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Summary:  Maps of thermal inertia-albedo units and thermal inertia-elevation units on 
Mars’ surface have been generated by choosing thresholds that fit the strongest peaks in 

the histograms of these datasets.  The units thus defined were then interpreted as 
distinct mixtures of materials on the surface, such as: bright fines, rock + bedrock and 

ice.  We have conducted an initial classification of Thermal Emission Spectrometer (TES) 
night-time thermal inertia and TES albedo using a hard classifier.  The methods used 

here are largely unsupervised and differ from those of previous studies.  The aim of our 
study is to investigate what information can be obtained by utilising unsupervised 
classification algorithms to investigate the distribution of thermal materials on the 

surface of Mars.  We find that unsupervised classification reveals additional structure in 

the clustering and spatial distribution of surface materials with moderate-low albedo 

and moderate-high thermal inertia.  We highlight a number of regions such as Acidalia 
and Valles Marineris for future detailed studies of this type.    

 
Keywords: Thermal inertia, albedo, TES, unsupervised algorithm, clusters, ISODATA, 

maximum likelihood. 
 
 

Introduction 
 
Mapping of remotely measured physical parameters on planetary surfaces provides 

insights into the nature of the surface materials and near-surface geology.  Thermal 
inertia and albedo are particularly useful, because these physical parameters can be 

acquired easily by remote observation from repeated fly overs and for long periods of 
time.  Putzig et al. (2005) extended the work done by Mellon et al. (2000) to derive seven 

two-dimensional groupings of pixels, which they termed ‘thermo-physical units,’ from 
global thermal inertia and albedo datasets generated from Mars Global Surveyor (MGS) 
Thermal Emission Spectrometer (TES) data (Christensen et al., 2001a).  These authors 

mapped the spatial distribution of the thermo-physical units, which they interpreted as 

mixtures in various proportions of three principal end-members: dust, bedrock and ice.  

Putzig et al.’s (2005) map was biased towards the most distinctive thermal inertia and 
albedo information as their method involved choosing thresholds to encompass 

distinctive peaks in the histograms of the data.  The aim of our study is to identify 

whether different or additional surface features of Mars could be identified through a 
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less deterministic method by applying an unsupervised classification algorithm to the 
data. 

 
Thermal inertia is an indicator of the ability of a material to conduct and store heat and 
hence it parameterises the diurnal temperature profile of surface materials (Mellon & 

Jakosky, 1993).  Ideally, thermal inertia is derived from observations of thermal 

emission at multiple times of day.  However, this is often not possible for spacecraft data 
and leads to reduced spatial resolution.  Thermal inertia can also be derived from single-

time observations of surface thermal emission by comparing the observations with a 
subsurface heat conduction model that has a surface boundary condition given by: 
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 where S = solar flux, R = orbital radius of Mars, A = albedo of surface, i = the solar 
incidence angle, FIR = thermal radiation from the atmosphere received at the surface, L = 

latent heat of sublimation of CO2 (572893.8 J/kg); m = mass of CO2 frost, I = thermal 

inertia, P = diurnal period, T = temperature, Z’ = depth below the surface normalized to 
the thermal skin depth, ε = emissivity of the soil surface, � = the Stefan Boltzmann 

constant (5.670400×10−8 Wm-2K-4), TS = surface temperature.  The thermal skin depth is 
the depth at which temperature fluctuations within a material drop to 1/e of their 

surface value.  The left-hand side of the equation is the summation of the input heat 
received at the surface and how this heat is distributed by the surface material.  The 

right-hand side is the heat emitted by the surface.  If all parameters in the heat 
conduction model are well constrained then thermal inertia can be estimated with good 

accuracy from the heat conduction model (Mellon et al., 2000; Mellon et al., 2004).  

Previous studies comparing thermal inertia obtained with this method to that from 

multiple time of day observations have found good agreement (Christensen and Malin, 
1988). 

For a pure material, thermal inertia is given by: 

 

(2) � = 	���� 

 

with thermal inertia units (tiu) of K/m2/K/s1/2 where k = thermal conductivity, ρ = 

density, C = volumetric heat capacity.  Thermal inertia is most sensitive to variations in 

thermal conductivity, which on Mars is strongly related to both grain size and the degree 
of cementation of materials (Mellon at al., 2000).  Density and heat capacity of materials 
on Mars vary by a factor of 2-3, however thermal conductivity varies by over 3 orders of 

magnitude (Neugebauer et al., 1971; Table 1).  Fine-grained, loosely packed materials 
have lower conductivity and hence lower thermal inertia while larger particles, such as 

rocks and ices, have higher values of conductivity and thermal inertia.  Materials with 
low thermal inertia respond quickly to temperature changes and will closely match the 

phase of diurnal temperature variations (Jakosky & Mellon, 2005a-b).  High thermal 
inertia materials are slower to respond to temperature changes so their temperature 
profile lags behind the diurnal variations.  Furthermore, the higher the thermal inertia of 

the material, the smaller the amplitude of its diurnal temperature variations, as the 

material is effectively dispersing the incident heat throughout its thermal bulk. At the 

spatial scale of spacecraft observations, the surface of Mars is typically a mixture of a 
range of materials.  This complicates interpretation of apparent thermal inertia because 
the diurnal and seasonal apparent thermal inertia are very sensitive to the proportions 

of low and high thermal inertial materials within each pixel (Putzig & Mellon, 2007a,b).  

Furthermore, the apparent thermal inertia for a mixture differs fundamentally from that 
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of either pure component due to each component having a different temperature at any 
given time. 

 
Albedo is the fraction of incident visible/near-IR solar radiation (0.3 – 2.9 µm) that is 
reflected by the surface (Christensen et al., 2001a).  Bright materials have higher values 

of albedo and darker materials lower.  For example, dark terrestrial soils have albedo ~ 

0.05 compared to ~ 0.75 for fresh snow (Ahrens, 2006).  As can be observed from Eqn. 1 
materials with higher albedo values have a lower maximum temperature than dark 

materials (Mellon et al., 2000).  The average albedo for Mars is ~ 0.20, ranging from 0.07 
to 0.57, where an albedo value of 0.57 is similar to terrestrial bright sand, ice or old 

snow (Ahrens, 2006).  Albedo varies strongly with the atmospheric redistribution of 
dust and seasonal condensation of CO2 and H2O (eg. Byrne et al. 2008).  For example, the 

global dust storm in 2001 (Smith et al. 2002) brightened surface albedo values by as 
much as 0.1 (Putzig & Mellon, 2007) and likely induced large perturbations in day- and 
night-time surface temperatures (Wilson et al. 2007).  Bright regions on Mars indicate 

fine-grained surface dust (Rogers & Bandfield, 2007; Bandfield & Smith, 2003).  Dark 
regions correspond to mixtures of rocks, or duricrust with smaller proportions of dust 

and ices.  Low albedo regions have been found to have strongly homogeneous mineral 
compositions (Rogers & Bandfield, 2007), consisting of a mixture of minimally 

weathered basalt (surface type 1; Bandfield & Hamilton, 2000), altered basalt (surface 
type 2; Karunatillake & Squyres, 2006) and hematite (Christensen et al., 2001b). 
 
Albedo and thermal inertia are only partially independent as both are related to thermal 

conductivity.  As shown in Eqn. 2, thermal inertia is related to thermal conductivity by a 

power law.  Thermal conductivity is also related to particle size with larger particles 
typically sharing a larger surface area with their neighbours and hence having a higher 

bulk thermal conductivity (for grains < 1mm under conditions on Mars; Jakosky, 1986).  

Albedo is correlated with particle size, with surfaces composed of larger particles 

typically being darker (Shkuratov et al. 1999) due to specular reflection.  Hence albedo 
and thermal conductivity of surface materials are generally negatively correlated.  
Furthermore the albedo and thermal conductivity of a given soil varies inversely with 

the soil moisture, with increased water within a soil lowering the albedo but raising the 

conductivity (Wang et al., 2005).  Hence on Mars, high thermal inertia materials (eg. 

rocks) predominantly span a lower range of albedo values than small grained, low 
thermal inertia materials (eg. dust, sand).  A scatterplot of global thermal inertia and 

albedo values on Mars (see Fig. 4 of Putzig et al., 2005) reveals the complex relationship 

between these variables, showing a weak negative correlation between albedo and 

thermal inertia for values of the latter < ~ 250 tiu (grain size ~ 170 µm) and a weakly  
positive correlation for thermal inertia values > ~ 250 tiu. 
 

Thermal inertia and albedo provide two partially independent constraints on the nature 
of surface materials, and their combined use for mapping surface features on Mars was 

first demonstrated by Palluconi & Kieffer (1981).  Putzig et al. (2005) chose thresholds 
for their thermo-physical classes that isolated the strongest modes in the histograms of 

the two datasets (Fig. 1)  The histogram of Mars’ global albedo contains three strong 
peaks – at 0.15, 0.23 and 0.27 (binwidth of 0.01).  Thermal inertia shows two strong 
peaks – at 55 tiu and at 225 tiu (binwidth of 5).  The former is caused by dust on Mars; 

the latter includes contributions from a range of materials.  The methodology used in 

Putzig et al. (2005) in defining the unit boundaries based on the histogram peaks 

enables a clear detection of regions that are predominantly fine-grained surface dust 
because they have a very high albedo and a very low thermal inertia.  However the 
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mixtures of materials that contribute to the two peaks at lower albedo are degenerate in 
thermal inertia, ie., although the materials can be distinguished through their albedo 

they each cover a similar range in thermal inertia (eg. Units B, C, E and G in Putzig et al. 
2005, Table 1).  Hence it is not clear if the somewhat arbitrary thresholds chosen in the 
study reflect the true underlying data structure in albedo-thermal inertia space.  It is for 

this reason that we have employed an unsupervised algorithm that iteratively groups 

pixels based on minimising their Euclidean separation in albedo-thermal inertia space. 
 

 
 

Figure 1: Histograms of the global albedo (left) and night-time thermal inertia (right) 
data sets.  Horizontal axis has been cropped to focus on peaks.  Both datasets are multi-

modal and contain 2.592 x 107 pixels. 
 

Unsupervised classification techniques have recently been applied to Martian Digital 

Terrain Models to identify topographic features such as craters and valley ridges (eg. 

Stepinski et al., 2005, 2009a,b) however they have not been utilized to identify the 
distribution of thermally distinct surface materials.  Mapping the thermal behavior of 

surface material on Mars has many interesting applications, one of which is constraining 

subsurface temperature profiles which can then be utilized to estimate the range of 

depths at which liquid water or brine could exist (eg. Jones & Lineweaver, 2010). 
 

 

Methods 
 

The technical specifications of the Mars Global Surveyor Thermal Emission 
Spectrometer used to collect the albedo dataset and the data from which thermal inertia 
is derived are described in detail in Christensen et al. (2001a).  The two global datasets 

used in this study – Mars Year 24 (MY24) albedo and night-time thermal inertia - were 

obtained from http://lasp.colorado.edu/inertia/2007/albedo.html (2007 Global MGS-

TES Albedo Maps) and http://lasp.colorado.edu/inertia/2007/ (2007 Global MGS-TES 
Thermal Inertia Maps).  The MY24 data were selected because MY24 had minimal 

localised dust storm events (Cantor et al., 2002) and generally a lower dust optical depth 

(the atmosphere was more transparent) than MY25 and 26 (Tamppari et al., 2008; Smith 

2004), which are also available.  This means that the derived albedo values for MY24 will 
be more representative of the mean surface materials and less affected by scattering due 
to atmospheric dust.  The datasets have dimensions of 7200 x 3600 pixels which 

correspond to a resolution of 0.05˚ per pixel or ~3 km2.  The data sets have been 

bilinearly interpolated between the MGS orbital tracks with real data constituting ~93% 

of the thermal inertia map and ~35 % of the albedo map (Putzig pers. comm.).  The 
uncertainty in albedo values is approximately ± 0.01 (Christensen et al., 2001a) and the 
uncertainty associated with each derived night-time thermal inertia value is estimated 
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to be < 10% (Putzig & Mellon, 2005), lower than for daytime measurements (error < 
17%).  The TES sensing depth is on the order of several centimeters (Mellon et al., 2000), 

so TES provides information only on surficial levels of the crust.  Data was analysed 
using: off-the-shelf commercial software, ArcMap 9.2, for description, mapping and 
visualization of the distribution of the classes; and IDL for data manipulation prior to 

importing into ArcMap and analysis.  Classification algorithms were used to find 7 

distinct clusters in the data, so that a direct comparison with the 7 clusters defined by 
Putzig et al. (2005) could be undertaken. 

 

Walker et al. (1986) gave one of the earliest presentations of the technique of 

unsupervised classification by using a scatter plot of pixel values in two spectral bands 
to separate land cover features.  Unsupervised classification is now broadly used in the 
interpretation of terrestrial remote sensing data (Hall et al., 1995).  The technique 

involves using a clustering algorithm to group pixels in parameter space that have 
similar values within each measurement parameter (parameters are typically red and 

near-infrared reflectances in a terrestrial LANDSAT image but are albedo and thermal 

inertia in this study) without a priori knowledge of the surface materials present.  This is 
often necessary with remotely sensed data of a large or complex area as the actual or 
optimum number of natural clusters in the data is not known and the amount of data is 

so vast that it must be reduced before field data can be collected to define the link 
between remotely sensed pixel values and surface land cover.  By grouping observations 

and minimizing the differences between members in a group, the spatial locations that 
are most similar can be identified (Duda & Hart, 1973; Murray & Estivill-Castro, 2001).  

Once a cluster dataset has been produced, each cluster can then be interpreted as a 
mixture of materials on the surface with the values for each cluster used to determine 
some of the attributes of those surface materials (Jupp et al., 1986). 

 

There are two fundamental caveats to the technique of unsupervised classification.  

Firstly, the number of clusters to be found by the classification algorithm must be chosen 
by the user (e.g. Milligan & Cooper, 1985) and hence may not reflect the full complexity 

of natural patterns within the data.  Secondly, there may be several acceptable 
clusterings of the dataset, depending upon the purposes of the application.  Despite this, 

cluster outputs produced by unsupervised classification using the maximum likelihood 
decision rule applied in this study have been applied successfully in terrestrial remote 
sensing (e.g. Belward et al., 1990).  Studies using LANDSAT-TM, MSS and ETM imagery 

which use field data to assess the accuracy of the unsupervised classification, report 

accuracies (i.e. the percentage of pixels within a cluster that have been identified as 

belonging to that cluster) of 60 – 90% (Miller & Yool, 2002; Sader et al., 1995; Murthy et 
al., 2003).  Whilst comparable field data is not readily available for analysis of remotely 

sensed Mars data, the generic unsupervised classification approach and associated 

techniques used in terrestrial applications are transferrable. 

 
The albedo and thermal inertia datasets were both normalized before classification by 
scaling the max and min to the range [0,1].  The algorithms used to generate the 7 two-

dimensional clusters were ISODATA (Iterative Self-Organizing Data Analysis Technique) 
and Maximum Likelihood Classification (MAXLIKE) run through ArcGIS 9.2, using the 

calling commands ISOCLUSTER and MLCLASSIFY, respectively.  ISODATA is an 
unsupervised training algorithm which uncovers the statistical patterns inherent in the 

data.  It is useful when little is known about the data prior to classification.  ISODATA 
works by examining a subset of the data (every 5th pixel in this study) to provide 

candidate clusters which are then fed into the clustering algorithm.  These candidate 
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clusters are analogous to the training data that would be used in a supervised 
classification (for example, if the signatures of a certain type of feature in the dataset 

were known before classification).  The user inputs the maximum number of clusters to 
generate (7 in this study) and then the algorithm iteratively passes through the dataset 
defining clusters until either the maximum number of iterations is reached (specified by 

user; Ball & Hall, 1965; Richards, 1986) or there is little change in clusters between 

iterations (Swain 1973).  Pixels are determined to be similar if they have similar values 
in each of the n-input parameters (Tou & Gonzalez, 1974).  Calculating the parameter 

distance using the Euclidean distance equation (Richards, 1986; p.1901), the ISODATA 
algorithm assigns pixels to a cluster if the parameter distance between the pixel and the 

cluster centre is less than the distance to all other cluster centers.  To do this, an initial 
vector with a mean value for N clusters (where N is the maximum number of final 

clusters specified by the user) is defined so that the N initial arbitrary cluster centers are 
uniformly spaced along the multidimensional diagonal ensuring that the initial 
assignment of cluster centers is not biased to the extrema of the input data.  The location 

of the initial cluster means is not important so long as enough iterations are allowed 
(500 in this study) for the clusters to become stable.  On the first pass through the data, 
each pixel is compared with the vector and assigned to the cluster whose centre is 

closest in parameter distance.  After the first pass through the data the cluster centers 

are redefined and new centers are calculated by taking the sample mean of pixels 

assigned to each cluster in the previous step.  The process then continues iteratively.  
The final number of clusters can be less than N when: (a) a minimum cluster size S is 

specified (in this study S = 30, corresponding to 0.0001 % of the dataset) so that any 

clusters consisting of fewer cells will be eliminated at the end of an iteration; or, (b) 

clusters close in parameter space and with similar statistical values become merged 
during the iterative process    The assignment of clusters is independent of the contiguity 

of the pixels in the spatial frame.  

 

The candidate clusters provided by ISODATA are described in a signature file that 
provides the mean and covariance matrix for each parameter in each cluster and is used 

to train the classification algorithm MAXLIKE.  MAXLIKE assumes that the distribution of 
each cluster will be multivariate normal (depending on the number of parameters in the 

classification, hence bivariate normal2 in this study) so that each cluster can be 
characterized by the statistical parameters provided in the signature file for the 
corresponding training cluster.  Each pixel in the dataset is then assigned to a single 

cluster according to the Boolean decision rule based on probabilities from the normal 

distributions.  A pixel X belongs to the cluster Si if the probability of X belonging to Si is 

greater than the probability of X belonging to Sj, for all j≠ i’. Hence each pixel is assigned 
to the cluster to which it has the highest probability of being a member, irrespective 
ofthe actual probability of membership.  It is assumed that all clusters have an equal 

probability of occurring.  The MAXLIKE algorithm works best with a normal distribution 
of data (Kloer, 1994).  If the histograms of the input parameters are strongly non-normal 

(as in this study; Fig. 1) the algorithm can overestimate χ2 (chi-squared) classification 
errors (Benson & Fleishman, 1994).  This problem is minimized with an increasing 

                                                           
1
 The parameter distance is calculated by the Euclidean distance equation:  ! = "∑ �$%2 − &%2�'%


%�1 (1/2
 where 

dim = the number of data dimensions (in this study, dim = 2), x = data vector, s = cluster centre vector. 

2 The bivariate normal distribution has probability density function: ��$, *� = 	 1
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 and µ  = mean, � = stanard deviation, v = covariance 

(Wackerly et al., 2002; p. 268). 
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number of data points in the total sample and has been found to be negligible if the 
number of data points is > 400 (Harlow et al., 1985). 

 
The validity of the clusters defined by MAXLIKE can be quantified through the χ2 
distribution with degrees of freedom equal to the number of input parameters (Swain & 

Davis, 1978; Richards, 1986).  This provides a measure of the classification confidence 

by giving the percentage chance for each pixel that it has been assigned to the correct 

cluster, based on the separation distance between the pixel value and the cluster mean 
in the multiparameter space.  Essentially, if the number of pixels in a given cluster is 
plotted against their parameter distance from the cluster mean this will ideally follow a 

χ2 distribution (Richards, 1986 p. 174).  Thus, if a threshold confidence value of 97.5% is 
imposed, the least likely 2.5% of pixels in the cluster (those with χ2 values greater than 

7.4 for 2 degrees of freedom) will be rejected (Wackerly et al. 2002 , p. 794).  The χ2 
statistics are generally applied to independent variables.  Although the covariance of the 
(normalized) albedo and thermal inertia datasets used in this study is non-zero (cov = 

0.002), it is small compared to their individual variances (0.015 and 0.011, respectively).   
The MAXLIKE algorithm run through ArcMap outputs a confidence raster based on the 

χ2 distribution (see Results), which provides the level of confidence with which each cell 
was classified.  For example, cells with a value of 5 have a 95% chance of having been 

correctly classified.  Furthermore, the presence of clear unfragmented spatial patterns in 
the classification map provides anecdotal evidence that the classifier is producing a 

reasonably accurate model (Gahegan & West, 1998). 
 

Interpreting thermal inertia & albedo 

 
The atmosphere of Mars is never dust free and the surface, globally, is dominated by 
particulate matter (Bandfield et al., 2000).  Understanding the thermal inertia and 

albedo signatures of these fines is key to interpreting the thermo-physical units.  Albedo 
is strongly correlated with the degree of fine, bright dust coverage (Kieffer, 1973; Ruff & 
Christensen, 2002).  Surfaces on Mars covered by fine, bright dust have an albedo > 0.25 

and a low value of thermal inertia because of the low thermal conductivity of small 
particles.  A combination of infrared spectral analysis and studies of analogue materials 

at Martian surface pressures showed that dust on Mars typically has diameters less than 
~ 40 micrometers (Christensen, 1986) which correspond to a thermal inertia <  65 tiu 

(Jakosky 1986).  Larger, coarse, unbonded particulates from 100 - 104 micrometres 

dominate the low albedo regions of Mars (Christensen & Moore, 1992).  For grains up to 

~ 1000 micrometres across (thermal inertia ~ 200) laboratory studies show that 

thermal conductivity increases linearly with particle size (Jakosky, 1986) and, hence, the 
thermal inertia generally increases with the square root of grain size.  Larger 
particulates have a thermal inertia ~ 400 tiu (Jakosky, 1986).  Thus, the combination of 

thermal inertia and albedo can be used to identify surfaces that are completely covered 
by fine-grained dust.  Identifying larger darker fines (mm – cm) is more difficult, 

however, as both (i) their albedo is consistent with rocks and duricrust and (ii) their 
thermal inertia is consistent with a sub-pixel-scale mixture fine dust with high thermal 

inertia materials (such as rocks).  Hence, intermediate values of thermal inertia do not 
have a unique interpretation given they can result from a range of mixtures of materials.  
Materials such as rock and ice are more easily identified through thermal inertia, as 

values above 2500 tiu can only be regions that are pure or almost pure rock or ice.  

Representative values drawn from laboratory, in-situ, observational, and modelling 

analyses for the thermal inertia of some materials on Mars are shown in Table 1. 
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Table 1:  Representative properties of some materials on Mars (taken from Jones & Lineweaver, 2011 in 
prep.) 

 

Each TES pixel is of order 3 km2, which makes it unlikely any pixel contains only one 
type of surface material, so each of our thermo-physical units is interpreted as a 
‘mixture’ of materials on the surface of Mars.  Our interpretation of the material 

components of each cluster is based on matching the albedo and thermal inertia peaks in 

Fig. 2 to the estimated parameters of materials on Mars shown in Table 1.  The main 

components of the mixtures of materials in each of the 7 clusters are given in Table 2. 
 

As expected, the main source of uncertainty in interpreting the results of the calculations 

is the degeneracy of the thermal inertia-albedo data (see Introduction).  For example, the 

peak in thermal inertia at ~ 250 tiu (Clusters 1-4 in Fig. 2) is consistent with either pure 
coarse- grained unconsolidated particles, such as sand, or a mixture of duricrust (~600 
tiu), dust (~50 tiu) and sand (~ 300 tiu).  An albedo below ~ 0.2 implies the absence of 

significant amounts of fine, bright dust and hence the thermal inertia is interpreted as a 

weighted average of the amount of duricrust and sand where the weights vary. 

 

 

Results 
 

The seven thermo-physical units defined in this study are mapped in Fig. 3 and details 

are given in Table 2.  A pattern of global ‘enveloping’ can be seen in the spatial 
occurrence of the 7 clusters, mirrored on either side of the Equator (Fig. 3).  This 
corresponds to a decrease in albedo with increasing distance from the Equator through 

the sequence of clusters 5 ⟶ 4 ⟶ 3 ⟶ 2 ⟶ 1.  The mean thermal inertia also increases 

through this sequence - with the exception of Cluster 3 – and the values indicate that the 
fraction of bright dust and fine grained sand is decreasing with progression through the 
cluster sequence.  However, Cluster 3 is an exception to this as it has a thermal inertia 
peak corresponding to fine, unconsolidated material, associated with a decreased albedo 

relative to Cluster 4.  This may be a detection of dark fines.   Cluster 3 is also present 
near the South Pole where it corresponds to Putzig et al.’s Class D (light blue) which was 
interpreted by these authors as ‘dark dust’. If this interpretation is correct, it covers an 
extensive area of the surface of Mars, predominantly in the southern polar terrain but 

also infilling Hellas Basin, Promethei Terra and the albedo feature west of Elysium. 

Material Grain size (mm) Thermal 

conductivity 

(Wm-1K-1) 

Density 

(kgm-3) 
Heat 

capacity 

(Jkg-1K-1) 

Thermal 

diffusivity 

(m2s-1) 

Calculated 

TI (Eqn. 2) 

References 

Dust << 1 x 10-3 -0.1 0.001 1000 800 1.3 x 10-9 28 Mellon & Phillips 2001 
Jakosky 1986 
Karunatillake et al. 2010 

Sand 0.1 - 10 0.1 1750 800 7.1 x 10-8 374 Mellon & Phillips 2001 
Heldman et al. 2005 
Murphy et al. 2009 
Jakosky 1986 

Duricrust Highly variable; sand 
size particles 

cemented to form 
larger grains 

0.3 (up to 2) 1750 800 2 x 10-7 648 Murphy et al. 2009 
Piqueux & Christensen 

2009 
Fergason et al. 2006 

Icy soil N/A 2.5 2018 1040 1.2 x 10-6 2294 Mellon et al. 2004 
Sizemore & Mellon 2006 

Rock > 40 2.5 (range 
generally 1.5-4.5) 

2900 800 1 x 10-6 2408 Clauser & Huenges, 
1995 
Turcotte et al. 2002 

Sizemore & Mellon 2006 
Golombek et al. 2005 
Mellon & Phillips 2001 

H2O ice N/A 3.4 (at -110 ˚C ; 2 
at 0˚C) 

928 1310 1.3 x 10-6 2044 Clauser & Huenges 1995 
Titus et al. 2003 
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The map in Fig. 2 has associated error maps provided in Fig. 3.  These maps indicate 

which regions were most likely to have been classified accurately by the unsupervised 
algorithm.  58% of pixels in Fig. 2 are most likely classified correctly, as they fall within 
the 50% confidence interval (Fig. 3).  The 50% confidence interval contains pixels from 
each of the seven thermo-physical units indicating that that the general surface locations 

in which these clusters occur is fairly well constrained.  The core spatial patterns of each 
cluster are maintained in both the 50% and 75% confidence interval maps.  The most 
accurate pixels, classified with > 95% confidence, comprise 15% of the map.  These 
pixels are located primarily equatorwards of ± 70˚ and very few of them belong to 

cluster 6. 
 

Table 2:  Some details of the 7 thermo-physical units from this study in the form: mean, standard deviation. 
Cluster Thermal 

inertia (tiu) 

Albedo (%) Interpretation 

1 260, 70 13, 1 Duricrust, rocks, sand 

2 230, 70 16, 1 Duricrust, sand 

3 180, 80 20, 1 Duricrust, sand, dark fines 

4 200, 80 24, 1 Duricrust, sand, dust 

5 80, 50 28, 2 Dust 

6 410, 340 35, 6 Ice 

7 3670, 920 30, 7 Ice, rocks 

 

Both the thermo-physical map of Putzig et al. (2005) and the map produced in this study 

closely match previous determinations of the global spatial pattern of Mars’ fine, bright 
dust cover (Ruff & Christensen, 2002, Bandfield et al., 2000).  There are broad 
similarities between our map and that of Putzig et al. (2005), particularly in the 

equatorial regions of Mars where small unconsolidated particles dominate.  The spatial 
boundary of Cluster 5 in this study closely matches Putzig et al. (2005) Class A (blue) 

and is dominated by dust (Ruff & Christensen, 2002).  The distribution of Cluster 4 is 
very similar to Putzig et al. (2005) Class C (green), although Cluster 4 appears to be 

always associated with Cluster 3, which was not differentiated in the Putzig et al. (2005) 
study (it was part of Class B, yellow).  Other differences between the results of this work 

and Putzig et al. (2005) are that our Classes 1 and 2 are not differentiated in Putzig et al. 
(2005), as their classification incorporated them into their broad mid-latitude Class B.  

Our Cluster 6 occurs at the poles and incorporates high-latitude data published in Putzig 
and Mellon (2007; hence not included in the Putzig et al. (2005) map).  Possible 
anomalously high thermal inertia values occurring at the North Pole are contained in 

Putzig et al. (2005) Class E and our Cluster 7. 
 

In synthesis, both maps classify bright regions (eg. Tharsis, Arabia and Elysium) as being 
dominated by the same thermo-physical unit, which is interpreted as fine, bright dust 
deposits at least several centimetres thick..  The main differences occur in low albedo 

regions (eg. Acidalia and Sinus Meridiani), which will be investigated in follow-up 

studies. 
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Figure 2: Histograms of albedo and thermal inertia for the 7 thermo-physical units. 
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Figure 3: Unsupervised classification of TES albedo and night-time thermal inertia into 

seven thermo-physical units.  Details of the units are given in Table 2 and histograms in 
Figure 2. 

 
 

Conclusions 
 
We have used albedo and night-time thermal inertia data of the surface of Mars and an 

unsupervised classification method to identify seven mappable thermo-physical units.  

Our results refine previous studies (Putzig et al., 2005; Putzig and Mellon 2007a,b) of the 

distribution of rock, dust and ice on the surface.  We interpreted the thermo-physical 
units by comparing the peaks in the albedo and thermal inertia histogram of each unit to 

representative values of materials on Mars.  Our results agree with previous studies in 

the equatorial region where bright fines dominate.  However, we find evidence of 
additional structure in the distribution of surface materials at higher latitudes, 

particularly in areas of low albedo and moderate-high thermal inertia.  Further studies 
will need to be undertaken to resolve the reasons for the differences and determine the 

nature of the surface material at high latitudes.  This work significantly demonstrates 
that unsupervised classification can detect potentially important structure in surface 

materials on Mars at a higher spatial resolution than that provided in previous studies. 
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Figure 4: Classification error map at 50%, 75% and 95% confidence intervals.  Pixels are 

either coloured to match their cluster assignment in Figure 3, or coloured white.  White 

pixels have either a: > 50% chance of being classified into the wrong cluster (top); > 25% 

chance of being misclassified (middle); or > 5% chance of being misclassified (bottom; 
see details on χ2 distribution in text). 
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