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Initial Observations on Skipjack: Cryptanalysis
of Skipjack-3XOR
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Abstract. Skipjack is the secret key encryption algorithm developed by
the NSA for the Clipper chip and Fortezza PC card. It uses an 80-bit key,
128 table lookup operations, and 320 XOR operations to map a 64-bit
plaintext into a 64-bit ciphertext in 32 rounds. This paper describes an
efficient attack on a variant, which we call Skipjack-3XOR (Skipjack mi-
nus 3 XORs). The only difference between Skipjack and Skipjack-3XOR
is the removal of 3 out of the 320 XOR operations. The attack uses the
ciphertexts derived from about 500 plaintexts and its total running time
is equivalent to about one million Skipjack encryptions, which can be
carried out in seconds on a personal computer. We also present a new
cryptographic tool, which we call the Yoyo game, and efficient attacks
on Skipjack reduced to 16 rounds. We conclude that Skipjack does not
have a conservative design with a large margin of safety.

Key words. Cryptanalysis, Skipjack, Yoyo Game, Clipper chip, Fortezza
PC card.

1 Introduction

Skipjack is the secret key encryption algorithm developed by the NSA for the
Clipper chip and Fortezza PC card. It was implemented in tamper-resistant
hardware and its structure was kept secret since its introduction in 1993.

To increase confidence in the strength of Skipjack and the Clipper chip initia-
tive, five well known cryptographers were assigned in 1993 to analyze Skipjack
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and report their findings[4]. They investigated the strength of Skipjack using
differential cryptanalysis[3] and other methods, and concentrated on reviewing
NSA’s design and evaluation process. They reported that Skipjack is a “repre-
sentative of a family of encryption algorithms developed in 1980 as part of the
NSA suite of “Type I” algorithms, suitable for protecting all levels of classified
data. The specific algorithm, SKIPJACK, is intended to be used with sensitive
but unclassified information.” They concluded that “Skipjack is based on some
of NSA’s best technology” and quoted the head of the NSA evaluation team who
confidently concluded “I believe that Skipjack can only be broken by brute force
- there is no better way.”

On June 24th, 1998, Skipjack was declassified, and its description was made
public in the web site of NIST [7]. It uses an 80-bit key, 32-4 = 128 table lookup
operations, and 32 - 10 = 320 XOR operations to map a 64-bit plaintext into a
64-bit ciphertext in 32 rounds.

This paper summarizes our initial analysis. We study the differential[3] and
linear[6] properties of Skipjack, together with other observations on the design
of Skipjack. Then, we use these observations to present a differential attack on
Skipjack reduced to 16 rounds, using about 2%2 chosen plaintexts and steps of
analysis. Some of these results are based on important observations communi-
cated to us by David Wagner [8].

We present a new cryptographic tool, which we call the Yoyo game, applied to
Skipjack reduced to 16 rounds. This tool can be used to identify pairs satisfying
a certain property, and be used as a tool for attacking Skipjack reduced to 16
rounds using only 2'# adaptive chosen plaintexts and ciphertexts and 2'# steps
of analysis. This tool can also be used as a distinguisher to decide whether a
given black box contains this variant of Skipjack, or a random permutation.

We then present the main result of this paper, which is an exceptionally sim-
ple attack on a 32-round variant, which we call Skipjack-8XOR (Skipjack minus 3
XORs). The only difference between the actual Skipjack and Skipjack-3XOR is
the removal of 3 out of the 320 XOR operations. The attack uses the ciphertexts
derived from about 500 plaintexts which are identical except for the second 16
bit word. Its total running time is equivalent to about one million Skipjack en-
cryptions, which can be carried out in seconds on a personal computer. We thus
believe that Skipjack does not have a conservative design with a large margin of
safety.

This paper is organized as follows: In Section 2 we describe the structure of
Skipjack, and the main variants that we analyze in this paper. In Section 3 we
present useful observations on the design, which we later use in our analysis. In
Section 4 we describe a differential attack on a 16-round variant of Skipjack. The
Yoyo game and its applications are described in Section 5. Finally, in Section 6
we present our main attack on Skipjack-3XOR.
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Fig. 1. Rule A and Rule B.

2 Description of Skipjack

The published description of Skipjack characterizes the rounds as either Rule
A or Rule B. Each round is described in the form of a linear feedback shift
register with an additional non linear keyed G permutation. Rule B is basically
the inverse of Rule A with minor positioning differences. Skipjack applies eight
rounds of Rule A, followed by eight rounds of Rule B, followed by another eight
rounds of Rule A, followed by another eight rounds of Rule B. The original
definitions of Rule A and Rule B are given in Figure 1, where counter is the
round number (in the range 1 to 32), G is a four-round Feistel permutation
whose F function is defined as an 8x8-bit S box, called F' Table, and each round
of G is keyed by eight bits of the key. The key scheduling of Skipjack takes a
10-byte key, and uses four of them at a time to key each G permutation. The
first four bytes are used to key the first G permutation, and each additional G
permutation is keyed by the next four bytes cyclically.

The description becomes simpler (and the software implementation becomes
more efficient) if we unroll the rounds, and keep the four elements in the shift
register stationary. In this form the code is simply a sequence of alternate G
operations and XOR, operations of cyclically adjacent elements. In this represen-
tation the main difference between Rule A and Rule B is the direction in which
the adjacent elements are XORed (left to right or right to left).

The XOR operations of Rule A and Rule B after round 8 and after round 24
(on the borders between Rule A and Rule B) are consecutive without application
of the G permutation in between. In the unrolled description these XORs are of
the form

W2 =G(W2,subkey) -- Rule A
Wil=W1oW2d8
W2=W20W1d9 -- Rule B

W1 =G((W1,subkey)

which is equivalent to exchanging the words W1 and W2, and leaving W2 as
the original W1 & 1:



W2 = G(W2,subkey)
exchange W1 and W2
Wl=W1eW2$8
wW2=w2e1l

W1 =G((W1,subkey)

(the same situation occurs after round 24 with the round numbers 8 and 9
replaced by 24 and 25). Figure 2 describes this representation of Skipjack (only
the first 16 rounds out of the 32 are listed; the next 16 rounds are identical except
for the counter values).

Also, on the border between Rule B and Rule A (after round 16), there are
two parallel applications of the G permutation on two different words, with no
other linear mixing in between.

Note that Rule A mixes the output of the G permutation into the input of
the next G permutation, while Rule B mixes the input of a G permutation into
the output of the previous G permutation (similarly in decryption of Rule A),
and thus during encryption Rule B rounds add little to the avalanche effect, and
during decryption Rule A rounds add little to the avalanche effect.

In this paper we consider variants of Skipjack which are identical to the
original version except for the removal of a few XOR operations. We use the name
Skipjack-(i1, ..., i) to denote the variant in which the XOR operations mixing
two data words at rounds iy, ...,4; are removed, and the name Skipjack-3XOR
as a more mnemonic name for Skipjack-(4,16,17), which is the main variant we
attack. Note that the removal of these XOR operations does not remove the
effect of any other operation (as could happen if we removed the XORs of the
Feistel structure of G, which would eliminate the effect of the corresponding F
tables).

3 Useful Observations

3.1 Observations Regarding the Key Schedule

The key schedule is cyclic in the sense that the same set of four bytes of the
subkeys (entering a single G permutation) are repeated every five rounds, and
there are only five such sets. In addition, the key bytes are divided into two sets:
the even bytes and the odd bytes. The even bytes always enter the even rounds
of the G permutation, while the odd bytes always enter the odd rounds of the
G permutation.
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3.2 Decryption

As in most symmetric ciphers, decryption can be done using encryption with mi-
nor modifications. These modifications are (1) reordering the key bytes to K* =
(cvr, cvg, ..., Cvg, CUg, cug ), (2) reversing the order of the round counters, and then
(3) encrypting the reordered ciphertext C* = (cbs, cbe, cby, by, cbr, cbg, cbs, cby)
gives the reordered plaintext P* = (pbs, pbs, pb1, pbo, pb7, pbs, pbs, pbs).

The mixings with the round numbers (counters) are often used to protect
against related key attacks. In Skipjack, if these mixings are removed, the fol-
lowing stronger property would hold: Given a plaintext P = (pbg,pb1, ..., pb7),
a key K = (cvo,...,cv9) and a ciphertext C = (cby,...,cby) such that C =
Skipjackg (P), then decryption can be performed using encryption by P* =
Skipjackg« (C*), where K* = (cvr, cvg, ..., Cvg, cvg, cvs), P* = (pbs, pba, pb1, pbo,
pbr, pbe, pbs, pbs), and C* = (cbs, cba, cby, cby, cbr, cbg, cbs, cby).

This property could be used to reduce the complexity of exhaustive search of
this Skipjack variant by a factor of almost 2 (26% of the key space rather than
50% in average) in a similar way to the complementation property of DES: Given
the encrypted ciphertext C'1 of some plaintext P, and the decrypted plaintext
C2 of the related P* under the same unknown key, perform trial encryptions
with 60% of the keys K (three keys of each cycle of 5 keys of the rotation by two
key bytes operations; efficient implementations first try two keys of each cycle,
and only if all of them fail, they try the third keys of the cycles). For each of
these keys compare the ciphertext to C'1, and to C2* (i.e., C2 in which the bytes
are reordered as above). If the comparison fails, the unknown key is neither K
nor K*. If it succeeds, we make two or three trial encryptions, and in case they
succeed we found the key.

3.3 Complementation Properties of the G Permutation

The G permutation has 2% — 1 complementation properties: Let Gko x1,x2,x3(
zl,22) = (yl,y2), where K0, K1, K2, K3,z1,22,y1,y2 are all byte values, and
let d1,d2 be two byte values. Then,

GK()@dLKlEBdQ’KQ@dLKg@dQ(ZL“]. D d2, 2 D d].) = (y]. (2] d2, y2 (2] d].)

G has exactly one fixpoint for every subkey (this was identified by Frank
Gifford, and described in sci.crypt). Moreover, we observed that for every key
and every value v of the form (0,b) or (b,0) where 0 is a zero byte and b is an
arbitrary byte value, G has exactly one value z for which G(z) = z ® v. It is
unknown whether this property can aid in the analysis of Skipjack.



3.4 Differential and Linear Properties of the F Table

We generated the differential and linear distribution tables of the F table, and
found that in the difference distribution table:

[\)

. The maximal entry is 12 (while the average is 1).
. 39.9% of the entries have non-zero values.
. The value 0 appears in 39360 entries, 2 in 20559, 4 in 4855, 6 in 686, 8 in

69, 10 in 5, and 12 in 2 entries.

. One-bit to one-bit differences are possible, such as 01, — 01, (where the

subscript z denotes a hexadecimal representation) with probability 2/256.

In the linear approximation table:

. The maximal biases are 28 and —28 (i.e., probabilities of 1/2 + 28/256 and

1/2 — 28/256).

. 89.3% of the entries have non-zero values.
. The absolute value of the bias is 0 in 7005 entries, 2 in 12456, 4 in 11244, 6

in 9799, 8 in 7882, 10 in 6032, 12 in 4354, 14 in 2813, 16 in 1814, 18 in 1041,
20 in 567, 22 in 317, 24 in 154, 26 in 54, and 28 in 3 entries.

. Unbalanced one-bit to one-bit linear approximations exist, such as 80, — 80,

with probability 1/2 + 20/256.

3.5 Differential and Linear Properties of the G Permutation

Consider the F table, and let ¢ and b be two byte values such that both a — b
and b — a occur with a non-zero probability. We can prove that the best pos-
sible characteristic of G must be of the form: input difference: (a,0), output
differences: (0,b), with the intermediate differences (a,0) — (a,0) — (a,b) —
(0,b) — (0,b). There are 10778 pairs of such a and b, of which four have proba-
bility 48/2'6 = 271042 They are

W N

a:52z7b:f51¢7
a= fb;, b=>52,
a="T7,,b=92,, and
a=92, b="TT,.

Most other characteristics of this form have probability 27* (6672 pairs) and
2713 (3088 pairs). The remaining characteristics of this form have probabilities
between 2712 and 2710-67,



Given a and b, there are additional characteristics with three active F tables
(rather than only two), and for the above values of a and b the probabilities are
between 27154 and 271583, These characteristics of G are (0,b) — (a,b) and
(a,b) = (a,0). We can combine these characteristics with the characteristics of
the previous form and get cycles of three characteristics which have the form
(a,0) = (0,b) = (a,b) — (a,0).

We studied the differential corresponding to these characteristics, and com-
puted their exact probabilities by summing up the probabilities of all the char-
acteristics with the same external differences. We found that the characteristic
(a@,0) — (0,b) has the same probability as a differential and as a character-
istic, as there are no other characteristics with the same external differences.
(0,b) — (a,b) and (a,b) — (a,0) with the same a and b as above have over a thou-
sand small-probability counterparts with the same external differences, whose to-
tal probability is slightly smaller than the probabilities of the original characteris-
tics. Thus, the probability of the differentials are almost twice that of the original
characteristics (e.g., 137088/23% = 271494 ingtead of 73728/232 = 271583 in one
of the cases).

We had also investigated other differentials of G. The characteristics we de-
scribed with probability of around 271042 (and other lower probability charac-
teristics with zero differences in the first and fourth rounds of the G permutation)
do not have any counterparts, and thus the corresponding differentials have the
same probabilities as the characteristics. The best other differential we are aware
of is 0024, — 0095, with probability 271471% and the best possible differential

with the same input and output differences is TF'7F, — TF7F, with probability
9—15.84

We next consider the case of linear cryptanalysis. As the characteristics are
built in a similar way where XORs are replaced by duplications and duplications
are replaced by XORs of the subsets of parity bits[1], we can apply the same
technique for linear cryptanalysis. In this case we have 52736 possible pairs of
a and b. The best linear characteristic of G is based on ¢ = b = 60, and its
probability is 1/2 + 2 - 676/21¢ = 1/2 4 2756,

It is interesting to note that (due to its design) many criteria used in other
ciphers are neither relevant to nor used in Skipjack. For example, a difference
of one input bit in a DES S box cannot cause a difference of only one bit in its
output, but there are many such instances in the F table of Skipjack.

Another observation is that due to the switchover from Rule A to Rule B
iterations, the data between rounds 5 and 12 is very badly mixed. As mentioned
earlier, on the border between the two rules (after rounds 8 and 24), the leftmost
word is exchanged with word 2, and the new word 1 is XORed with the new
word 2. We observed that the output of the G permutation in round 5 becomes
the input to the G permutation in round 12, unaffected by other words (but



XORed with the fixed value 8 ® 9 = 1). Thus, this word is not affected by any
other word during 8 consecutive rounds. A similar property occurs in word 3
from round 7 to round 11, and in word 4 from round 6 to round 10. On the other
hand, from round 5 to round 12 word 2 (renamed later to word 1) is affected
several times by the other words, and the G permutation is applied to it several
times, but it does not affect other words. Moreover, from round 13 to round 16,
this word affects directly or indirectly only two of the three other words, and
therefore, the input of the second word in round 5 never affects the fourth data
word twelve rounds later.5

4 Cryptanalysis of Skipjack Reduced to 16 Rounds

4.1 Differential Cryptanalysis of Skipjack with Reduced Number of
Rounds

The differential attack we describe here for 16-round Skipjack is considerably
faster than exhaustive search. This attack is based on our original attack [2]
with additional improvements based on Wagner’s observations [8].

The best characteristics of 16-round Skipjack that we are aware of use the
characteristics of the G permutation described above. The plaintext difference is
(a,0,a,0,0,0,0,b) (where a, b and 0 are eight-bit values, and a, b are the values
described in Section 3.5) and only six active G permutations (in which there are
a total of 14 active F tables) are required to achieve the ciphertext difference
(0,b,0,b,a,0,0,0). There are four such characteristics with probabilities about
27729 When we replace the characteristics by the corresponding differentials
of G, the probability grows to about 2~ 7*. However, when we view the two G
permutations in rounds 8 and 9 (unaffected by differences from other words) as
one new permutation, its probability is about 27'¢, and thus the probability of
the differential grows to about 2758,

Given the ciphertexts of many plaintext pairs with the difference (a,0,a, 0,
0,0,0,b), it is easy to identify and discard most of the wrong pairs in a OR-attack.
Such an attack requires about 2% pairs. We observe that only a four-round
characteristic of the first four rounds is required, with probability about 272!,
and that when the characteristic holds, the truncated (word-wise) differences in
rounds 5-16 are fixed. In this case we choose about 222 chosen plaintext pairs,
and can discard most of the wrong pairs, except for a fraction of 27'¢ of them.
Thus, about 2% = 64 pairs remain.

Now we use a second observation that the same set of subkeys is used in the
first and the 16th rounds. We try all the 232 possible sets of subkeys and for each

® This property was found by Wagner[8].



remaining pair we encrypt the first round and verify that the characteristic of
G holds, and decrypt the last round and verify whether the expected difference
(i.e., the difference of the third ciphertext word) holds in the input of the last G
permutation. The probability that a wrong set of subkeys does not discard a pair
is 2716 . 27104 — 9-26.4 5nd thus only the correct 32-bit subkey is expected to
be proposed twice, by two different remaining pairs, and thus can be identified.
This attack can be applied efficiently in 26 steps for each analyzed pair, i.e., a
total complexity of 222 steps. Similar techniques (or even exhaustive search of
the remaining 48 bits of the key) can complete the cryptanalysis.

4.2 Linear Cryptanalysis of Skipjack with Reduced Number of
Rounds

Linear characteristics are built in a similar way where XORs are replaced by du-
plications and duplications are replaced by XORs of the subsets of parity bits[1].
As Rule A and Rule B differ essentially in this way, we can have similar analysis
for linear cryptanalysis (except that we use linear characteristics rather than
differentials). The probability of the best linear characteristic we found is about
1/2 + 27355 and thus the attack seems to require more known plaintexts than
the total number of possible plaintexts. However, this number can be reduced
below 24 by using shorter characteristics.

4.3 Modified Variants of Skipjack

Skipjack uses alternately eight rounds of Rule A and eight rounds of Rule B.
In this section we investigate whether other mixing orders strengthen or weaken
the cipher. A simple example of a modified design uses alternately four ‘Rule A’
rounds and four ‘Rule B’ rounds. We found an attack on this 16-round cipher
which requires only about 2'° chosen plaintexts and about 232 steps of analysis
to find the subkey of round 3.

When Rule A rounds and Rule B rounds appear in reverse order (i.e., Rule
B is applied first), and four rounds of each are applied consecutively, then only
two pairs are required to find the last subkey.

These few examples indicate that the order of Rule A and Rule B rounds can
have a major impact on the security of modified variants of Skipjack. Further
study of modified variants will shed more light on Skipjack’s design principles.
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5 A New Cryptographic Tool: The Yoyo Game

Consider the first 16 rounds of Skipjack, and consider pairs of plaintexts P =
(w1, ws,ws,wy) and P* = (wy, w3, ws, w;) whose partial encryptions differ only
in the second word in the input of round 5 (we will refer to it as the property
from now on). As this word does not affect any other word until it becomes
word 1 in round 12, the other three words have difference zero between rounds 5
and 12.

We next observe that given a pair with such a property, we can exchange the
second words of the plaintexts (which cannot be equal if the property holds),
and the new pair of plaintexts (wy, w3, w3, ws) and (w},ws, ws, w}) still satisfies
the property, i.e., differs only in the second word in the input of round 5. Given
the ciphertexts we can carry out a similar operation of exchanging words 1.

The Yoyo game starts by choosing an arbitrary pair of distinct plaintexts Py
and Py . The plaintexts are encrypted to Cy and Cj. We exchange the first words
of the two ciphertexts as described above, receiving C; and C}, and decrypt them
to get P, P". Now we exchange the second words of the plaintexts, receiving
P, and Pj, and encrypt them to get Cs and Cj. The Yoyo game repeats this
forever.

In this game, whenever we start with a pair of plaintexts which satisfies the
property, all the resultant pairs of encryptions must also satisfy the property,
and if we start with a pair of plaintexts which does not satisfy the property, all
the resultant encryptions cannot satisfy it.

It is easy to identify whether the pairs in a Yoyo game satisfy the above
property, by verifying whether some of the pairs achieved in the game have a
non-zero difference in the third word of the plaintexts or in the fourth word of
the ciphertexts. If one of these differences is non-zero, the pair cannot satisfy
the property. On the other hand, if the pair does not satisfy the property, there
is only a probability of 2716 that the next pair in the game has difference zero,
and thus it is possible to stops games in which the property is not satisfied after
only a few steps. If the game is not stopped within a few steps, we conclude with
overwhelming probability that the property is satisfied.

This game can be used for several purposes. The first is to identify whether
a given pair satisfies the above property, and to generate many additional pairs
satisfying the property.

This can be used to attack Skipjack reduced to 16 rounds in just 2'* steps. For
the sake of simplicity, we describe a suboptimal implementation with complexity
217 In this version we choose 2'7 plaintexts whose third word is fixed. This set
of plaintexts defines about 232 possible pairs, of which about 2!7 candidate pairs
have difference zero in the fourth word of the ciphertexts, and of which about
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one or two pairs are expected to satisfy the property. Up to this point, this
attack is similar to Wagner’s attack on 16-round Skipjack [8]. We then use the
Yoyo game to reduce the complexity of analysis considerably. We play the game
for each of the 2'7 candidate pairs, and within a few steps of the game discard
all the pairs which do not satisfy the property. We are left with one pair which
satisfies the property, and with several additional pairs generated during the
Yoyo game which also satisfy the property. Using two or three of these pairs, we
can analyze the last round of the cipher and find the unique subkey of the last
round that satisfies all the requirements with complexity about 2!¢. The rest of
the key bytes can be found by similar techniques.

This game can also be used as a distinguisher which can decide whether an
unknown encryption algorithm (given as an oracle) is Skipjack reduced to 16
rounds or a random permutation.

The above Yoyo game keeps three words with difference zero in each pair.
We note that there is another (less useful) Yoyo game for Skipjack reduced to
14 rounds (specifically, rounds 2 to 15), which keeps only one word with dif-
ference zero. Consider pairs of encryptions P = (wj,ws,ws,ws) and P* =
(wf, w3, w3, w};) which have the same data at the leftmost word in the input
of round 5. As this word is not affected by any other word until it becomes
word 2 in round 12, we can conclude that both encryptions have the same data
in word 2 after round 12. Given a pair with such an equality in the data, we
can exchange the first word of the plaintexts, and the new pair of plaintexts
(wf, ws,ws,wy) and (w1, ws, w3, wy) still has the same property of equality at
the input of round 5. Moreover, if the first words of the plaintexts are equal (i.e.,
w; = wj and thus exchanging them does nothing) we can exchange the second
words (wy with w3) and get the same property. If they are also equal, we can
exchange w3 with w3 and get the same property. If they are also equal, we ex-
change w4 with w}. However, if the property holds, this last case is impossible, as
at least two words of the two plaintexts must be different. Given the ciphertexts
we can carry out a similar operation of exchanging words 2. If words 2 are equal,
exchange words 1, then words 4, and then words 3. Also in this case a difference
of only one word ensures that the property is not satisfied. This Yoyo game is
similar to the previous game, except for its modified exchange process, and it
behaves similarly with respect to the new difference property.

6 Cryptanalysis of Skipjack-3XOR

In this section we analyze Skipjack-3XOR, which is identical to the original 32-
round Skipjack except for the removal of the three XOR operations which mix
16-bit data words with their neighbors at rounds 4, 16 and 17. We show that
this version is completely insecure, since it can be broken in one million steps
using only about 500 chosen plaintexts.
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The starting point of the attack is Wagner’s observation[8] that the differen-
tial characteristic we used in the previous section can use truncated (i.e., word-
wise) differences [5]. The attack uses the following characteristic of Skipjack-
3XOR: For any 16-bit non-zero value a, the plaintext difference (0, a,0,0) leads
to the difference (b, ¢, 0,0) after round 16 with probability 1, which in turn leads
to a difference (d, 0,0, 0) after round 28 with probability 271¢, for some unspeci-
fied non-zero values b, ¢, and d. This difference leads to some difference (e, f, g, 0)
in the ciphertexts, for some e, f, and g.

The attack requires two pairs of plaintexts with such a differential behavior.
To get them, encrypt 2° = 512 distinct plaintexts which are identical except at
their second word. They give rise to about 2'8/2 = 217 pairs, and each pair has
the required property with probability 276, The two right pairs can be easily
recognized since the two ciphertexts in each pair must be equal in their last 16
bits.

The basic steps of the attack are:

1. We know the input differences and the actual outputs of the 32nd G per-
mutation. Each right pair yields a subset of about 2!® possible key bytes
cvy,. . . ,cur, and the intersection of the two subsets is likely to define these 32
key bits (almost) uniquely. This part can be implemented in about 2'¢ eval-
uations of G.

2. The 29th G permutation shares two key bytes cvy, cvs with the 32nd G
permutation, which are already known. 2!® possible combinations of the two
key bytes cva, cvs and the inputs to the 30th G permutation in both pairs can
be found. A careful implementation of this step requires a time complexity
which is equivalent to 2'7 evaluations of G.

3. For each of the 2! combinations we still miss the key bytes cvg, cvg entering
the last two F tables in round 30, and the key bytes cvg and cv; entering the
first two F tables in round 31. Together they are equivalent to a single G,
which we call G’. In each right pair, the two encryptions have the same values
in G’. We view both right pairs as a super pair of two G’ evaluations, whose
actual inputs and outputs are known. The analysis of G’ takes about the
equivalent of 2° G evaluations, and thus the total complexity is equivalent
to about 22° G evaluations.

Since each Skipjack encryption contains 2° = 32 G evaluations, the total
time complexity of this cryptanalytic attack is equivalent to about one million
Skipjack encryptions, and can be carried out in seconds on a personal computer.
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