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Abstract. The storm-time ring current generates a strong and time-dependent

perturbation of the magnetospheric magnetic field ~B, and this magnetic-field

perturbation can have important feedback on the dynamics of ring current

particles themselves. In particular, the modification of ~B can significantly

alter the gradient-curvature drifts of ring current particles, and the induced

electric field associated with ∂ ~B/∂t can inhibit ring current particle injec-

tion and energization. Thus, in order to accurately simulate the storm-time

ring current, a self-consistent magnetic field model that takes these effects

into account is needed. This study is our first attempt to address this issue.

We assume for simplicity a model for ~B such that magnetic field lines lie in

meridional planes and satisfy the generic Dungey field line equation. With

these two assumptions and given the pressure distribution in the equatorial

plane, the force-balanced magnetic field in the equatorial plane is obtained

by solving the force balance equation. This force balance equation solver is

coupled with our ring current model to provide self-consistent magnetic fields.

In this study, we simulate a hypothetical storm with this magnetically self-

consistent ring current model. By comparing our simulation results with sta-

tistical studies, we find that our model reasonably reproduces the disturbed

magnetic field in the equatorial plane in terms of magnitude and location.

The equatorial current density shows an inner eastward ring current at ∼

3 RE , and a outer westward ring current at ∼ 4– 6.6 RE , which agrees well

with observations. The effects of the self-consistent magnetic field on the dy-

namics of ring-current particles are discussed. We find that the self-consistent
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magnetic field tends to prevent ring current particles from deep injection,

and to mitigate the energization of ring current particles. Thus, the ring cur-

rent simulated in a self-consistent magnetic field model will produce less of

a disturbance at the center of the Earth than that simulated in the prescribed

dipole or dipole-like magnetic field models without feedback from the ring

current.
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1. Introduction

The Earth’s ring current lies at equatorial radial distances r0 from 2 to 7 RE , and is

composed of energetic (10’s to several hundreds of keV) protons, heavy ions, and electrons.

The ring current is greatly intensified during geomagnetic storms, and produces large

disturbances of the magnetic field in the inner magnetosphere. For example, the Dst

index, an averaged measurement of the magnetic disturbances from all magnetospheric

currents on the surface of the Earth, is depressed during the main phase of a storm. In the

inner magnetosphere, observations [Wygant et al., 1998; Korth et al., 2000] and statistical

studies [Terada et al., 1998; Lui , 2003; Le et al., 2004; Jorgensen et al., 2004] have shown

that the magnetic field is significantly altered from quiet time values (e.g., the difference

between storm-time and quiet-time magnetic field can be ≤ −200 nT , or ∼ 18% less

than quiet time values around r0 = 3 RE [Wygant et al., 1998]). Moreover, the empirical

storm-time magnetic field model developed by Tsyganenko et al. [2003] further displays

how severe the inner magnetosphere can be distorted by the storm-time ring current.

According to the Tsyganenko et al. [2003] model, the field line with L-shell L = 3.2 (the

latitude of the foot point of the field line is ∼ 56◦) on the night side can be stretched to

the geosynchronous altitude during a large storm.

Most people believe that the observed enhanced fluxes in the inner magnetosphere

during storms can be explained by transporting plasmasheet populations inward under

enhancements of the convection electric field. The transport of storm-time ring current

ions [Chen et al., 1994; Chen et al., 2003; Fok et al., 2001; Kozyra and Liemohn, 2003;

Jordanova, 2003] and electrons [Liu et al., 2003] has been studied with kinetic drift-loss
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ring current simulation models. These ring current models use prescribed magnetic field

and either prescribed or self-consistent electrostatic storm-time enhanced electric field

models to drive particle transport. Simulation results from these models generally agree

fairly well with in-situ particle observations. Recently, Chen et al. [2005] calculated the

disturbed magnetic field from the simulation results of the storm-time ring current by

employing the Biot-Savart law. Their results show that the magnetic field disturbances

can be very large in localized regions at L ∼ 3–5. They found that the disturbed storm-

time magnetic field was as large as ∼ 70% of the dipole value at 4 RE . Although this

calculation was not done in a self-consistent way, the results indicate that it is necessary to

treat particle transport self-consistently in the inner magnetosphere. It also demonstrates

the need to test ring-current models against in-situ magnetic field data, not just with

the pressure-corrected Dst∗, which represents an average quantity derived from ground

measurements.

In order to obtain a realistic magnetic field model during storm main phases, the mag-

netic field induced by the storm-time ring current must be taken into account. That is,

the magnetic field model needs to be self-consistent with the distribution of ring-current

particles. MHD models self-consistently compute the magnetic field from plasma distribu-

tions. However, except that De Zeeuw et al. [2004] coupled BATS-R-US (Block Adaptive

Tree Solar-wind Roe-type Upwind Scheme) and Rice Convection Model (RCM), most

MHD models treat plasma as a fluid, and do not include the kinetic effects in the in-

ner magnetosphere where energy-dependent magnetic gradient drift is important, and the

ideal MHD relation between flows and electric fields is invalid. Given pressure distribu-

tions as the input, Zaharia et al. [2004] numerically solve the force balance equation to
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obtain the force-balanced magnetic field. Nevertheless, the force-balanced magnetic field

was not coupled with a ring current model, hence it is not a self-consistent model of the

ring current magnetic field. The recently developed Rice Convection Model-Equilibrium

(RCM-E) [Lemon et al., 2004] is one attempt to simulate the storm-time ring current

injection in self-consistent magnetic and electric field models. Their study concludes that

the self-consistent magnetic fields in RCM-E prevent the injection of the plasmasheet

source population into the inner magnetosphere. They find that some unspecified non-

adiabatic processes are required near midnight at r0 ≥ 10 RE in order to form a significant

ring current. However, RCM assumes isotropic distribution of plasma in its simulation

domain, which in general is not true for L ≤ 7.

In this study, we present our first attempt to simulate storm-time ring current particles

in a self-consistent magnetic field model, which is obtained by coupling a force balance

equation solver with the ring current model based on Chen et al. [1994] and Liu et al.

[2003]. The force balance equation solved only in the equatorial plane with some as-

sumptions about the general shape of the magnetic field lines in our model.. Since our

simulation domain is well inside of the geosynchronous orbit (6.6 RE), the boundary con-

ditions of our simulation would have already been affected by the non-adiabatic processes

implied by Lemon et al. [2004] in their recent RCM-E study. A hypothetical storm [Chen

et al., 1994; Liu et al., 2003] is simulated, and the simulated magnetic field is compared

with statistical studies using in-situ observations of storm-time magnetic field. The effects

of the self-consistent magnetic field on the dynamics of storm-time ring current particles

are discussed thereafter.
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2. Force Balance Equation Solver

The magnetic field and the plasma distribution in the inner magnetosphere should be

in an equilibrium state. That is, they should satisfy the force balance equation

~j × ~B = ∇ · P

= ∇P⊥ + (P‖ − P⊥)
( ~B · ∇) ~B

B2
, (1)

where ~B is the magnetic field, ~j = ∇× ~B/µ0 is the current density, µ0 is the permeability

of free space, P is the plasma pressure tensor, P⊥ is the perpendicular pressure, and P‖ is

the parallel pressure. Given P and appropriate boundary conditions, this 3-dimensional

(3D) partial differential equation (PDE) can be numerically solved to obtain a force-

balanced magnetic field. However, as a first step towards developing a self-consistent

model, we simplify the problem with two assumptions about ~B, which reduce (1) to two

ordinary differential equations in the equatorial plane. Thus, we only need plasma pressure

distributions and boundary conditions in the equatorial plane to obtain the force-balanced

magnetic field.

The magnetic field ~B can be expressed in terms of two Euler potentials [Stern, 1967] as

~B = ∇α×∇ψ, (2)

where α = ∂Φ/∂ϕ = −µE/(La), is the magnetic flux per unit magnetic local time (MLT),

Φ is the magnetic flux, ϕ is MLT, µE is the geomagnetic dipole moment, a is the Earth’s

radius, L is the L-shell or the third adiabatic invariant, and ψ is in the unit of angle. We

first assume

ψ = ϕ, (3)
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which requires that each magnetic field line always lies in the same meridian plane. This

assumption is quite reasonable within the inner magnetosphere region, where azimuthal

perturbations of the magnetic field due to field aligned currents and the Chapman-Ferraro

current are small compared to the ambient magnetic field [e.g. Le et al., 2004, Fig. 5].

With the first assumption, ~B now can be expressed in spherical coordinates as a function

of the partial derivatives of L with respect to geocentric radial distance r and colatitude

θ. Additionally, the radial and azimuthal components of (1) in the equatorial plane can

be written as

−
[(∇× ~B)ϕ]0

µ0

B0 =
∂P⊥0

∂r0
+
P⊥0 − P‖0

rc0

, (4)

[(∇× ~B)r]0
µ0

B0 =
1

r0

∂P⊥0

∂ϕ
, (5)

where the subscript “0” represents the variables in the equatorial plane except for µ0, and

1/rc is the curvature of the field line. The latitudinal component of (1) in the equatorial

plane is automatically satisfied because of symmetry. The azimuthal component (5) can

be solved analytically as

B2
0

2µ0

+ P⊥0 = P ∗
0 (r0), (6)

where P ∗
0 (r0) is a function of the equatorial geo-centric radial distance r0 only. This

equation implies that the sum of the magnetic pressure and the plasma perpendicular

pressure in the equatorial plane is the same along r0 = const.

We then make the second assumption that the magnetic field lines satisfy the Dungey

field line function [Dungey , 1961, 1963]

L = r[(1 + 0.5r3/b3) sin2 θ]−1

= r0[(1 + 0.5r3
0/b

3)]−1, (7)
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where b represents field line stretching, and is a constant along a field line, but varies

from field line to field line in both the radial and azimuthal directions. Field lines in this

form can reasonably simulate the field line stretching due to the storm-time ring current.

Moreover, the analytical form will facilitate the calculation of bounce-averaged motion

for particles that mirror off the equator. This method can significantly reduce computing

time, and is broadly used in ring current models [e.g. Chen et al., 1999; Fok et al., 2001;

Kozyra and Liemohn, 2003; Jordanova, 2003]. We will develop and incorporate that part

in our future study.

Using the field line equation (7), all the partial derivatives of L on the left hand side of

(4) can be converted to partial derivatives of L with respect to r0. For example,

(

∂2L

∂θ2

)

0

=
∂2L

∂r2
0

(

∂r0
∂θ

)2

0

+
∂L

∂r0

(

∂2r0
∂θ2

)

0

, (8)

where the derivatives of r0 with respect to θ in the equatorial plane can be obtained from

(7). On the right hand side of (4), 1/rc0 can be also expressed as a function of L. Thus,

(4) becomes a second-order ordinary differential equation in L with respect to r0, namely,

∂2L

∂r2
0

= F (
∂L

∂r0
, r0;P⊥0,

∂P⊥0

∂r0
, P‖0), (9)

where the right hand side represents a function of ∂L/∂r0, r0, and the pressure distribution

in the equatorial plane. If plasma pressure distributions are known in the equatorial plane,

with appropriate boundary conditions we can numerically solve (6) and (9) to obtain L,

∂L/∂r0, and ∂2L/∂r2
0 in the equatorial plane. Please note that the stretching parameter

b does not appear in (6) and (9) explicitly, because b can be expressed in terms of L via

(7). In this study, we use L values at r0 = 2 RE and Bz values at r0 = 6.6 RE at 0000
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MLT from T89 [Tsyganenko, 1989], which are parameterized by Kp, as the boundary

conditions.

3. The Ring Current Model with Self-Consistent Magnetic Fields

In order to obtain the self-consistent magnetic field, the force balance equation solver

described above must be coupled with a ring current model. The ring current model in

this study is based on the ring current proton model of Chen et al. [1994] and electron

model of Liu et al. [2003], in which equatorially-mirroring particles with first adiabatic

invariant µ from 1 to 100 MeV/G are simulated. The simulation domain is the equatorial

plane, from 2 to 6.6 RE, where we set up a grid of points every 0.2 RE in radial direction,

and every 5◦ in azimuthal direction.

Figure 1 shows the flow chart of the coupled model. Given that the magnetic field is

known as a function of time up to the current time, ti, we assume that magnetic field is

static in a short time period from time ti to ti +∆t. Together with the electric field model,

starting at the grid points specified in our simulation domain, particles’ trajectories are

traced backwards in time from time ti + ∆t to t0 = 0. Phase space densities at the

grid points are then obtained by employing Liouville’s Theorem modified by losses with

either boundary (if trajectories cross the boundary) or initial (if trajectories end within the

simulation domain) conditions. By tracing backwards to time t0 = 0 for each time step, we

significantly reduce the artificial diffusion that results from the numerical interpolations of

initial conditions. We next use the phase space densities to calculate the plasma pressure

distribution within the equatorial plane by assuming pitch-angle distributions that we

explain in detail in Section 3.4. The simulated pressure distribution serves as an input to

the force balance equation solver, and then the force balanced magnetic field is obtained.
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The magnetic field at time ti + ∆t is updated with this force balanced magnetic field,

and the model advances to the next cycle with time ti+1 = ti + ∆t. If the selected ∆t is

small enough, the magnetic field can be regarded as a self-consistent magnetic field. In

this study ∆t = 5 minutes.

3.1. Magnetic and Electric Field Models

The magnetic field model in this study is purely numerical in the equatorial plane. At

each grid point, L, ∂L/∂r0, and ∂2L/∂r2
0 are obtained from the force balance equation

solver for every 5 minutes up to the current time ti. We further numerically calculate

∂L/∂ϕ and ∂2L/(∂r0∂ϕ). L and its derivatives between the 5-minute intervals and grid

points are obtained by linear interpolations. Thus, B0, ∂B0/∂r0 and ∂B0/∂ϕ can be

calculated from L and its four derivatives by exploiting (2) and (3) in the equatorial

plane, given time t ≤ tf , r0 and ϕ. For example,

B0 = −
µE

L2r0a

∂L

∂r0
, (10)

where the minus sign represents that the magnetic field in the equatorial plane has the

direction of −θ̂ if ∂L/∂r0 is positive.

The electric field model in this study is the same simple model used by Chen et al.

[1994] and Liu et al. [2003] in their studies. The electrostatic potential ΦE is expressed as

ΦE(L, ϕ) = −
VΩ

L
+
V0

2

(

L

L∗

)2

sinϕ+
∆V (t)

2

(

L

L∗

)

sinϕ, (11)

where L∗ = 10 is our assumed polar cap boundary in this study, and the three terms on

the right-hand side are corotation (VΩ = 90 kV), steady quiescent convection (V0 = 25

kV), and a storm-associated enhanced convection, ∆V , respectively. We use the same

random impulsive ∆V with average of 〈∆V 〉 = 125 kV as illustrated in Figure 1(a) of Liu
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et al. [2003] for the 6-hr hypothetical storm. Currently our electrostatic electric field is

not calculated self-consistently although this is a feature we would like to incorporate in

our model in the future.

3.2. Particle Dynamics

We use classical Hamiltonian mechanics to trace particles in our modeled magneto-

sphere. The HamiltonianH of equatorially-mirroring particles in our model can be written

as

H = (2µB0m0c
2 +m2

0c
4)1/2 + qΦE , (12)

where m0 is the rest mass of simulated particles, c is the speed of light, and q is the charge

of particles. According to Hamiltonian mechanics [e.g. ter Haar , 1971], we have

dα

dt
=

1

q

∂H

∂ψ
, (13)

dψ

dt
=

1

q

∂H

∂α
, (14)

which together with (3) and (12), can be exploited to trace particles’ trajectories, since the

required derivatives of B0 and ΦE can be obtained from magnetic and electric field models,

respectively. One of the advantages of this method is that the effects of the induced electric

field by time-varying magnetic field are implicitly included in the dynamics equations.

3.3. Phase Space Density Mapping

The phase space density is obtained by mapping either the initial (if the trajectory ends

inside our simulation domain) or the boundary (if the trajectory crosses our outer bound-

ary) conditions along representative particle trajectories backward in time by applying

Liouville’s theorem modified by particle loss. We consider the proton loss due to charge

exchange [Chen et al., 1994], and the electron loss due to wave-particle interactions [Liu

D R A F T October 24, 2005, 10:15pm D R A F T



LIU ET AL.: SELF-CONSISTENT MAGNETIC FIELD MODEL X - 13

et al., 2003]. For electrons inside the plasmasphere we use theoretical electron lifetimes

due to plasmaspheric hiss [Albert , 1994]. We consider that electrons outside the plasma-

sphere with kinetic energy ≤ 2 keV have lifetimes against strong pitch angle diffusion.

However, lifetimes of electrons with kinetic energy > 2 keV outside the plasmasphere are

proportional to L−17/3. This power law relationship was derived from theoretical study of

electron lifetimes against electrostatic electron cyclotron harmonic (ECH) waves outside

the plasmasphere [Lyons , 1974]. We use the empirical formula by Moldwin et al. [2002]

to determine the location of the plasmapause. We plan to include the electron loss due

to whistler chorus [Thorne et al., 2005] in the future.

The boundary conditions for protons and electrons are 12-year averages of LANL/MPA

data, which are binned every half hour of MLT and parametrized by Kp [e.g. Korth et al.,

1999]. The electron [Albert , 1994] and proton [Chen et al., 1994] initial conditions are

taken from numerical solutions to the steady state transport equations, and normalized

with quiet time boundary conditions. We use averaged LANL/MPA data for Kp = 1

as the quiet time boundary conditions, and for Kp = 3 as the storm-time boundary

conditions for the hypothetical storm.

3.4. Plasma Pressure Distribution

For this initial study we simulate only the phase space densities of equatorially-mirroring

particles. Thus, we have to make an assumption for the pitch-angle distribution in order

to obtain P⊥ and P‖. We assume that the phase space density in the equatorial plane, f0,

can be expressed as

f0(p, α0) = f ∗
0 (p, α0 = 90◦) ∗ sinn α0, (15)
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where p is the momentum of simulated particles, α0 is the pitch angle in the equatorial

plane, f ∗
0 is the phase space density of equatorially-mirroring particles, and n is related

to the particle anisotropy. With this assumption it can be easily shown that the pressure

can be calculated as

P⊥0 = 23/2m
3/2

0 πB
5/2

0 β(
n

2
+ 2,

1

2
)
∫ ∞

0

f ∗
0µ

3/2dµ, (16)

P‖0 = 25/2m
3/2

0 πB
5/2

0 β(
n

2
+ 1,

3

2
)
∫ ∞

0

f ∗
0µ

3/2dµ, (17)

where β(M,N) is the Beta function. In this case, the anisotropy in the equatorial plane

A0 is

A0 ≡
P⊥0

P‖0

− 1 =
n

2
. (18)

In addition, Feshchenko and Maltsev [2001] have derived formulas to approximate the ob-

served anisotropy profiles at noon and midnight [Lui and Hamilton, 1992]. We interpolate

these results to cover the entire MLT range. This anisotropy distribution is assumed to be

the same during both storm and quiet times [Feshchenko and Maltsev , 2001]. Thus, once

we know phase space densities of equatorially-mirroring ring current particles, P⊥0 and

P‖0 can be obtained from (16), (17), and (18) with this empirical anisotropy model. The

integrations in (16) and (17) are numerically calculated from 0 MeV/G to our highest

µ value, which is 100 MeV/G. In future studies we will simulate phase space densities

of particles that mirror off the equator. We will specify the initial f(p, α) by solving a

steady-state transport equation, and there would then be no need to assume pitch-angle

distribution.

4. Simulation Results for a Hypothetical Storm
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The hypothetical storm simulated in this study is the same as those in Chen et al. [1994]

and Liu et al. [2003]. Figure 2 shows the cross polar potential drop V as a function of time

during the hypothetical storm. The main phase of the hypothetical storm starts at the

first impulse of V , which is at t = 8 min. After the main phase (∼ 3 hours) with impulsive

enhancements of V , the recovery phase lasts to the end of the simulation. We assume

that Kp = 1 during the quiet times (t = 0–8 min), and that Kp = 3 during the main

and recovery phases. The electric field is provided by the simple electrostatic field model

described in Section 3.1. The boundary conditions are specified at geosynchronous orbit

according to the Kp values. The initial conditions are normalized with the quiet time

boundary condition. At the beginning, the initial pressure distribution is calculated from

the initial conditions using the geomagnetic dipole field. Next, the force balance equation

solver generates the force balanced magnetic field at t = 0. The model then follows the

flow chart as shown in Figure 1 to simulate ring current particles in our simulation domain.

Figure 3 shows the simulated equatorial perpendicular pressure P⊥0 at simulation times

t = 1, 2, 3, 4, and 5 hr. The figure demonstrates that the plasma pressure is significantly

enhanced during the main phase (t = 0–3 hr) at ∼ 2–5 RE. From pre-storm (t = 0 hr) to

the end of the main phase (t = 3 hr), more than one magnitude increase of plasma pressure

can be seen at 3 RE on the dusk side. However, the enhancements are asymmetric.

The midnight and dusk sectors have the most significant pressure enhancements. For

example, the pressure distribution has a peak around 2000 MLT of r0 = 3 RE at the

end of the main phase (t = 3 hr). In addition, the pressure enhancements during the

main phase (t = 0–3 hr) expand towards both the dusk and dawn sides, which reveals the
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dominant contribution of ring current electrons on the dawn side. The plasma pressure

enhancements become symmetric and weaker during the recovery phase (t = 4 and 5 hr).

Figure 4 illustrates the simulated self-consistent magnetic field subtracting the dipole

field, which can be regarded as the disturbed magnetic field, ∆B. From the figure we

can see that the simulated equatorial ∆B is significant and asymmetric (largest from

1500–0300, through midnight) during the main phase. For example, at the end of the

main phase (t = 3 hr), ∆B reaches −150 nT on the dusk side of r0 = 3 RE . During

the model storm recovery phase (t = 3–6 hr), the simulated equatorial ∆B distribution

becomes more symmetric, and its strength is reduced. Moreover, the L-shell contours

superimposed on Figure (4) indicate the extent to which the magnetic field lines in the

inner magnetosphere are stretched during the hypothetical storm. The magnetic field

lines are progressively stretched during the storm main phase. For example, the night

side field lines with L = 5 progressively stretch beyond geosynchronous altitude in the

equatorial plane during the main phase. At the end of the main phase (t = 3 hr), the

contours of L = 5 are almost all stretched outside of geosynchronous altitude. The extent

of the field line stretching decreases during the following recovery phase. By comparing

Figures 3 and 4, we find that the location of the field line stretching is closely related to

the location of the pressure enhancement. When the plasma pressure is enhanced, the

field lines respond by stretching outward. However, when the plasma pressure decreases,

the field lines move closer to the Earth.

We calculated the azimuthal current densities in the equatorial plane from the simulated

magnetic fields by using Ampère’s law. This azimuthal current density should be the same

as those calculated from the simulated pressure distribution, because our magnetic field is
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self-consistent. The azimuthal current density jϕ in our simulation is displayed in Figure

5 for different times in the simulation. We present only jϕ because it generally dominates

the radial component of total current density in our simulation domain. Positive current

density represents eastward current. Two ring current systems are apparent in the figure.

An inner eastward ring current is formed while fresh ring current particles are injected

from the plasmasheet. With the deeper injection of ring current particles, this ring current

moves closer to the Earth, and its density increases. According to Figure 5, the inner

eastward current density is more than 10 nA/m2 around the dusk side at t = 3 hr. This

inner eastward current is dominated by the magnetization current of ring current particles,

and it is located at r0 =∼ 3 RE with radial width ≤ 0.5 RE . On the other hand there

is an outer westward ring current covering a much broader region (∼ 4 to 6.6 RE , which

is our outer simulation boundary) in the inner magnetosphere. Its density can also reach

∼ 10 nA/m2 (e.g., r0 = 3.5 RE around dusk side at t = 3 hr). Both the magnetization

and the gradient-drift currents are believed to contribute to the outer westward current.

5. Discussion and Conclusion

In this study, our magnetically self-consistent ring current model is employed to simulate

a hypothetical storm with an approximately 3-hour main phase and 3-hour recovery phase.

The simulated plasma (proton and electron) pressure distributions (Figure 3) present the

generally accepted picture of the storm-time ring current. The plasma pressure is signif-

icantly enhanced during the storm main phase. The asymmetric pressure enhancements

move closer to the Earth while the enhancements become stronger. During the recovery

phase, the pressure enhancements become more symmetric, and less enhanced. More-
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over, from the simulated pressure distributions, we further confirm that the ring current

electrons make an important contribution on the dawn side [Liu et al., 2005].

In addition to the simulated pressure, our model can simulate the storm-time disturbed

magnetic field in a self-consistent manner. Figure 4 shows that ∆B ≤ −100 nT can occur

at r0 ∼ 3–4 RE around the dusk side during the storm main phase. We can further

calculate the current density in the equatorial plane from the self-consistent magnetic

field. According to Figure 5, we find an inner eastward ring current at r0 ∼ 3 RE , and

an outer westward ring current at r0 ∼4–6.6 RE . By comparing our simulated ∆B and

current density with previous statistical studies by Terada et al. [1998], Le et al. [2004],

and Jorgensen et al. [2004], we find that our model reasonably reproduces the general

features of the storm-time ring current. For example, the disturbed magnetic field can be

as large as −150 nT near 3 RE , and the locations of the inner and outer ring currents are

at ∼ 3 RE , and ∼ 4–6.6 RE, respectively. The empirical studies show peaks of ∆B and

j near midnight, while our simulation shows peaks around the dusk, and the empirical

studies have an average storm-time intensity of the inner ring current that is lower than

what we find in this simulation. However, since the comparison is between simulation

results of one hypothetical storm and statistical studies of a large number of storms, we

would expect differences. In addition, the discrepancies may also result from the simple

prescribed electric field model employed in this simulation. We will use more realistic

(e.g. AMIE model) and self-consistent electric field models in our future studies.

From the discussion above, we can see that our magnetically self-consistent ring current

model reasonably reproduces the storm-time disturbed magnetic field and ring current

density. Thus, this model enables us to investigate the effects of the self-consistent mag-
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netic field on the dynamics of storm-time ring current particles in the inner magnetosphere.

To do this, we compare the results from our magnetically self-consistent simulation with

those from our earlier simulation [Chen et al., 1994; Liu et al., 2003] of the same hypo-

thetical storm with a non-self-consistent magnetic field model.

The effect of the self-consistent magnetic field on the drift of ring current particles

is investigated by comparing the equatorial quasi-steady trajectories of typical ring cur-

rent particles in our simulated self-consistent magnetic field (SCM) and in the Dungey

field [Dungey , 1961, 1963]. Figure 6 presents trajectories of protons with µ = 7 and 20

MeV/G in our self-consistent magnetic field and the Dungey field, respectively. The self-

consistent magnetic field in this figure is a snapshot at t = 2.5 hr, which is right after

the maximum of the cross polar potential drop in the storm. From the figure we can see

that the equatorial quasi-steady trajectories in the Dungey field are symmetric about the

dawn-dusk meridian. However, the the trajectories in the SCM are slightly skewed with

respect to the dawn-dusk meridian. Additionally, for a given µ value the trapped region

corresponding to closed trajectories is larger in the SCM than that in the Dungey field,

which implies that freshly injected ring current particles in the SCM cannot penetrate

as deep as those in the Dungey field. This is consistent with the fact that the magnetic

feedback of the ring current tends to mitigate the ring current. Analogous differences

between the trajectories of ring current electrons for the SCM and Dungey model (not

shown) occur.

Figure 7 shows a comparison of the simulated P⊥0 at t = 2.5 hr from the self-consistent

magnetic field (Figure 7a) and the Dungey magnetic field (Figure 7b). The figure clearly

shows that the simulated P⊥0 from the Dungey field is ∼ 2–3 times higher than that from
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the self-consistent magnetic field. This demonstrates that the reduced self-consistent

magnetic field intensity significantly mitigates the energization of storm-time ring current

particles as they are transported into the inner magnetosphere. For particles of a given

first adiabatic invariant, the kinetic energy is reduced when the magnetic intensity is

lowered.

We use the same method in Chen et al. [1994] to calculate the disturbed magnetic

field at the center of the Earth ∆B(0) induced by the simulated ring current in our

simulation domain. The simulated current density in the Dungey field is calculated from

the simulated pressure distribution [Chen et al., 1994]. Because we only have the current

density in the equatorial plane, we assume a thickness ∆h of the current density so that

the Biot-Savart law can be employed to calculate ∆B(0). According to (17) in Chen et al.

[1994], ∆h can be approximated as

∆h = 23/4(∆K)1/2(∂2B/∂s2)
−1/4

0 , (19)

where K is the second adiabatic invariant, and s is the length of field line arc. By

comparing (16) in this paper and (18) in Chen et al. [1994], ∆h in the present study can

be expressed as

∆h = (2B0)
1/2(∂2B/∂s2)

−1/2

0 β(A0 + 2, 1/2). (20)

We calculate ∆h in the Dungey field, which increases from ∼ 0.8 RE at r0 = 2 RE to ∼ 3

RE at geosynchronous altitude, and then assume ∆h is the same in the SCM. Figure 8

shows the comparison of the ∆B(0) as a function of time in the SCM (the solid curve)

and in the Dungey field (the dashed curve). From the figure it is clear that the ∆B(0)

in the Dungey field is about 30% less than that in the self-consistent magnetic field. The
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comparison demonstrates that the self-consistent magnetic field tends to decrease the

intensity of the storm-time ring current.

From this simulation study and the discussion above, we can conclude that: (1) our

magnetically self-consistent ring current model reasonably simulates the storm-time ring

current and the disturbed magnetic field in our simulation domain, which is from 2 to 6.6

RE in the equatorial plane. (2) The disturbed magnetic field tends to prevent ring current

particles from deep injection, and mitigates their energization. Thus, the intensity of the

storm-time ring current is largely reduced by these effects. These results demonstrate

that it is necessary to take the self-consistent effects into account in order to accurately

simulate the storm-time ring current. In addition, our results suggest that we need to test

ring-current models against not only in-situ particle data, but also in-situ magnetic field

data.

Acknowledgments. The work of S. Liu, M. W. Chen, and L. R. Lyons was sup-

ported by the NSF grant NSF-ATM-0202108 and NSF-ATM-0207160. The work of M.

W. Chen was also supported by The Aerospace Corporation’s Independent Research and

Development Program, the NASA grant NAG 5-12048, and a subcontract of the NASA

grant NAG 5-12106 through UCLA subaward 2090 GCC340. Computing resources were

provided by UCLA Academic Technology Services.

References

Albert, J. M. (1994), Quasi-linear pitch angle diffusion coefficients: Retaining high har-

monics, J. Geophys. Res., 99 (A12), 23,741–23,745.

D R A F T October 24, 2005, 10:15pm D R A F T



X - 22 LIU ET AL.: SELF-CONSISTENT MAGNETIC FIELD MODEL

Chen, M. W., L. R. Lyons, and M. Schulz (1994), Simulations of phase space distributions

of storm time proton ring current, J. Geophys. Res., 99 (A4), 5745–5759.

Chen, M. W., J. L. Roeder, J. F. Fennell, L. R. Lyons, R. L. Lambour, and M. Schulz

(1999), Proton ring current pitch angle distributions: Comparison of simulations with

crres observations, J. Geophys. Res., 104 (A8), 17,379–17,390.

Chen, M. W., M. Schulz, G. Lu, and L. R. Lyons (2003), Quasi-steady drift paths in a

model magnetosphere with AMIE electric field: Implications for ring current formation,

J. Geophys. Res., 108 (A5), 5–1.

Chen, M. W., M. Schulz, S. Liu, G. Lu, L. R. Lyons, M. El-Alaoui, and M. Thom-

sen (2005), Simulated Stormtime Ring-Current Magnetic Field Produced by Ions and

Electrons, in Yosemite 2004 Monograph on Gloabal Physics of the the Coupled Inner

Magnetosphere.

De Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth (2004),
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Figure 1. Flow chart of our magnetically self-consistent ring current model. Note that

‘BIC’, ‘traj’, and ‘psd’ are abbreviations for ‘boundary and initial conditions’, ‘trajectory’,

and ‘phase space density’, respectively. The thick black line represents the process of

coupling the ring current model with the force balance equations solver.

Figure 2. The simulated cross polar potential drop as a function of time. The random

impulsive enhancements of V during the first three hours have an average of 125 kV. The

quiet time value of V is 25 kV.
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Figure 3. The simulated perpendicular pressure in the equatorial plane during six

different simulation times (from left to right, from top to bottom, (a) t = 0 hr, (b) t = 1

hr, (c) t = 2 hr, (d) t = 3 hr, (e) t = 4 hr, and (f) t = 5 hr). The x axis points to the sun,

which is to the left, while the y axis points downward to the dusk. The labels on the axes

are in the unit of Earth radius. The logarithm of the simulated pressure distributions are

color coded according to the color bar on the right side.
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Figure 4. The deviations of the simulated self-consistent magnetic field from the

geomagnetic dipole field during different simulation times. (a) t = 0 hr, (b) t = 1 hr, (c)

t = 2 hr, (d) t = 3 hr, (e) t = 4 hr, and (f) t = 5 hr. The black solid curves superimposed

on those plots are the contours of L-shells 2, 3, 4, and 5.
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Figure 5. The derived azimuthal current density in the equatorial plane during different

simulation times. (a) t = 0 hr, (b) t = 1 hr, (c) t = 2 hr, (d) t = 3 hr, (e) t = 4 hr, and

(f) t = 5 hr. The positive current density represents the eastward current.
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Figure 6. Quasi-static trajectories of typical ring current protons in the self-consistent

magnetic field and the Dungey field. The self-consistent magnetic field is taken from

our simulated magnetic field at t = 2.5 hr. (a) µ = 7 MeV/G proton in self-consistent

magnetic (SCM) field. (b) µ = 7 MeV/G proton in the Dungey field. (c) µ = 20 MeV/G

proton in the SCM. (d) µ = 20 MeV/G proton in the Dungey field.
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Figure 7. The comparison of the simulated P⊥0 at t = 2.5 hr from (a) the self-consistent

magnetic field (SCM) and (b) the Dungey magnetic field.
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Figure 8. The calculated disturbed magnetic field at the center of the Earth ∆B(0)

induced by the simulated ring current in our simulation domain as a function of time.

The solid curve is the simulated ∆B(0) in our self-consistent magnetic field. The dashed

curve is the simulated ∆B(0) in the Dungey field.
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