landscape of multiple myeloma mutations
We studied 38 multiple myeloma patients (Supplementary Table 1),
performing whole-genome sequencing (WGS) for 23 patients and

whole-exome sequencing (WES; assessing 164,687 exons) for 16
patients, with one patient analysed by both approaches (Supplemen-
tary Information). WES is a cost-effective strategy to identify protein-
coding mutations, but cannot detect non-coding mutations and
rearrangements. We identified tumour-specific mutations by com-
paring each tumour to its corresponding normal, using a series of
algorithms designed to detect point mutations, small insertions/dele-
tions (indels) and other rearrangements (Supplementary Fig. 1). On
the basis of WGS, the frequency of tumour-specific point mutations
was 2.9 permillion bases, corresponding to approximately 7,450 point
mutations per sample across the genome, including an average of 35
amino-acid-changingpointmutations plus 21 chromosomal rearrange-
ments disrupting protein-coding regions (Supplementary Tables 2 and
3). The mutation-calling algorithm was found to be highly accurate,
with a true positive rate of 95% for point mutations (Supplementary
Text, Supplementary Tables 4 and 5, and Supplementary Fig. 2).
The mutation rate across the genome varied greatly depending on

base composition, with mutations at CpG dinucleotides occurring
fourfold more commonly than mutations at A or T bases (Sup-
plementary Fig. 3a). In addition, even after correction for base com-
position, the mutation frequency in coding regions was lower than
that observed in intronic and intergenic regions (P, 13 10216;
Supplementary Fig. 3b), potentially owing to negative selective pres-
sure against mutations disrupting coding sequences. There is also a
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lower mutation rate in intronic regions compared to intergenic
regions (P, 13 10216), which may reflect transcription-coupled
repair, as previously suggested10,11. Consistent with this explanation,
we observed a lower mutation rate in introns of genes expressed in
multiple myeloma compared to those not expressed (Fig. 1a).

Frequently mutated genes
We next focused on the distribution of somatic, non-silent protein-
coding mutations. We estimated statistical significance by com-
parison to the background distribution of mutations (Supplemen-
tary Information). Ten genes showed statistically significant rates of
protein-altering mutations (‘significantly mutated genes’) at a false
discovery rate (FDR) of#0.10 (Table 1). To investigate their func-
tional importance, we compared their predicted consequence (on the
basis of evolutionary conservation and nature of the amino acid

change) to the distribution of all coding mutations. This analysis
showed a dramatic skewing of functional importance (FI) scores12

for the ten significantly mutated genes (P5 7.63 10214; Fig. 1b),
supporting their biological relevance. Even after RAS and p53 muta-
tions are excluded from the analysis, the skewing remained significant
(P, 0.01).
We also examined the non-synonymous/synonymous (NS/S)muta-

tion rate for the significantly mutated genes. The expected NS/S ratio
was 2.826 0.15, whereas the observed ratio was 39:0 for the significant
genes (P, 0.0001), further strengthening the case that these genes are
probably drivers of the pathogenesis of multiple myeloma, and are
unlikely to simply be passenger mutations.
The significantly mutated genes include three previously reported

to have point mutations in multiple myeloma: KRAS and NRAS (10
and 9 cases, respectively (50%), P, 13 10211, q, 13 1026), and
TP53 (3 cases (8%), P5 5.13 1026, q5 0.019). Interestingly, we
identified two point mutations (5%, P5 0.000027, q5 0.086) in
CCND1 (cyclin D1), which has long been recognized as a target of
chromosomal translocation inmultiple myeloma, but for which point
mutations have not been observed previously in cancer.
The remaining six genes have not previously been known to be

involved in cancer, and indicate new aspects of the pathogenesis of
multiple myeloma.

RNA processing and protein homeostasis mutations
A striking finding of this study was the discovery of frequent muta-
tions in genes involved in RNAprocessing, protein translation and the
unfolded protein response. Such mutations were observed in nearly
half of the patients.
TheDIS3 (also called RRP44) gene harbouredmutations in 4 out of

38 patients (11%, P5 2.43 1026, q5 0.011). DIS3 encodes a highly
conserved RNA exonuclease which serves as the catalytic component
of the exosome complex involved in regulating the processing and
abundance of all RNA species13,14. The four observed mutations occur
at highly conserved regions (Fig. 2a) and cluster within the RNB
domain facing the enzyme’s catalytic pocket (Fig. 2b). Two lines of
evidence indicate that the DIS3 mutations result in loss of function.
First, three of the four tumours with mutations exhibited loss of
heterozygosity via deletion of the remaining DIS3 allele. Second,
two of the mutations have been functionally characterized in yeast
and bacteria, where they result in loss of enzymatic activity leading to
the accumulation of their RNA targets15,16. Given that a key role of the
exosome is the regulation of the available pool of mRNAs available for
translation17, these results indicate that DIS3 mutations may dysre-
gulate protein translation as an oncogenic mechanism in multiple
myeloma.
Further support for a role of translational control in the pathogenesis

of multiple myeloma comes from the observation of mutations in the
FAM46C gene in 5 out of 38 (13%) patients (P5 1.83 10210,
q5 13 1026). There is no published functional annotation of
FAM46C, and its sequence lacks obvious homology to known proteins.
To gain insight into its cellular role, we examined its pattern of gene
expression across 414 multiple myeloma samples and compared it to
the expression of 395 gene sets curated in the Molecular Signatures
Database (MSigDB), using the GSEA algorithm18–20. The expression
of FAM46C was highly correlated (q5 0.034 after multiple hypothesis
correction; Fig. 2c) to the expressionof the set of ribosomal proteins that
are known to be tightly co-regulated21. Strong correlation with eukar-
yotic initiation and elongation factors involved in protein translation
was similarly observed. Although the precise function of FAM46C
remains unknown, this striking correlation provides strong evidence
that FAM46C is functionally related in some way to the regulation of
translation. Consistent with this observation, FAM46C was recently
shown to function as an mRNA stability factor (M. Fleming, manu-
script submitted).
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Figure 1 | Evidence for transcription-coupled repair and functional
importance of statistically significant mutations. a, Intronic mutation rates
subdivided by gene expression rates in multiple myeloma. Rates of gene
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Notably, althoughnot statistically significant on their own,we found
mutations in five other genes related to protein translation, stability
and the unfolded protein responses (Supplementary Table 6), further
supporting a role of translational control in multiple myeloma. Of
particular interest, two patients hadmutations in the unfolded protein
response gene XBP1. Overexpression of a particular splice form of
XBP1 has been shown to cause a multiple-myeloma-like syndrome
in mice, although no role of XBP1 in the pathogenesis of human
multiple myeloma has been described22.
Of related interest, mutations of the LRRK2 gene were observed in 3

out of 38 patients (8%; Supplementary Table 6). LRRK2 encodes a
serine-threonine kinase that phosphorylates translation initiation
factor 4E-binding protein (4EBP). LRRK2 is best known for its role
in the predisposition to Parkinson’s disease23,24. Parkinson’s disease
and other neurodegenerative diseases such as Huntington’s disease
are characterized in part by aberrant unfolded protein responses25.
Proteinhomeostasismay be particularly important inmultiplemyeloma
because of the enormous rate of production of immunoglobulins by

multiple myeloma cells26–28. The finding is also of clinical signifi-
cance because of the success of the drug bortezomib (Velcade), which
inhibits the proteasome and which shows remarkable activity in mul-
tiple myeloma compared to other tumour types29.
Together, these results indicate thatmutations affecting protein trans-

lation and homeostasis are extremely common inmultiplemyeloma (at
least 16 out of 38 patients; 42%), thereby indicting that additional thera-
peutic approaches that target these mechanisms may be worth explor-
ing.

Identical mutations suggest gain-of-function oncogenes
Another way to recognize biologically significant mutations is to
search for recurrence of identical mutations indicative of gain-of-
function alterations in oncogenes. Two patients had an identicalmuta-
tion (K123R) in theDNA-binding domain of the interferon regulatory
factor IRF4. Interestingly, a recent RNA interference screen inmultiple
myeloma showed that IRF4 was required for multiple myeloma sur-
vival, consistent with its role as a putative oncogene30. Genotyping for

Table 1 | Statistically significant protein-coding mutations in multiple myeloma

Gene N n Untreated n CpG transition Other C:G transition C:G transversion A:T mutation Indel/ null P-value q-value

NRAS 20,711 9 3 0 0 3 6 0 ,1.0 310211
,1.0 31026

KRAS 25,728 10 6 0 5 1 4 0 ,1.0 310211
,1.0 31026

FAM46C 39,661 5 3 0 0 2 1 2 1.8 310210 1.0 31026

DIS3 89,758 4 1 0 1 1 2 0 2.4 31026 0.011
TP53 32,585 3 1 0 0 1 1 1 5.1 31026 0.019

CCND1 12,899 2 1 0 0 0 2 0 0.000027 0.086
PNRC1 19,621 2 2 0 1 0 0 1 0.000039 0.094
ALOX12B 40,369 3 0 1 0 1 1 0 0.000042 0.094

HLA-A 18,635 2 0 0 0 0 2 0 0.000045 0.094
MAGED1 53,950 2 1 0 0 0 0 2 0.000053 0.10

Territory (N) refers to total covered territory in base pairs across 38 sequenced samples. Total numbers ofmutations (n) and numbers ofmutations occurring in therapy-naive disease (Untreated n) are shown for

each gene.
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this mutation in 161 additional multiple myeloma samples identified
two more patients with this mutation. IRF4 is a transcriptional regu-
lator of PRDM1 (also called BLIMP1), and two of 38 sequenced
patients also exhibited PRDM1 mutations. PRDM1 is a transcription
factor involved in plasma cell differentiation, loss-of-function muta-
tions of which occur in diffuse large B-cell lymphoma31–35.

Clinically actionable mutations in BRAF
Some mutations deserve attention because of their clinical relevance.
One of the thirty-eight patients harboured a BRAF kinase mutation
(G469A). AlthoughBRAFG469Ahas not previously been observed in
multiplemyeloma, this precisemutation is known to be activating and
oncogenic36. We genotyped an additional 161 multiple myeloma
patients for the 12 most common BRAF mutations and found muta-
tions in 7 patients (4%). Three of these were K601N and four were
V600E (the most common BRAF mutation in melanoma37). Our
finding of common BRAF mutations in multiple myeloma has
important clinical implications because such patients may benefit
from treatment with BRAF inhibitors, some of which show marked
clinical activity38. Our results also support the observation that inhi-
bitors acting downstream of BRAF (for example, on MEK) may have
activity in multiple myeloma39.

Gene set mutations: NF-kB pathway
Another approach to identify biologically relevant mutations in mul-
tiplemyeloma is to look not at the frequency ofmutation of individual
genes, but rather of sets of genes.
We first considered gene sets based on existing insights into the

biology of multiple myeloma. For example, activation of the NF-kB
pathway is known in multiple myeloma, but the basis of such activa-
tion is only partially understood2,3. We observed 10 point mutations
(P5 0.016) and 4 structural rearrangements, affecting 11 NF-kB
pathway genes (Supplementary Table 7): BTRC, CARD11, CYLD,
IKBIP, IKBKB, MAP3K1, MAP3K14, RIPK4, TLR4, TNFRSF1A and
TRAF3. Taken together, our findings greatly expand the mechanisms
by which NF-kB may be activated in multiple myeloma.

Gene set mutations: histone modifying enzymes
We next looked for enrichment in mutations in histone-modifying
enzymes. This hypothesis arose because of our observation that the
homeotic transcription factor HOXA9 was highly expressed in a sub-
set of multiple myeloma patients, particularly those lacking known
IgH translocations (Supplementary Fig. 4a). HOXA9 expression is
regulated primarily by histone methyltransferases (HMT) including
members of theMLL family. Sensitive polymerase chain reaction with
reverse transcription (RT–PCR) analysis showed that HOXA9 was in
fact ubiquitously expressed in multiple myeloma, with most cases
exhibiting biallelic expression consistent with dysregulation via an
upstream HMT event (Supplementary Fig. 4b, c). Accordingly, we
looked for mutations in genes known to regulate HOXA9 directly.
We found significant enrichment (P5 0.0024), with mutations in
MLL, MLL2, MLL3, UTX, WHSC1 and WHSC1L1.
HOXA9 is normally silenced by histone 3 lysine 27 trimethylation

(H3K27me3) chromatin marks when cells differentiate beyond the
haematopoietic stem-cell stage40,41. This repressive mark was weak or
absent at theHOXA9 locus inmostmultiplemyeloma cell lines (Fig. 3a).
Moreover, there was inverse correlation between H3K27me3 levels and
HOXA9 expression (Fig. 3b), consistent with HMT dysfunction contri-
buting to aberrant HOXA9 expression.
To establish the functional significance of HOXA9 expression in

multiple myeloma cells, we knocked down its expression with seven
shRNAs (Supplementary Fig. 5). In 11 out of 12multiplemyeloma cell
lines, HOXA9-depleted cells exhibited a competitive disadvantage
(Fig. 3c and Supplementary Fig. 6).
These experiments indicate that aberrant HOXA9 expression,

caused at least in part by HMT-related genomic events, has a role

in multiple myeloma and may represent a new therapeutic target.
Further supporting a role ofHOXA9 as amultiplemyeloma oncogene,
array-based comparative genomic hybridization identified focal
amplifications of the HOXA locus in 5% of patients (Supplementary
Fig. 7).

Discovering new gene set mutations
We next asked whether it would be possible to discover pathways
enriched for mutations in the absence of previous knowledge.
Accordingly, we examined 616 gene sets in the MSigDB Canonical
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Pathways database. One top-ranking gene set was of particular inter-
est because it did not relate to genes known to be important in mul-
tiple myeloma. This gene set encodes proteins involved in the
formation of the fibrin clot in the blood coagulation cascade. There
were 6 mutations, in 5 of 38 patients (16%, q5 0.0054), encoding 5
proteins (Supplementary Table 8). RT–PCR analysis confirmed
expression of 4 of the 5 coagulation factors in multiple myeloma cell
lines (Supplementary Fig. 8). The coagulation cascade involves a
number of extracellular proteases and their substrates and regulators,
but their role in multiple myeloma has not been suspected. However,
thrombin and fibrin have been shown to serve as mitogens in other
cell types42, and have been implicated in metastasis43. These observa-
tions suggest that coagulation factor mutations should be explored
more fully in human cancers.

Mutations in non-coding regions
Analyses of non-coding portions of the genome have not previously
been reported in cancer. We focused on non-coding regions with
highest regulatory potential. We defined 2.43 106 regulatory poten-
tial regions (Supplementary Fig. 9), averaging 280 base pairs (bp). We
then treated these regions as if they were protein-coding genes, sub-
jecting them to the same permutation analysis used for exonic regions.
We identifiedmultiple non-coding regions with high frequencies of

mutation which fell into two classes (Table 2 and Supplementary
Table 9). The first corresponds to regions of known somatic hyper-
mutation. These have a 1,000-fold higher than expected mutation
frequency, as expected for post-germinal centre B cells (Supplemen-
tary Table 9). These regions comprise immunoglobulin-coding genes
and the 59 UTR of the lymphoid oncogene, BCL6, as reported44.
Interestingly, we also found previously unrecognized mutations in
the intergenic region flanking BCL6 in five patients, indicating that
somatic hypermutation probably occurs in regions beyond the
59UTR and first intron of BCL6 (Table 2). Whether such non-coding
BCL6 mutations contribute to multiple myeloma pathogenesis
remains to be established.
The second class consisted of 18 non-coding regions withmutation

frequencies beyond that expected by chance (q , 0.25) (Table 2 and
Supplementary Table 10). Four of the 18 regions flanked genes that
also harboured coding mutations. Interestingly, we observed 7 muta-
tions in 5 of 23 patients (22%) within non-coding regions of BCL7A, a
putative tumour suppressor gene discovered in the B-cell malignancy
Burkitt lymphoma45, and which is also deleted or hypermethylated in
cutaneous T-cell lymphomas46,47. The function of BCL7A is unknown,
and the effect of its non-coding mutations in multiple myeloma
remains to be established.

Our preliminary analysis of non-coding mutations indicates that
non-exonic portions of the genome may represent a previously
untapped source of insight into the pathogenesis of cancer.

Discussion
The analysis of multiple myeloma genomes reveals that mechanisms
previously suspected to have a role in the biology ofmultiplemyeloma
(for example, NF-kB activation and HMT dysfunction) may have
broad roles by virtue of mutations in multiple members of these path-
ways. In addition, potentially new mechanisms of transformation are
suggested, including mutations in the RNA exonuclease DIS3 and
other genes involved in protein translation and homeostasis.
Whether these mutations are unique to multiple myeloma or are
common to other cancers remains to be determined. Furthermore,
frequent mutations in the oncogenic kinase BRAF were observed—a
finding that has immediate clinical translational implications.
Importantly, most of these discoveries could not have beenmade by

sequencing only a single multiple myeloma genome—the complex
patterns of pathway dysregulation required the analysis of multiple
genomes. Whole-exome sequencing revealed the substantial majority
of the significantly mutated genes. However, we note that half of total
protein-coding mutations occurred via chromosomal aberrations
such as translocations, most of which would not have been discovered
by sequencing of the exome alone. Similarly, the recurrent point
mutations in non-coding regions would have been missed with
sequencing directed only at coding exons.
The analysis described here is preliminary. Additional multiple

myeloma genomes will be required to establish the definitive genomic
landscape of the disease and determine accurate estimates ofmutation
frequency in the disease. The sequence data described here will be
available from the dbGaP repository (http://www.ncbi.nlm.nih.gov/
gap) and we have created a multiple myeloma Genomics Portal
(http://www.broadinstitute.org/mmgp) to support data analysis and
visualization.

METHODS SUMMARY
Informed consent from multiple myeloma patients was obtained in line with the
Declaration of Helsinki. DNAwas extracted from bonemarrow aspirate (tumour)
and blood (normal).WGS libraries (370–410-bp inserts) andWES libraries (200–
350-bp inserts) were constructed and sequenced on an Illumina GA-II sequencer
using 101- and 76-bp paired-end reads, respectively. Sequencing reads were pro-
cessed with the Firehose pipeline, identifying somatic point mutations, indels and
other structural chromosomal rearrangements. Structural rearrangements affect-
ing protein-coding regions were then subjected tomanual review to exclude align-
ment artefacts. True positive mutation rates were estimated by Sequenom mass
spectrometry genotyping of randomly selected mutations. HOXA9 short hairpin

Table 2 | Statistically significant mutated non-coding regions

Chr Start End Length (nt) Mut. Samples P-value q-value Separation (nt) Gene Coding events

1 554350 555310 960 3 3 3.86 3 1026 0.11 494, 44 AK125248 (intron) –
1 82793220 82793300 80 2 2 8.39 3 1026 0.19 8 TTLL7/LPHN2 (IGR) –

1 147333070 147335140 2,070 4 3 2.47 3 1026 0.09 350, 1, 85 NBPFA (intron) –
2 40865560 40865630 70 2 2 4.99 3 1026 0.14 2 SLC8A1/PKDCC (IGR) –
3 149273920 149274010 90 2 2 4.80 3 1026 0.14 78 ZIC4/AGTR1 (IGR) –

3 189142550 189143600 1,050 8 5 5.55 3 10214 3.9 31028 298, 8, 17, 26,
26, 80, 1

BCL6/LPP (IGR) –

3 189440810 189441310 500 3 3 2.64 3 1026 0.09 1, 291 LPP (intron) –

4 7819430 7819530 100 2 2 8.01 3 1026 0.18 26 AFAP1 (intron) Missense mutation
4 39875900 39876610 710 3 2 5.88 3 1026 0.16 109, 412 RHOH (intron) –

4 62180540 62181370 830 3 3 1.05 3 1025 0.22 211, 432 LPHN3 (intron) –
4 157902080 157904460 2,380 4 4 6.95 3 1026 0.17 996, 423, 443 PDGFC (39 UTR/intron) –
7 92754250 92754270 20 2 2 2.03 3 1027 0.02 1 CCDC132 (intron) –

9 16564360 16565100 740 3 2 8.65 3 1026 0.19 250, 76 BNC2 (intron) –
12 120943010 120943460 450 3 3 6.99 3 1027 0.04 17, 9 BCL7A (promoter) –
12 120943580 120946950 3,370 4 3 1.47 3 1028 0.0017 2055, 657, 295 BCL7A (promoter/intron) –

14 68327320 68333190 5,870 4 4 7.05 3 1026 0.17 397, 156, 35 ZFP36L1 (intron) Indel
17 8106910 8111850 4,940 4 2 4.85 3 1026 0.14 1483, 389, 83 PFAS (intron) Complex

rearrangement

20 60328960 60329510 550 2 2 1.42 3 1026 0.06 120 LAMA5 (intron) Missense mutation

Regions of predicted regulatory potential showing mutation frequency beyond that expected by chance are shown (q, 0.25). Mut., mutations. ‘Start’ and ‘End’ columns indicate the first and last nucleotide of

regions of regulatory potential according to hg18/NCBI36. ‘Separation’ column indicates the number of nucleotides within the regulatory region separating the observed mutations.
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(sh)RNAs were introduced into multiple myeloma cell lines using lentiviral infec-
tion using standard methods.
A complete description of the materials and methods is provided in the Sup-

plementary Information.
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