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Initial reference models in local earthquake tomography 

E. Kissling, W.L. Ellsworth, 2 D. Eberhart-Phillips, 3 and U. Kradolfer 

Abstract. The inverse problem of three-dimensional (3-D) local earthquake tomography is 
formulated as a linear approximation to a nonlinear function. Thus the solutions obtained and the 
reliability estimates depend on the initial reference model. Inappropriate models may result in artifacts 
of significant amplitude. Here, we advocate the application of the same inversion formalism to 
determine hypocenters and one-dimensional (l-D) velocity model parameters, including station 
corrections, as the first step in the 3-D modeling process. We call the resulting velocity model the 
minimum 1-D model. For test purposes, a synthetic data set based on the velocity structure of the San 
Andreas fault zone in central California was constructed. Two sets of 3-D tomographic P velocity 
results were calculated with identical travel time data and identical inversion parameters. One used an 
initial 1-D model selected from a priori knowledge of average crustal velocities, and the other used the 
minimum 1-D model. Where the data well resolve the structure, the 3-D image obtained with the 
minimum 1-D model is much closer to the true model than the one obtained with the a priori reference 
model. In zones of poor resolution, there are fewer artifacts in the 3-D image based on the minimum 
1-D model. Although major characteristics of the 3-D velocity structure are present in both images, 
proper interpretation of the results obtained with the a priori 1-D model is seriously compromised by 
artifacts that distort the image and that go undetected by either resolution or covariance diagnostics. 

Introduction 

Seismic tomography applied to the solid Earth is a non- 

linear process [Pavlis and Booker, 1983]. In general, 

solutions are obtained by linearization with respect to a 

reference Earth model [e.g., Aki and Lee, 1976; Nolet, 1978]. 

The tomographic images resulting from such linearized 

inversion are dependent on the initial reference models and 

hypocentral locations [Michael, 1988; VanderHilst and 

Spakman, 1989; VanderHilst et al., 1991]. This dependence, 

in conjunction with ambiguities intrinsic to the inversion of 

seismic data, is an issue that has to be addressed in any 

application of seismic tomography [Lees and Shalev, 1992]. 

Most velocity models of the Earth's interior are derived by 

first establishing a simple smooth model that explains some 

weighted average of the observations. Subsequently, this 
initial model is modified until a sufficient degree of 

coincidence between the bulk of the observations and predicted 

values is obtained. This procedure is followed in seismic 

tomographic studies, with a one-dimensional (l-D) model 

usually serving as the initial reference model for the three- 
dimensional (3-D) inversion. In many previous studies the 
influence of the initial reference 1-D model on the results of 

the tomographic inversion has not been fully appreciated. In 

the following we show that an inappropriate initial reference 

model may not only affect the quality of the 3-D image by 

introducing artifacts, but it may also influence the confidence 
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calculations by underestimating the uncertainties of the 
results. 

To overcome these problems, Kissling et al. [1984] and 

Kissling [1988] proposed a two-step procedure to obtain 3-D 
tomographic results with minimal dependence on the reference 
model: First, the travel time data are jointly inverted to obtain 

a 1-D tomographic solution, together with revised hypocenter 
coordinates and station corrections. We call this new model 

the "minimum 1-D model" [Kissling, 1988]. Second, the 3-D 

tomographic inversion is determined using the minimum 1-D 
model as the starting model. In this study we present 

theoretical arguments for such an approach and demonstrate its 

importance for 3-D tomographic results for a simple synthetic 

test case mimicking San Andreas Fault structure in central 
California. 

Coupled Hypocenter Velocity Model 
Problem 

The arrival time of a seismic wave generated by an 

earthquake is a nonlinear function of the station coordinates 

(s), the hypocentral parameters (h, including origin time and 

geographic coordinates), and the velocity field (m). 

tob s = f( s,h,m ). (1) 

In general, neither the true hypocentral parameters nor the 
velocity field are known. With arrival times and station 

location being the only measurable quantities, we cannot 

solve (1) directly. To proceed, we have to make an educated 

guess of the unknown parameters. Using an a priori velocity 

model, we trace rays from a trial source location to the 

receivers and calculate theoretical arrival times (tcalc). The 
differences between the observed and the calculated arrival 

time, the residual travel time (tres), can be expanded as 

functions of the differences {A) between the estimated and the 

true hypocentral and velocity parameters. To calculate suitable 

adjustments (corrections) to the hypocentral and model 
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parameters, we need to know the dependence of the observed 

travel times on all parameters. For hypocenter parameters 

except the origin time this dependence is strongly nonlinear 

[e.g., Thurber, 1985], and for velocity parameters it is 

moderately nonlinear, even in a 1-D model [Pavlis and Booker, 

1983]. Applying a first-order Taylor series expansion to (1), 

we obtain a linear relationship between the travel time residual 

and adjustments to the hypocentral (Ahk) and velocity (Ami) 
parameters: 

3f 

tres=tobs-tc alc =E k= 1,4& hk 
3f 

Ahk+•i=l,n3mi Ami+e. (2) 
In matrix notation, the coupled hypocenter velocity model 

parameter relation can be written as 

t=Hh +Mm +e =Ad+e (3) 

t vector of travel time residuals; 

H matrix of partial derivatives of travel time with respect to 

hypocentral parameters; 

h vector of hypocentral parameter adjustments; 

M matrix of partial derivatives of travel time with respect to 

model parameters; 

m vector of model parameter adjustments; 

e vector of travel time errors, including contributions from 

errors in measuring the observed travel times, errors in 

tcalc due to errors in station coordinates, use of the wrong 

velocity model and hypocentral coordinates, and errors 

caused by the linear approximation; 

A matrix of all partial derivatives; 

d vector of hypocentral and model parameter adjustments. 

Neglecting the effect of (Mm) in equation (3) while locating 

the earthquakes, for example, has the potential to introduce 

systematic errors into the estimated hypocenter locations 

[Thurber, 1992; Eberhart-Phillips and Michael, 1993]. 

Similarly, neglecting of (Hh) in equation (3) may result in 

biased velocity parameters [Michael, 1988; VanderHilst and 

$pakman, 1989]. As we demonstrate below, inclusion of both 

hypocenter and model parameters in the estimation procedure 

does not necessarily guarantee successful recovery of either 
true distribution. 

Unless we have "guessed" the correct hypocentral 
coordinates, tomographic imaging with local earthquake data 

demands the updating of both hypocenter and velocity 

parameters. We concur with Thurber [1992] that this is most 

reliably achieved by solving the coupled hypocenter-velocity 
model problem, rather than alternating independent 

hypocenter and velocity adjustment steps. To reduce the 

computational burden of solving the very large system of 

equations (3), Pavlis and Booker [1980] and Spencer and 
Gubbins [1980] independently introduced an algorithm, to 
separate A into the two smaller matrices, one containing the 

hypocenter location information, and one containing the 

model parameter information. The reduced form of A pertaining 

to the velocity model may then be solved separately to obtain 
the same solution as if the entire matrix were being inverted. 
Kissling [1988] demonstrated the effectiveness of the 

parameter separation procedure for local earthquake 

tomography in a test with data from Long Valley, California. 

Parameter separation does not, however, reduce the dependency 

of the solutions on the reference velocity model or the 

reference hypocenters. 

Generally, the solution to (3) is taken as the least squares 
solution that minimizes a weighted combination of the squared 

SAF 

A 

B 

Figure 1. Schematic velocity models of the San Andreas 

Fault (SAF) in central California. a: Synthetic velocity model 

of SAF used to calculate synthetic, yet realistic data sets for the 

Loma Prieta earthquake series (see text). Different shading 

denotes different velocities (values are in kilometers per 
seconds). Note the lack of vertical velocity gradients and the 

strong lateral change in velocity. b: Schematic 1-D model used 

to approximate the unknown velocity structure for earthquake 

location and used as the reference model for 3-D tomographic 
inversions. The two reference 1-D models (i.e., the refraction- 

based and the minimum 1-D model) have identical layer 

thicknesses but different layer velocities. Different shading 

denotes different velocities. For exact velocity values, see 

Figure 3. 
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error (eYe) and a measure of the velocity model change, 
typically its Euclidean norm (mTm)[Spakmart and Nolet, 
1988]. Under the assumption of normally distributed errors and 

model perturbations, the least squares formulation results in 

the most likely solution that belongs to the same family of 
solutions as the initial reference-model. By seeking a solution 

in the neighbourhood of the initial reference model, defects in 

the reference model may lead to artifacts in the 3-D 

tomographic images, particularly when the solution is not 

refined through model updating and iteration. Because the 

parameter space commonly contains several thousand 

unknowns, simple iteration schemes may be incapable of 

avoiding local minima and thus may not converge to the 

global minimum. Furthermore, the size of A and/or the 

application of parameter separation may make it difficult, if 

not impossible, to compute the normal diagnostics of model 

performance, such as the model and data resolution matrices 

and model covariance matrix. Thus potential trade-off between 

hypocentral parameters and velocities are difficult to identify. 

Concept of the Minimum 1-D Model 

The chances for successful estimation of the true model 

using (3) can obviously be improved by selecting a starting 

model in the neighborhood of the true model, one for which 

the linearization assumption holds. The problem is how to 

find such a model. We suggest that the natural starting point is 

the 1-D velocity model that itself represents the least squares 

solution to (3). Not only are the algorithms for developing 1- 
D models well studied [Crosson, 1976; Ellsworth, 1977; 

Roecker, 1981; Pavlis and Booker, 1983; Kissling, 1988], but 

also the smaller dimension of the model space makes it 

practical to calculate the full suite of linear diagnostics. We 
refer to this optimal 1-D model as the minimum 1-D model. 
Use of the minimum 1-D model also permits us to test for the 

significance of the 3-D model, since the ratio of the variance 
reduction for the 3-D model to the residual variance of the 3-D 

model, properly adjusted for degrees of freedom will follow an 
F distribution. This test only makes sense, however, when the 

reference model is itself the least squares solution for a model 

with fewer degrees of freedom, which will not be the case for an 

arbitrarily selected starting point. 

In the minimum 1-D model, the layer velocities will 

approximately equal the average velocity in the 3-D 

tomographic solution within the same depth range. Note that 

it is not the spatial average of the model. Rather, the 

velocities of the 1-D model approach the average of the 3-D 

model elements in each layer weighted by the total ray length 
in each element. The initial reference model should thus be 

constructed using similar distribution of sources and receivers 

as the data set being analyzed for 3-D structure. 
The determination of the minimum 1-D model is a trial and 

error process that ideally starts with the collection and 

selection of a priori information about the subsurface structure. 
Since this process can lead to ambiguous results, particularly 

when more than one a priori 1-D models have been 
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Figure 2. Seismicity in the Loma Prieta magnitude 7.1 earthquake (October 17, 1989) region. Earthquakes 
(crosses) that were recorded on the U.S. Geological Survey's permanent seismic station network (triangles) and 

that provide the basis for the synthetic data set used in the test (see text) are shown. Nodes of the velocity 

model grid are marked by dots. SF, San Andreas fault; CF, Calaveras fault; SL, shoreline (stippled); X,Y, 

Cartesian coordinate system; Y10, location of cross sections (Figure 5). 
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established, several parameters that control the inversion need 

to be varied and the corresponding results need to be evaluated. 

In the appendix, guidelines for the calculation of minimum 1-D 
models are provided. Note that such procedures do not 

guarantee convergence to a best fit solution. Rather, specific 

characteristics of the data set and of the velocity structure need 

to be implemented in the calculation process. The results also 

depend on the effectiveness of the data selection process 
[Kissling, 1988]. 

Performance of a Minimum 1-D Model as 

Initial Reference Model for 3-D Local 

Earthquake Tomography 

To test the minimum 1-D model approach, we have designed 
a difficult target, based upon the structure of the central 

creeping segment of the San Andreas fault in California. In 

this region, the fault juxtaposes two distinct crustal velocity 
structures [Walter and Mooney, 1982] and contains a tabular 

zone of extremely low velocity extending to seismogenic 
depths [Healy and Peake, 1975; Feng and McEvilly, 1983]. To 

amplify the effects of the horizontal gradient across the fault, 

our synthetic velocity model has no vertical gradient and 
medium-to-strong horizontal gradients (Figure l a). Note that 
our minimum 1-D model with horizontal layering (Figure lb) 

has an orthogonal basis to the true model. The suite of stations 

and earthquakes for the test (Figure 2) corresponds to the data 

of Eberhart-Phillips et al. [1990], which are essentially the 

same as those analyzed by Lees [1990] and by Foxall et al. 
[1993]. The reader should bear in mind, however, that the 

synthetic structure bears no resemblance to the structure in the 

Loma Prieta region, aside from the average crustal velocity 
outside of the anomalous zone in the synthetic model. 

Using the synthetic velocity model of Figure l a for each of 

the 12,000 source-receiver pairs in the Eberhart-Phillips et al. 

[1990] data set (199 earthquakes), we calculated travel times by 
solving the eikonal equations with a finite difference 

algorithm [Vidale, 1990]. Computational rounding errors in 

the travel time calculation, typically +0.01 s, provide the only 

noise in the travel time data. This noise level corresponds to 

the standard error of "0 weight" readings for the actual U.S. 

Geological Survey (USGS) data [Allen, 1982]. In the data 

creation phase of the experiment, W. L. Elsworth established 

the synthetic model, calculated the true travel times, and 

computed new hypocenters using a simplified 1-D model. 

These trial hypocenters have mislocation errors of several 

hundred meters to a few km. The modelling was done by E. 

Kissling and D. Eberhart-Phillips without prior knowledge of 
any characteristics of the synthetic velocity structure. Thus we 
have attempted to recreate the actual situation in which the 

modeler knows only the travel times and station coordinates. 

With this synthetic data set, routine tomographic 

procedures for the inversion of local earthquake data [Kissling, 

1988; Eberhart-Phillips, 1990] were performed using two 

similar algorithms based on work by Ellsworth [1977] and 

Thurber [1981], respectively. Both tomographic procedures 

achieve nonlinear inversion by iterating over linear inversion 

steps with updating of hypocenters, velocities, and ray paths. 
The major differences between the two methods are the 

approaches used for forward ray tracing (an approximate local 

2D ray tracer [Thurber and Ellsworth, 1980; Kissling, 1988] 
versus an approximate 3-D ray tracer [Urn and Thurber, 1987]), 

the size of the inverse problem that may be handled, and the 

amount of controlling and testing of the data [Kissling, 1988; 

Eberhart-Phillips, 1990]. While the algorithm of Kissling 
[1988] employs a velocity model with constant layer 
velocities, the algorithm of Eberhart-Phillips [1990] accounts 
for velocity gradients. Fortunately, the results obtained by the 
two inversion routines for the same parameters and 

assumptions were almost identical. Consequently, in the 
following we only show results from the inversion routine of 

Eberhart-Phillips [1990]. Since this method includes a 3-D 

search algorithm for the ray path, large systematic errors in 
the recognition of seismic phases due to 3-D structural effects 

may be excluded. 

On the basis of refraction seismic studies [Mooney and 
Colburn, 1985] and earthquake travel time data Dietz and 

Ellsworth [1990] obtained a 1-D velocity model (a priori 1-D 
model) for the Loma Prieta area. Following the procedure 
outlined in the appendix, we calculated a minimum 1-D model 

for synthetic data with a layering identical with the a priori 1- 
D model (Figure 3). We also constructed a second 1-D model 

that adopted the a priori velocity values but included optimal 

station corrections and hypocenters, just as was done with the 

minimum 1-D model. This initial part of the inversion process 
thus produced two parallel estimates, one for each 1-D model (a 

priori 1-D model and minimum 1-D model). 

The performance of these two 1-D models is very similar, 
achieving rms misfits of 0.08 and 0.07 s, respectively. The 
epicenters of each model are systematically repelled from the 
tabular low velocity zone of the true model, as would be 

expected, by an average of 2 km. Focal depths are biased 

toward too shallow depth by 2 km in the a priori 1-D model but 

are unbiased, on average in the minimum 1-D model. This 

result is not unexpected, since the a priori model projects 

velocity model errors into depth and origin time, on average. 
Origin times are too early by a median value of 0.2 s in both 
models, however. 

Subsequently, we performed two complete 3-D inversions of 

the synthetic travel time data set, one with the a priori 1-D 

model and one with the minimum 1-D model. Except for the 1- 

D model aspect, the control parameters for the two 3-D 

inversions were identical. Synthetic quarry blast from 16 

surface sources with known coordinates, but unknown origin 
times, were also included in the 3-D data set. The two 3-D 

tomographic images were calculated by inverting the travel 

times in an iterative process (six iterations) without using 

station corrections. Convergence to a stable minimum was 
achieved in both cases, with iteration termination controlled 

by an F test. 

The results of these parallel inversions (Figures 4 and 5) are 

tomographic images of the same synthetic model (Figure la) 

for the same original local earthquake data set. The differences 

in these 3-D results, therefore, may be fully attributed to the 

use of different starting layer velocities and trial hypocenters. 

The resulting velocity models (Figures 4 and 5) reproduce 

many of the long- wavelength features of the true model, 

particularly for the model nodes at depths of 3 and 7 km. Each 

model also significantly reduces the hypocentral errors. 
Median epicentral errors are 0.6 and 1.0 km for the minimum 

1-D and a priori 1-D solutions, respectively, while median 

depth errors are 0.2 and -0.6 km, and median origin time errors 

are -0.01 and -0.08 s, respectively. 

The resolution matrix for the two cases are virtually 

identical, suggesting that there are no important differences in 
sampling between the two ray sets. The standard error 
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Figure 3. Velocity-depth functions for the two 1-D models of Loma Prieta, California, used for relocation of 
earthquakes (constant layer velocity model shown by solid lines) and as initial reference models for 3-D 
tomographic inversions (velocity-gradient models shown by dotted lines). Solid triangles, Dietz and 
Ellsworth [1990] 1-D model based on seismic refraction and earthquake data. Open circles, minimum 1-D 

model obtained by joint inversion of travel time data for earthquake location and layer velocities (see text). 

estimates for the velocity parameters average about 0.08 km/s 

for both test cases in areas of good resolution. While the 

standard error estimates are equivalent for either initial 

reference model, the standard deviation of the actual velocity 

errors is 0.67 km/s for the a priori 1-D model and 0.26 km/s 
for the minimum 1-D model. 

Overall, the solution obtained with the minimum 1-D model 

outperforms the a priori 1-D model results. A comparison of 

the Figures 4 and 5 reveals a strong dependence of the 

tomographic results on the initial reference model and reveals 

the potential of the minimum 1-D model to reduce artifacts in 

the solution that distort the 3-D velocity field in these layers 

for the a priori 1-D model. A quantitative assessment may be 

made by comparing the model and true velocity fields in 

regions with acceptable model resolution. Using a diagonal 
resolution value of 0.25 as the cut-off, the correlation 

coefficient between the minimum 1-D solution and true model 

is 0.88, while for the a priori model it is only 0.54. The 
correlation is highly significant for both models (p>0.001). 

The performance of the a priori model for estimating the 
relative horizontal velocity pattern in each layer is somewhat 

more satisfactory (correlation coefficient is 0.76), although 
the minimum 1-D model is clearly superior (0.92). 

Discussion and Conclusions 

Solutions to the local earthquake tomography are based on 
iterative refinement of a linearized approximation to a 

nonlinear function. Reliability measures for the least squares 

solution are also dependent on the validity of the 
linearization. We have shown here a clear dependence of the 

solution and its diagnostic measures on the initial reference 
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Figure 5. Vertical cross sections perpendicular to San 
Andreas Fault at Y=10 (see Figures 2 and 4 for location) of 

resulting 3-D velocity field for synthetic Loma Prieta data (see 

text). Coordinates are parallel (Y axis) and perpendicular (X 

axis) to San Andreas fault (for velocity grid, see Figure 2). 
Distances are in kilometers. Dots are hypocenter locations. 

(top) Results based on minimum 1-D model (Figure 3, open 
circles) as reference model. (middle) Results based on a priori 
1-D model (Figure 3, solid squares) as reference model. 

(bottom) True velocity field. 

model. Systematic error in the starting model will not only 

influence the 3-D results but will also distort the resulting error 
estimates. 

The particular method we have used [Thurber, 1981; 

Eberhart-Phillips, 1990] to solve the inverse problem 

simultaneously updates the hypocenters, ray paths, and travel 

times at each iteration step and terminates the iteration only 

after perturbations became statistically insignificant. Perhaps 

another inversion strategy would succeed in finding a better 

minimum when the a priori 1-D model is the starting point, but 
this must be demonstrated. Our results thus illustrate the 

potential ambiguity in this specific inverse problem With real 

data, however, we are forced to rely upon other tests, including 

sensitivity tests Lees and Shalev [1992], "checkerboard" tests 
Spakman [1991], error and resolution estimates Koch [1993], 

and smoothing test Sambridge [1990] to select the most 

probable results. Cross validation is also highly 

recommended, particularly as a means to select the proper 

damping to regularize the solution [Segall and Du, 1993]. 

One worrisome problem with both our derived models is the 

appearance of long-wavelength artifacts in the lower half of 
each model that are just of the type that might be mistaken for 

structure (Figures 4 and 5). Each model contains a high- 

velocity body immediately to the Southwest of the fault zone 

(below the zone in Figure 4 and to its left in Figure 5) that 

approximately corresponds to the distribution of the deepest 

hypocenters (those that correspond to the main dipping 

aftershock zone of the Loma Prieta earthquake [Dietz and 

Ellsworth, 1990]). Note that the hypocenters (dots in Figure 

5) are slightly out of place due to the velocity pull-up effect of 
the high velocity artifact. Because this feature correlates well 

between our two estimates, there would be a strong temptation 

to interpret it as a true part of the 3-D velocity field. 

It is also somewhat troubling that a similar high velocity 

body appears in the tomographic models of the Loma Prieta 

region [Eberhart-Phillips et al., 1990; Lees, 1990]. One 

common link between these studies is their use of the routinely 

determined U SGS hypocenters as the initial locations. These 

hypocenters were computed using the minimum 1-D model of 
Dietz and Ellsworth [1990], which make them our ideal 
recommendation for the initial reference model. We cannot 

say, without further investigation, if the appearance of a 

similar high-velocity body in our synthetic example casts 

doubt on the reality of this body, but caution is clearly 

suggested. 

Using a similar data set from Loma Prieta region, Lees and 

Shalev [1992] investigated the stability of 3-D tomographic 

results for the actual Loma Prieta data set. They found that 

various initial velocity models, different parameterization, and 

either linear or nonlinear inversion procedures all produced 

similar 3-D velocity fields. In particular, Lees and Shalev 

[1992, p. 1838] conclude, that" at least for this particular data 
set, the initial starting models used routinely for earthquake 

location [i.e., the Dietz-Ellsworth minimum 1-D model] are 

close enough to the final three-dimensional non linear models 

such that first-order perturbation theory is sufficient for 

deriving the primary signal in the data and determining the 

geometry of three-dimensional slowness field". 

In their study, Lees and Shalev [1992] employed the 

stepwise inversion strategy in which adjustments to the 

velocity model are determined without perturbing the 

hypocenters. The hypocenters may be updated in the revised 
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model when the procedure is iterated. As they always linearize 

around the same hypocenter locations and station corrections 
from the Dietz-Ellsworth minimum 1-D model in the initial 

velocity step and regularize the solution with horizontal 

smoothing, it is not surprising that their first velocity step 

moves them toward a common model, regardless of the other 

assumptions being tested. Correlation between models derived 

with different starting models may not, however, be a good 
measure of reliability, as artifacts in our synthetic model 

results (Figures 4 and 5) correlate well between models. 

We also note an apparent difference between our result of a 

strong dependence on the initial model and those of Pavlis and 

Booker [1983], who found only a moderate influence of the 

starting model on recovery of 1-D velocity models. Their 

results agree well with our experience in determining minimum 

1-D models in many areas around the world [e.g., Kissling et 
al., 1984; Kissling, 1988; Kradolfer, 1989; Hauksson and 

Jones, 1989; Dietz and Ellsworth, 1990; Eberhart-Phillips, 
1990; Scott, 1992; Castillo and Ellsworth, 1993]. The 

stronger dependence of the tomographic images presented here 
on the initial 1-D model suggests that the local earthquake 

tomography problem in three dimensions is less well behaved 

than its 1-D counterpart. This should not be surprising, as in 

going from one to three dimensions, we replace an infinitely 

long horizontal averaging kernel with one of finite length. 
Use of the least squares solution to the 1-D tomography 
problem with earthquake hypocenters stabilised in that model 

as the point of departure for 3-D modeling can therefore do 

nothing but improve the chances for successful 3-D modeling. 

Appendix: "Recipe" to Calulate a 
Minimum 1-D Model 

The following guidelines for the calculation of a minimum 

1-D model have been developed through the application of 

equation (3) in many areas of both simple and complex crustal 

structure around the world [Reasenberg and Ellsworth, 1982; 

Kissling and Lahr, 1991; Maurer, 1993]. These guidelines do 

not guarantee convergence to an optimal solution. Rather, 

specific characteristics of the data set, and of the velocity 

structure may demand modifications of the procedure. The 

results also depend on the effectiveness of the data selection 

process [Kissling, 1988]. 

Most of our modelling has been done with the program 

VELEST [Ellsworth, 1977; Roecker, 1981; Kradolfer, 1989]. 

The programs of Crosson [1976] and Pavlis and Booker 

[1980] have also enjoyed considerable success for this purpose 

[Steppe and Crosson, 1978]. Scott [1992] has recently 
conducted a thorough investigation of the problem. 

Step 1. Establishing the a Priori 1-D Model(s) 

Obtain all available a priori (prior to the one or three- 

dimensional inversion) information regarding the 

stratification of the area under study (velocities, layer 

thicknesses, etc.). In general, use refraction seismic models, 

simplified where necessary to constant velocity layers. If no 

controlled-source seismology models are available, use phase 

correlations and cross over distances [e.g., Deichmann, 1987] 

from well-recorded earthquakes and/or infer the layered 

structure from geologic information. Define the media by 

several layers of increasing velocity with depth. Thicknesses 

of the layers in the upper crust should be about 2 km and in the 

lower crust about 4 to 5 km. Estimate layer velocities 

according to a priori information or a general crustal model. In 

case of incomplete or inconsistent information or, if the area 
under consideration confines two or more distinctly different 

tectonic provinces, establish several 1-D models. Choose a 

reference station with a continuous or nearly continuous record 

of events. It must be a reliable station, preferably located 
toward the center of the network and should not show extreme 

site effects. The model(s) and the reference station are called 

the a priori 1-D model(s). If several significantly different a 

priori 1-D models are established the following steps 2 

through 5 are repeated for each 1-D model seperately. 

Step 2. Establishing the Geometry and the 

Velocity Intervals of Potential 1-D Model(s) 

Select about 500 of the best events in the data (i.e., those 

with the most high-quality P arrivals) that cover the entire area 

under consideration. Relocate them with routine VELEST using 

a damping coefficient of 0.01 for the hypocentral parameters 

and the station delays and 0.1 for the velocity parameters. 

Invert for hypocenters every iteration and for station delays 

and velocity parameters every second iteration. Repeat this 

procedure several times with new (updated) velocities in the 

reference 1-D model, with perhaps the new station delays, and 

with new hypocenter locations. Repeat the procedure also for 

reduced number of layers where possible by combining 

adjacent layers with similar velocities. Unless clearly 

indicated by the data, in most cases it is preferable to avoid 

low velocity layers, as they normally introduce instabilities. 

Our experience suggests that shot or blast data should not be 
included in the 1-D model inversion. Rather, such data should 

be used to set the near-surface velocities, and to test the 

performance of the resulting minimum 1-D model when used 

for locating hypocenters. This countrintuitive suggestion may 

be understood by considering that ray paths with both 

endpoints near the surface sample, on average, a much more 

heterogeneous part of the Earth than do ray paths from events 

in the seismogenic crust. 

The goal of this trial and error approach is to establish 

reasonable geometry of the crustal model and corresponding 

intervals for the velocity parameters and station delays. In 

addition, this approach provides valuable knowledge about the 

quality of the data. Procede to the next step when (1 the 

earthquake locations, station delays, and velocity values do 

not vary significantly in subsequent runs; (2 the total RMS 

value of all events shows a significant reduction with respect 

to the first routine earthquake locations; and (3 the calculated 

1-D velocity model and the set of station corrections make 

some geological sense (e.g., stations with negative travel 
time residuals should lie in local high-velocity areas with 

respect to the reference station, etc.) and do not violate a priori 

information. If all these requirements are satisfied, the result 

may be called the "updated a priori 1-D model with 

corresponding station residuals". 

Step 3. Relocation and Final Selection of Events 

Relocate all events using the updated a priori 1-D model 

with station residuals with a routine location procedure 

(HYPO71 [Lee and Lahr, 1975], HYPOINVERSE [Klein, 1978], 

HYPOELLIPSE [Lahr, 1980]) or with VELEST in the single- 

event mode (fixing the station and velocity parameters). 
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Reselect the best (consider gap, number of observations, 

distance to next station) 500 or so events that should be well 

distributed over the volume under investigation. If more than 

one such subset of about 500 events can be extracted, proceed 

for each subset separately with step 4 but try to obtain similar 
results. 

Step 4. Calculation of Minimum 1-D Model for 
One Subset 

In general terms, repeat step 2 with the updated a priori 1-D 

model and station residuals and with a damping of 0.01 for the 

hypocentral, 0.1 for the station, and 1.0 for the velocity 

parameters. The goal of this step is to calculate the 1-D model 

(velocity parameters and station residuals) that minimizes the 

total estimated location errors for a fixed geometry. Test the 

stability of the result by systematically and randomly shifting 

hypocenters and by underdamping the velocity parameters. If 

you are pleased with the performance of the solution, fix the 

updated velocity parameters by overdamping and calculate the 

station residuals. The resulting velocity model with 

corresponding station residuals is called "minimum 1-D 
model". 

Step 5. Calculation of Minimum 1-D Model for 
Several Subsets 

If several subsets of 500 events were extracted, test the 

dependence of your minimum 1-D model on specific data. Find 
the 1-D model and station residuals that will best fit the results 

from all subsets, mix data from different subsets, and repeat 

step 4. If the results are unsatisfactory, evaluate the best 1-D 

model by the procedure described in step 6. 

Step 6. Evaluation of Different Minimum 1-D 
Models for Same Area 

If several significantly different a priori 1-D models were 

established and steps 2 through 5 were successfully completed 

for each of them, you may base your choice of one minimum 1- 

D model on the result of the following performance test: Select 

all travel time data from quarry blasts or shots (i.e., from 

sources of known location) and relocate these events for the 

different minimum 1-D models without fixing the depth during 
the location process. If the near-surface velocities for several 

station locations are known, compare the station residuals 

with the differences between the average layer velocity and the 

local velocities. Finally, select the minimum 1-D model that 

best resembles the a priori information. 
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