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Initial Rotor Position Estimation of an Interior
Permanent-Magnet Synchronous Machine
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Abstract—This paper presents a method using carrier-frequency
injection to estimate the initial rotor position and magnetic po-
larity for an interior permanent-magnet synchronous machine. A
nonsaturating inductance model of the machine provides no infor-
mation about the polarity of the rotor magnet because the posi-
tion observer based on this model is locally stable at both poles. To
distinguish the polarity of the rotor magnet, the magnetic satura-
tion effect can be used. The Taylor series can be used to describe
the nonlinear magnetic saturation relationship between the cur-
rent and the flux linkage in the -axis rotor reference frame. The
second-order term produces the second harmonic component of
the carrier frequency, and the sign of its coefficient identifies the
polarity of the rotor magnet being tracked. Both simulation and
experimental results show good response of the position observer
at several rotor electrical positions using either a rotating vector
in the stationary reference frame or a oscillating vector in the esti-
mated rotor reference frame.

Index Terms—Carrier-frequency injection, initial rotor position,
magnetic polarity, second harmonic component.

I. INTRODUCTION

I
NTERIOR permanent-magnet (IPM) synchronous machines

are attractive candidates for high-performance applications

because of their high efficiency and suitability for wide speed

ranges of constant power operation [1]. In recent years,

several papers have been published describing methods for

the elimination of position sensors in both induction and

permanent-magnetsynchronousmachinesusingsignal injection,

saliency-tracking techniques. The methods suitable for zero

and very low speed operation are primarily based on injecting
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a carrier-frequency signal with small amplitude using either a

rotating vector in the stationary reference frame [2], [3] or an

oscillating vector in the estimated rotor reference frame [4],

[5] to track a spatial saliency. The IPM synchronous machine

is well suited for these techniques because the inductance

difference between the - and -axes in the rotor reference

frame provides a large spatial saliency that is inherent to

this type of machine.

Unfortunately, the carrier signal derived from the stator

inductance model with linear relationship between the flux

linkage and the corresponding axis current in the rotor reference

frame provides ambiguous information about the polarity of

the rotor magnet because the inductances in this model vary

periodically as a second spatial harmonic. The saturation

effect of the rotor magnet flux path has been used to estimate

the initial rotor position and polarity. Square waves [6] and

short pulses [7] have been applied to identify the difference

in inductance between the north and the south poles due

to the effect of saturation. A rotating current vector in the

stationary reference frame [8] and an oscillating current vector

in the estimated rotor reference frame [9] were also used to

distinguish the magnetic polarity. Nonetheless, a sinusoidal

voltage is typically used as the carrier signal in most self-sensing

control implementations, making it very desirable to develop

a polarity identification method that uses a sinusoidal voltage

signal [10].

This paper describes a scheme to distinguish the polarity of

the rotor magnet using either a rotating voltage vector in the

stationary reference frame or an oscillating vector in the esti-

mated frame by modeling the saturation effect of the -axis flux

linkage in the rotor reference frame. The heterodyning process

to extract the position information as well as the polarity and

the Luenberger-style observer to estimate the rotor position are

also discussed.

II. SATURATED FLUX LINKAGE MODEL

The magnetization curve of an IPM synchronous machine is

shown in Fig. 1. The variables are -axis components in the

rotor reference frame and denotes the flux linkage of the

rotor magnet without stator current. A positive -axis current in-

creases the stator iron saturation, resulting in a decreased -axis

inductance, and vise versa. This effect can be used to track the

north pole of the rotor magnet.
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Fig. 1. Flux linkage versus applied current in the rotor reference frame.

For the case of current injection, the -axis flux linkage can

be approximated with respect to the injected -axis current by

the Taylor series dropping higher order terms than the second

order

(1)

where and .

When a high-frequency current is injected at standstill, the

stator resistive voltage drop can be neglected. Thus the -axis

voltages at both poles are

(2)

where the subscript and denote the north pole and the

south pole, respectively. The sum of any variable at both axes

should be zero.

For the case of voltage injection, it is better to describe the

-axis current as a function of the -axis flux linkage by the

Taylor series

(3)

where .

When a high-frequency voltage is injected at standstill, the

-axis currents at both poles are

(4)

In both cases, the coefficient signs of the second terms in

(2) and (4) can be used to distinguish the polarity of the rotor

magnet at the estimated position. It should be noted that the sat-

uration effect in -axis is not available for the polarity detection

if the center of the operating point at the axis is zero because

the -axis flux linkage is an odd function of the -axis current

and thus has no even-order terms when expressed by the Taylor

series with center of the origin.

III. IPM MACHINE MODEL FOR CARRIER INJECTION

The stator voltage model for an IPM synchronous machine in

the stationary reference frame can be written in complex space

vector form as follows:

(5)

Since the resistive voltage drop is small relative to the induced

voltage at the injected carrier frequency, the carrier components

of the - and -axes currents in the rotor reference frame can be

approximated by

(6)

where the asterisk in the superscript denotes complex conjugate.

This yields the carrier current vector in the stationary reference

frame in terms of the carrier voltage vector as follows:

(7)

IV. SIGNAL INJECTION AND PROCESSING

A. Rotating Voltage Vector in the Stationary Reference Frame

The rotating vector injection method in the stationary ref-

erence frame superimposes a continuously rotating, balanced

three-phase carrier-frequency voltage vector onto the funda-

mental component voltage vector as shown in Fig. 2(a). The

interaction between the carrier-frequency voltage vector and the

magnetic saliency in the IPM synchronous machine produces a
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Fig. 2. Carrier voltage vectors. (a) Rotating vector in the stationary reference frame. (b) Oscillating vector in the estimated rotor reference frame.

Fig. 3. Heterodyning process to extract the information about the polarity error and the position error. (a) Rotating vector in the stationary reference frame. (b)
Oscillating vector in the estimated rotor reference frame.

carrier-frequency current signal that contains information about

the position of the saliency as follows:

(8)

The carrier-frequency current can be seen to consist of

both positive and negative components relative to the car-

rier-frequency voltage excitation signal. The positive-sequence

component contains no spatial information, but the negative-se-

quence component contains the desired information about the

inductance saliency in its phase. It is noted that the amplitude

of the third term containing the magnet polarity information is

very small compared to the negative-sequence term that con-

tains the spatial information associated with the IPM machine

saliency.

The heterodyning and synchronous frame filtering process

depicted in Fig. 3(a) extracts the negative-sequence term to ob-

tain the position error and the saturation term to distinguish the

magnetic polarity. The output currents of the signal process con-

tain the polarity information and the position information, re-

spectively, as follows:

(9)

Fig. 4. Trajectory of the current error vector in the rotor reference frame.

TABLE I
MOTOR PARAMETERS

A high-pass filter in the carrier reference frame [3] is used to

remove the positive-sequence term and to extract the desired po-

sition information that yields negligible distortion with the least

spectral separation in the input signals. In general, the high-pass

break frequency is chosen to be sufficiently low so that negli-

gible distortion occurs in the desired content. The position error

can be obtained by using a demodulator [2]. With regards to the

saturation term, a demodulator in the estimated rotor reference

frame is used and the sign of its output depends on the tracked

polarity.
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Fig. 5. Rotating vector injection at multiples of 0:25� rad (simulation). (a) 0 rad. (b) 0:25� rad. (c) 0:5� rad. (d) �� rad. (e) �0:75� rad. (f)�0:5� rad.

B. Oscillating Voltage Vector in the Estimated Rotor Reference

Frame

The oscillating vector injection method superimposes a

-axis sinusoidal carrier signal in the estimated rotor reference

frame onto the fundamental component voltage vector as shown

in Fig. 2(b). This signal can be interpreted as the sum of two

vectors rotating simultaneously with the same amplitude but in

the opposite direction. Assuming that the carrier frequency is

sufficiently high compared with the estimated rotor speed, the

voltage and current in the estimated rotor reference frame can

be expressed as follows:

(10)

The carrier-frequency current for this oscillating vector injec-

tion in the estimated rotor reference frame has the desired induc-

tance saliency information in its amplitude, while the same in-

formation is in the phase of the carrier-frequency current for the

rotating vector injection in the stationary reference frame. The

-axis current component is more suitable than the -axis one

to extract the desired information about the inductance saliency.

The second harmonic component of the -axis current provides

the magnet polarity information.

The heterodyning process in Fig. 3(b) extracts the polarity

information and the position information as follows:

(11)

The -axis component at the carrier frequency is used to ob-

tain the position error and the -axis component at the second

harmonic frequency is used to identify the magnet polarity. It

should be noted that the break frequency of the low-pass filter

for the position error term should be chosen to be sufficiently

high, otherwise, the observer performance can be deteriorated.

V. POSITION OBSERVER

The observer design shown in Fig. 4 reflects several impor-

tant considerations for achieving high-performance position
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Fig. 6. Oscillating vector injection at multiples of 0:25� rad (simulation). (a) 0 rad. (b) 0:25� rad. (c) 0:5� rad. (d)�� rad. (e)�0:75� rad. (f)�0:5� rad.

estimation, e.g., the electromagnetic torque command is used

as the natural feedforward input and this observer also inher-

ently produces an estimate of the load torque as the form of

a state filter [11]. The bandwidth of the load torque estimate

depends on the observer gains which are typically selected by

balancing noise attenuation and estimation bandwidth. This

signal enables implementation of disturbance input decoupling

to further improve the disturbance rejection performance of

the system.

To analyze the observer, a properly formed operating point

model is used. If the position error is small enough to yield ac-

ceptable linearity, the estimation accuracy can be expressed as

follows:

(12)

where stands for the inertia of the IPM synchronous machine

and denotes pole pairs and the circumflex denotes the esti-

mated quantity. From (12), it can be seen that the effect of in-

ertia variation is only significant at high frequencies where the

torque feedforward input is dominant.

It is important to note that the observer will have more than

one stable point, because its actual input is periodic function of

the position error. Using the operating point model developed

from the observer in Fig. 4, it is possible to develop the expres-

sion of the corresponding multiple positions where zero tracking

error can occur.

(13)

The angles given by odd values of are angles where the error

signal is zero but the observer will not be locally stable. The

angles given by even values of are angles where the error signal

is zero and the observer is locally stable. In particular, values of

that are multiples of 4 identify the angles where a north pole is

located. When the estimated rotor position is a north pole of the

rotor magnet, the polarity term of the position observer found in

the upper block of Fig. 4 is negative, and the resulting estimated

angle does not change. If the estimated angle corresponds to a

south pole, the polarity term becomes positive, adding rad in

electrical angle to the estimated rotor position.
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Fig. 7. Rotating vector injection at multiples of 0:25� rad (experiment). (a) 0 rad. (b) 0:25� rad. (c) 0:5� rad. (d) �� rad. (e) �0:75� rad. (f)�0:5� rad.

VI. SIMULATION AND EXPERIMENT

The initial rotor position estimation scheme has been in-

vestigated using computer simulation and lab experiments.

Matlab/Simulink was used for the simulation. The IPM syn-

chronous machine used in this simulation and the experiment

is an integrated starter/alternator for automotive applications

[12]. The machine parameters are shown in Table I. The carrier

voltage for both methods has the amplitude of 5 V and the

frequency of 500 Hz. The amplitude of the second harmonic

term is set to 1% of the carrier frequency component in the

simulation.

Position estimation by injecting a rotating vector in the

stationary reference frame and that by injecting an oscillating

vector in the estimated rotor reference frame at the several

positions are depicted Figs. 5 and 6, respectively. The loci of

the current vectors in the stationary reference frame are shown

in – plots which are followed by the current component that

contains the polarity information and the last channel shows

the estimated rotor position. The loci of the current vector in

steady state are either the same ellipse by the rotating voltage

vector in the stationary reference frame or the same line by

the oscillating voltage vector in the estimated rotor reference

frame at both of the initial rotor positions rad apart from each

other but the polarity components have the opposite sign, i.e.,

negative at a north pole and positive at a south pole.

The characteristics of the position observer were also verified

by experiments using a digital-signal-processor (DSP)-based

control system. The switching frequency for the FETs is 10

kHz, and the dc-link voltage is 42 V. The carrier voltage is

the same as that of the simulation. It should be noted that the

delay-time compensation for the accurate heterodyning process

is crucial due to the high carrier frequency [13].

Experimental estimation characteristics at the same initial po-

sition as the simulation by both of the high-frequency injec-

tion methods are depicted in Figs. 7 and 8. The fundamental

component currents are separated from the carrier signals and

controlled in the estimated rotor reference frame, which was

not considered in the simulation. The results in the experiments

match well with those of the simulation.

VII. CONCLUSION

This paper has introduced a technique using a sinusoidal

voltage as is typically used as the carrier signal in self-sensing

control implementation for estimating the rotor position of an

IPM synchronous machine that is appropriate at standstill, in-

cluding magnetic polarity identification. The approach utilizes
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Fig. 8. Oscillating vector injection at multiples of 0:25� rad (experiment). (a) 0 rad. (b) 0:25� rad. (c) 0:5� rad. (d)�� rad. (e) �0:75� rad. (f)�0:5� rad.

magnetic saturation that is modeled using the second harmonic

component of the carrier frequency in order to distinguish the

polarity of the rotor magnet.

The simulation and the experimental results have demon-

strated that this technique is effective using either a rotating

vector in the stationary reference frame or an oscillating vector

in the estimated rotor reference frame.

The magnitude of the carrier voltage for magnetic polarity

detection depends on the saturation level due to the rotor

magnet. Therefore, it should be applied with large enough

magnitude to detect the magnet polarity at standstill, and

once the polarity detected, it can be reduced for the normal

sensorless operation.
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