
Initial Normalization of User Generated Content:

Case Study in a Multilingual Setting

Bagdat Myrzakhmetov, Zhandos Yessenbayev and Aibek Makazhanov

National Laboratory Astana

53 Kabanbay batyr ave., Astana, Kazakhstan

E-mail: {bagdat.myrzakhmetov, zhyessenbayev, aibek.makazhanov}@nu.edu.kz

Abstract—We address the problem of normalizing user

generated content in a multilingual setting. Specifically, we target

comment sections of popular Kazakhstani Internet news outlets,

where comments almost always appear in Kazakh or Russian, or

in a mixture of both. Moreover, such comments are noisy, i.e.

difficult to process due to (mostly) intentional breach of spelling

conventions, which aggravates data sparseness problem.

Therefore, we propose a simple yet effective normalization

method that accounts for multilingual input. We evaluate our

approach extrinsically, on the tasks of language identification

and sentiment analysis, showing that in both cases normalization

improves overall accuracy.

Index Terms—user generated content, normalization, code

switching, transliteration

I. INTRODUCTION

User generated content (UGC) generally refers to any type

of content, i.e. photo, video, audio, text, created by Internet

users. In computational linguistics (CL) and natural language

processing (NLP) communities UGC is often associated with

user generated text, and particularly, noisy text, such as tweets

and user comments. UGC is notoriously difficult to process

due to prompt introduction of neologisms, e.g. esketit (stands

for let’s get it, pronounced [ɛɕˈkerɛ]), and peculiar spelling,

e.g. b4 (stands for before). Moreover speakers of more than

one language tend to mix them in UGC (a phenomenon

commonly referred to as code-switching) and/or use

transliteration (spelling in non-national alphabets). All of this

increases lexical variety, thereby aggravating the most

prominent problems of CL/NLP, such as out-of-vocabulary

lexica and data sparseness.

It has been repeatedly shown that NLP methods struggle

when applied to UGC directly [1]-[4] and that certain

preprocessing is required for them to work properly. Such

preprocessing is commonly referred to as lexical normalization

or simply normalization. To this end, research on UGC

normalization is of utmost interest to NLP community and for

the past three years there have been held three shared task

competitions in three consecutive WNUT workshops [5]-[7].

Kazakhstani segment of Internet is not except from noisy

UGC and the following cases are the usual suspects in

wreaking the “spelling mayhem”:

 spontaneous transliteration – switching alphabets,
respecting no particular rules or standards, e.g. Kazakh
word “біз” (we as pronoun; awl as noun) can be spelled
in three additional ways: “биз”, “быз”, and “biz”;

 use of homoglyphs – interchangeable use of identical or
similar looking Latin and Cyrillic alphabets, e.g.
Cyrillic letters “е” (U+0435), “с” (U+0441), “і”
(U+0456), and “р” (U+0440) in the Kazakh word
«есірткі» (drugs) can be replaced with Latin
homoglyphs “e” (U+0065), “c” (U+0063), “i”
(U+0069), and “p” (U+0070), which, although appear
identical, have different Unicode values;

 code switching – use of Russian words and expressions
in Kazakh text and vice versa;

 word transformations – excessive duplication of letters,
e.g. “керемееет” instead of “керемет” (great), or
segmentation of words, e.g. “к е р е м е т” or “к-е-р-е-
м-е-т”.

In this work we propose an approach for initial

normalization of UGC. Here an important distinction must be

drawn. Unlike with lexical normalization [1], for initial

normalization we do not attempt to recover standard spelling of

ill-formed words, in fact, we do not even bother detecting

those. All that we really care about at this point is to provide an

intermediate representation of the input UGC that will not

necessarily match its lexically normalized version, but will be

less sparse. Thus, we aim at improving performance of

downstream applications by reducing vocabulary size

(effectively, parameter space) and OOV rate. To this end,

initial normalization does two things: (i) converts the input into

a common script (Russian Cyrillic based alphabet with some

omissions); (ii) recovers word transformations and does

various minor replacements. Difference between lexical and

initial normalization is depicted by the example in Table I.

Notice how for a given Kazakh text lexical normalization

increases and initial normalization decreases the number of

unique characters.

Our approach amounts to successive application of three

straightforward procedures: (i) homoglyph resolution, (ii)

common script transliteration, (iii) replacement and

transformation. To assess the extent of data sparseness

reduction we calculate the basic statistics, such as vocabulary

size, token-type ration, and OOV rate, for raw and normalized

data and show that our approach substantially reduces lexical

variety. In addition to that we perform extrinsic evaluation of

our approach testing it in the framework of language

identification and sentiment analysis tasks. In both cases we

report improvement in terms of per-language and overall

accuracy.

TABLE I.

EXAMPLE OF INITIAL VS LEXICAL NORMALIZATION

Normalization Text
Vocabulary

size (chars)

No
normalization

Пенсияга ерте шыгады, бiздегiдеи емес 17

Lexical Пенсияға ете шығады, біздегідей емес 18

Initial пенсыяга ерте шыгады быздегыдеы емес 15

II. INITIAL NORMALIZATION

Initial normalization occurs in three stages: (1) homoglyph

resolution; (2) common script transliteration; (3) replacement

and transformation. In this section we describe all of these

stages in greater detail.

Homoglyph resolution as a problem for Kazakh NLP was

first discussed by Assylbekov et al. [8]. Following their

description of the task, we develop the following relatively

simple algorithm:

given: text, Т;

(1) split T into words by spaces;

(2) for each word w ∈ T:
 (3) L = LAT(w); # number of latin

 letters in w;

 (4) C = CYR(w); # number of cyrillic

 letters in w;

 (5) if L==0 or C==0, then go to (2);

 (6) H = number of homoglyphs in w;

 (7) if H==0, then go to (2);

 (8) A = number of alphabetic characters

 in w;

 (9) if H==A, then go to (2);

 (10) w1 = HCYR(w); # replace all

 homoglyphs with cyrillic

 analogues

 (11) if CYR(w1)==A, then w = w1,

 go to (2);

 (12) w2 = HLAT(w); # replace all

 homoglyphs with latin

 analogues

 (13) if LAT(w2)==A, то w = w2.

The algorithm is performed in a linear time proportional to

the number of words in the text. Homoglyphs are listed in

Table III (symbols with an asterisk), which contains common

script transliteration rules.

In Kazakhstan Kazakh is written in Cyrillic alphabet that

uses all letters of the Russian alphabet and 9 additional national

letters. Kazakh Cyrillic is often gets transliterated into Russian

Cyrillic and Latin by users (especially on mobile); hence the

script needs to be brought into some common form. Our

transliteration procedure translates symbols of the Latin

alphabet and national symbols of the Kazakh Cyrillic alphabet

into Russian Cyrillic, the alphabet chosen as a common script.

Note that the term «common script», we have chosen, has

nothing to do with the formal rules of spelling or the reform of

the alphabet of the Kazakh language. The common script in our

case is just a common denominator for the three alphabets used

in the Kazakh-Russian environment. We do not claim

correctness or uniqueness of the proposed transliteration rules.

Technically, the transliteration procedure is implemented

by a simple algorithm that reads in the input (character at a

time) and, upon matching any of the characters listed in the

«Latin» and «Kazakh Cyrillic» columns, replaces it by a

common script analogue; other characters are ignored.

TABLE II.

THE COMMON SCRIPT TRANSLITERATION RULES

Latin
Common

script

Kazakh

Cyrillic
 Latin

Common

script

Kazakh

Cyrillic

A а* ә

p п

B б q к*

C с* r р*

D д s с*

E е* t т *

F ф u у* ү, ұ

G г ғ* v в*

H х* һ* w ш

I ы і* x х*

G ж y ы і*

K к қ z з

L л ch ч

M м kh х* һ*

N н* ң sh ш

O о* ө zh ж

 ё → е щ → ш

 и, й → ы ь, ъ → «»

TABLE III.

DATA SET STATISTICS

Language Positive Neutral Negative Total

Kazakh 3660 8929 4592 17181

Russian 2167 4632 2541 9340

Mixed 168 271 276 715

Total 5995 13832 7409 27236

Lastly we perform the replacement and transformation

procedure. To this end, we use regular expressions to reduce

duplications and adjoin segmentations. In the former case we

replace two or more consecutive occurrences of the same letter

with just one occurrence, e.g. “керемееет” becomes

“керемет”. In the latter case we delete spaces (any number)

between three or more single letters, e.g “к е р е м е т”

becomes “керемет”.

III. EXPERIMENTS AND EVALUATION

In this section we describe our experiments and discuss the

results. We begin by describing our data set and providing

intrinsic evaluation in the form of per-token statistics. We then

proceed to report on extrinsic evaluation in the form of

language identification and sentiment analysis tasks.

A. Data Set

We have collected a total of 27 236 comments from the

comments sections of the three of the most popular

Kazakhstani online news outlets, namely nur.kz,

tengrinews.kz, and zakon.kz. Bearing in mind the need

to perform language identification and sentiment analysis on

the collected data, we set up a semi-automatic annotation

process, where a standard Python scikit-learn [9]

implementation of Naïve Bayes classifier [10] was trained over

unigram and bigram character sequences on randomly selected

and manually labeled 1100 comments. This model showed

perfect accuracy on a 10-fold cross validation on the training

set. With the help of this model the remainder of the data was

automatically labeled for language ID. After that four

annotators were instructed to manually label the data for

sentiment polarity (on a three class scale) and at the same time

correct possible errors of the language identifier. Thus, we

have obtained the data set whose statistics is given in Table III.

TABLE IV.

INTRINSIC EVALUATION STATISTICS

Data Voc. size # tokens TTR, % OOV, %

Kazakh-R 58942 242068 24.35 17.89

Kazakh-N 39566 244952 16.15 11.12

Russian-R 32915 159341 20.66 15.51

Russian-N 28332 149020 19.01 13.88

Mixed-R 7271 12863 56.53 48.37

Mixed-N 6009 12970 46.33 37.91

Total-R 92006 414272 22.21 16.77

Total-N 67179 406942 16.51 11.83

TABLE V.

ACCURACY OF LANGUAGE IDENTIFICATION

 Kazakh Russian Overall

Raw data 99.48 98.41 99.06

Normalized data 99.83 98.58 99.35

Lastly we perform the replacement and transformation

As can be seen from Table III, there were a total of 27,236

comments collected and annotated for language and sentiment.

More than half (13832) of all comments were neutral. Positive

and negative comments amounted to 5995 (22%) and 7409

(27.2%) respectively. In terms of languages, most comments

were gathered in Kazakh (63%), and mixed comments (i.e.

code-switched between Kazakh and Russian) constituted a

minority of 715 (or 2.6%).

B. Intrinsic Evaluation

To assess the extent of data sparseness reduction we

calculate basic statistics before and after normalization. We use

standard indicators of data sparseness, namely, vocabulary size

(as number of words counted only ones), type-token ratio

(TTR, as a ratio of vocabulary size to total word token count),

and OOV rate (as a ratio of out-of-vocabulary words). To

calculate OOV rate we randomly split the data into 10 equal

sets. For each such set we count words that do not appear in the

other nine sets and divide by the number of words in the given

set. We then report the average ratio for all 10 sets.

We calculate aforementioned statistics on the entire data

set, as well as on per language basis. The results of the

experiment are given in Table IV. Suffix –N next to a language

indicates that data was normalized, and suffix –R indicates the

opposite. As it can be seen normalization greatly reduces

values across all metrics and languages, and for the entire data

set (represented as Total in the table) totals to 27% reduction in

vocabulary size, and 5.7% and 4.9% net reduction in TTR and

OOV rate. Thus, our initial intuition in regarding data

sparseness reduction was correct and normalization does

indeed reduce sparseness significantly.

C. Language Identification

For the language identification experiment we use the

Naïve Bayes classifier that we on a small subset of the data. To

assess the impact of initial normalization, we run the classifier

on raw and normalized data. As we have not trained our

classifier to identify mixed language comments we do not

evaluate it on those. For the evaluation metric we use standard

accuracy as percent of correctly identified documents

(comments). The results are given in Table V. As it can be seen

normalization has a marginal effect on language identification,

and on provides only 0.3% accuracy gain overall.

TABLE VI.

ACCURACY OF SENTIMENT ANALYSIS (BINARY SCALE)

 NB NB-N LSTM LSTM-N

Kazakh 91.7 92.7 71.9 75.6

Russian 85.3 86.5 69.9 72.6

Mixed 84.2 85.6 70.5 77.3

Overall 89.5 90.5 71.3 73.6

TABLE VII.

ACCURACY OF SENTIMENT ANALYSIS (TRINARY SCALE)

 NB NB-N LSTM LSTM-N

Kazakh 67.1 69.0 63.3 67.2

Russian 61.7 61.9 58.5 62.4

Mixed 55.5 57.6 56.3 57.7

Overall 65.0 66.7 61.7 65.2

A. Sentiment Analysis

We use two models for analyzing the sentiment of the text:

(1) the machine learning model based on the naive Bayesian

classifier [10] (hereinafter NB) and the deep learning model

based on recurrent networks with LSTM cell [11] (hereinafter

LSTM). For the software implementation of models, we use

the Python programming language in combination with the

scikit-learn libraries (for NB) and keras [12] (for

LSTM). Parameters NB are the frequencies (not the presence)

of unigrams and bigrams in the documents. For LSTM, the

standard keras architecture was used with the following hyper-

parameters: the dimension of the insert vectors was 32; the size

of the dictionary is 3000.

The experiments were carried out in the context of two

polarity scales: binary (positive and negative) and trinary

(positive, negative, and neutral) on a per-language and overall

basis. In all cases, 80% of data were used for training, 10% for

testing, and another 10% for tuning model parameters. To

assess the quality of sentiment analysis, we use the simplest

metric - accuracy, as a percentage of correctly analyzed

comments. The results are given in tables VI and VII for the

experiments on binary and trinary scales respectively. Models

trained on normalized data have the prefix N-.

As it can be seen, normalization improves sentient analysis

accuracy across languages regardless of the scale of polarity

used. In terms of models, NB which is faster to train and easier

to implement consistently outperforms LSTM across languages

and polarity scales. We believe that this is due to the fact that

we had to (due to limited computing resources) reduce the size

of the LSTM dictionary, and also reduce the size of the

insertion vectors. In the future, we plan to improve the

accuracy of NB by using the morphological representation of

the insertion vectors [13]. Finally, in the context of the

comparison by language, it is observed that the accuracy for

Kazakh is consistently higher than for Russian language. We

explain this by the fact that in terms of length (in words)

Kazakh are shorter than Russian ones (14.2 and 15.9 words per

comment, respectively), and also have smaller type-token ratio

(16% against 19%), i.e. less diverse.

IV. RELATED WORK

Most of the resent works on normalization employ variety

of methods ranging from supervised and deep learning to

machine translation [1]-[7].

Eryiğit and Torunoğlu-Selamet [2] develop a cascaded

approach for normalizing Turkish social media data, which

aims at solving the following tasks: (1) letter case

transformation, (2) replacement rules & lexicon lookup, (3)

proper noun detection, (4) diacritic restoration, (5) vowel

restoration, (6) accent normalization and (7) spelling

correction. The authors use various methods and techniques

ranging from a simple look-up to morphological analysis and

tagging.

Tursun and Cakici [4] approach normalization of Uyghur

UGC, using a noisy channel model and a neural encode-

decoder architecture. The first model approaches the task as a

spellchecking problem and the latter as machine translation.

Performing experiments on a range of data sets the authors

achieve encouraging results for both models.

Assylbekov et al. [8] perform homoglyph resolution in the

context of bitext extraction task. The authors report

improvement in sentence alignment of a Kazakh-Russian

parallel corpus.

V. CONCLUSIONS

We have experimented with initial normalization of user

generated content in a multilingual environment. Our approach

amounted to successive application of three straightforward

procedures: (i) homoglyph resolution, (ii) common script

transliteration, (iii) replacement and transformation. It has been

shown that initial normalization substantially reduces

vocabulary size and OOV rate, therefore reducing data

sparseness. It has also been shown that initial normalization

improves overall accuracies of language identification and

sentiment analysis tasks.

ACKNOWLEDGMENT

This work has been supported by Nazarbayev University

research grant 144-2018//010-2018 and the Committee of

Science of the Ministry of Education and Science of the

Republic of Kazakhstan under the research grant AP05134272.

REFERENCES

[1] B. Han and T. Baldwin, “Lexical normalisation of short text

messages: Makn sens a #twitter,” in Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies. Portland, Oregon,

USA: ACL, June 2011, pp. 368–378.

[2] G. Eryiğit and D. Torunoğlu-Selamet, “Social media text

normalization for Turkish,” Natural Language Engineering, vol.

23, no. 6, pp. 835–875, 2017.

[3] K. Adali and G. Eryiğit, “Vowel and diacritic restoration for

social media texts,” in Proceedings of the 5th Workshop on

Language Analysis for Social Media (LASM). Gothenburg,

Sweden: ACL, April 2014, pp. 53–61.

[4] O. Tursun and R. Cakici, “Noisy uyghur text normalization,” in

Proceedings of the 3rd Workshop on Noisy User-generated Text.

Copenhagen, Denmark: Association for Computational

Linguistics, September 2017, pp. 85–93.

[5] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham,

“Results of the WNUT-2017 shared task on novel and emerging

entity recognition,” in Proceedings of the 3rd Workshop on

Noisy User-generated Text. Copenhagen, Denmark: ACL,

September 2017, pp. 140–147.

[6] B. Strauss, B. Toma, A. Ritter, M.-C. de Marneffe, and W. Xu,

“Results of the WNUT-16 named entity recognition shared

task,” in Proceedings of the 2nd Workshop on Noisy User-

generated Text (WNUT). Osaka, Japan: The COLING 2016

Organizing Committee, December 2016, pp. 138–144.

[7] T. Baldwin, M.-C. de Marneffe, B. Han, Y.-B. Kim, A. Ritter,

and W. Xu, “Shared tasks of the 2015 workshop on noisy user-

generated text: Twitter lexical normalization and named entity

recognition,” in Proceedings of the Workshop on Noisy User-

generated Text. Beijing, China: Association for Computational

Linguistics, July 2015, pp. 126–135.

[8] Z. Assylbekov, B. Myrzakhmetov, and A. Makazhanov,

“Experiments with Russian to Kazakh Sentence Alignment,”

Izvestija KGTU im.I.Razzakova, vol. 38, no. 2, pp. 18–23, 2016.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.

Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in

Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011.

[10] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

Information Retrieval. New York City, USA: Cambridge

University Press, 2008.

[11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence

learning with neural networks,” in Advances in neural

information processing systems. NIPS, 2014, pp. 3104–3112.

[12] Keras: The Python Deep Learning library. — Online: Available

https://keras.io.

[13] A. Toleu, G. Tolegen, and A. Makazhanov, “Character-aware

neural morphological disambiguation,” in Proceedings of the

55th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers). Vancouver, Canada:

Association for Computational Linguistics, 2017, pp. 666–671.

