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ABSTRACT

We present a novel technique to automatically calculate an initial
sizing of analog circuits that conforms to good design practice.
The method is purely (DC) simulation-based and does not need
symbolic design equations or user design knowledge. It identifies
the space of feasible design parameters based on implicit specifi-
cations, which arise from the circuit topology. A sizing centered
within this space is obtained by iteratively solving a maximum vol-
ume ellipsoid problem on approximations to the feasible parameter
space. The result is well-suited as initial sizing because it safely
satisfies all implicit specifications. Experimental results demon-
strate the efficiency and reliability of our method.

1. INTRODUCTION

Analog components play important roles in modern integrated
electronic systems. Signal conversion, clock generation, or data
acquisition are just a few examples. Unfortunately, automatic de-
sign for analog components is still in an early stage, causing a
bottleneck in system design, which urgently has to be eliminated.
From the three main steps of analog design, namely topology de-
sign, sizing of circuit parameters, and layout design, it is the la-
borious sizing step that has an extraordinary potential for saving
design time by automation.

There are two main criteria to distinguish automatic circuit
sizing algorithms. One is the nature of the optimization process,
which is stochastic, e.g. [5, 14], or deterministic, e.g.[3, 13]. The
other criterion refers to the way of performance evaluation, which
is done by equation-based (symbolic) methods, e.g. [5, 6, 17], or
in a simulation-based manner, e.g. [3, 13, 14].

Given a set of specifications, the goal of the sizing process is
to optimize certain circuit performances while meeting minimum
requirements on the remaining ones. Additionally, for a robust
circuit operation, a number of usually unspecified requirements
have to be considered, which arise from topological necessities.
Keeping transistors in saturation is only one of these numerous
implicit specifications. Their fulfillment is a prerequisite to any
further optimization of explicitly specified performances.

It is well-known that for optimization techniques, the effi-
ciency and the quality of the result heavily depend on the starting
point. Since already for a small circuit there is a large number of
implicit specifications, the remaining space of feasible parameter
values, which is available for optimization, can become extremely
small. This is especially true for low-voltage designs. Therefore,
all sizing approaches, and especially simulation-based ones, ur-
gently need a good initial sizing as a point of reference, not to
mention manual design. Even stochastic techniques, which tradi-
tionally do not require a starting point, can benefit from a good
initial design, because, e.g. for genetic algorithms, it introduces
good genes into the initial population. In [15] it was described how
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the convergence of genetic algorithms improves when the feasible
parameter space is examined in a separate step before the actual
circuit performances are optimized.

Traditionally, the initial sizing has been determined based on
the designers’ intuition or on symbolic equations, which partially
require a laborious elaboration. In contrast, our dedicated initial
sizing algorithm does not need user intervention and relies on a
circuit-independent formalization of fundamental design knowl-
edge. It yields a design which conforms to good design practice.
This design satisfies all implicit specifications, which are uniquely
given by the circuit topology, with as much safety margin as pos-
sible. The result can be used to initialize optimization algorithms
of any type.

The structure of this paper is as follows. In Sec. 2, we briefly
describe the nature of implicit specifications and show how they
define the feasible parameter search space. Sec. 3 discusses our
algorithm for finding the initial sizing, whereupon experimental
results are presented in Sec. 4. Sec. 5 concludes this paper.

2. FEASIBLE PARAMETER SPACE

Analog circuits are usually designed in a hierarchical fashion: In-
dividual transistors form pairs, which constitute elementary build-
ing blocks such as current mirrors or differential pairs. These tran-
sistor pairs are combined again to obtain larger building blocks
such as cascode current mirrors. This combination of building
blocks is continued until the design is completed. The final circuit
has to satisfy all performance specifications, which are explicitly
given and usually refer to the input/output behavior of the circuit
in a black-box fashion.

Yet, there are additional requirements on the basic building
blocks, which can be interpreted as design specifications arising
from the topology. For example, a current mirror does not work
properly unless its transistors operate in saturation. Unlike ac-
tual performance specifications, these topology-given specifica-
tions are usually not provided explicitly, but reflect design knowl-
edge. For design automation purposes, however, these specifica-
tions have to be stated explicitly. This can be done by means of
sizing rules, which are frequently mentioned in literature [6, 8, 17].

A systematic way to automatically set up these rules for a
given circuit was presented in [8]: In a first step, the basic build-
ing blocks of a circuit are identified hierarchically based on a flat
schematic. In a second step, generic sizing rules are instantiated
and assigned to the actual transistors. Three categories suffice to
fully classify a sizing rule:

1. Geometrical / Electrical: Geometrical sizing rules directly refer
to transistor geometries. Electrical rules need to be evaluated
based on DC circuit simulations.

2. Function / Robustness: Functional rules have to be met uncon-
ditionally in order to allow a building block to fulfill the desired



function. Robustness rules account for global and local varia-
tions in the manufacturing process and the operating conditions.

3. Inequality / Equality: Inequality sizing rules require that elec-
trical or geometrical circuit quantities exceed or remain below
certain limits. Equality rules exist only for geometrical quanti-
ties. Since they are given as explicit algebraic equations, they
can be used to reduce the dimension of the parameter space.

After the parameter space reduction on the basis of geometrical
equality sizing rules, the remaining parameters denoted as p ! have
to satisfy a number of inequalities, either explicitly given as alge-
braic expressions or to be evaluated via DC simulation. After el-
ementary algebraic transformations, we obtain a single nonlinear
vector inequality ¢(p) < 0 2. Consequently, the feasible param-
eter space P, which is the available subspace for optimizing the
specified circuit performances, can be written as

?={p|c(p) <0}

with ¢(p)eR™, peR", m>n. (1)
Each sizing rule defines one bounding hypersurface of ?. Note
that 2 C R" is bounded since, in circuit design, upper and lower

limits, ppin and pmax, are given for each parameter.

3. INITIAL SIZING ALGORITHM

3.1. General Idea

The fulfillment of the sizing rules is a prerequisite to any further
performance optimization. In the case of violated functional sizing
rules, the circuit might not even exhibit the desired fundamental
functionality (e.g. constant signal from an “oscillator””). Therefore,
and for the sake of efficiency, we suggest to separate the initial
sizing step from the actual performance optimization.

In this contribution, we describe how to calculate an initial
sizing, denoted as p;, based on (1). Obviously, ps € P is a neces-
sary condition. Furthermore, we suggest to choose a point “in the
center” of P, due to the following benefits:

All sizing rules are satisfied with maximum safety margins.
This allows a subsequent performance optimization algorithm
to choose any search direction without early violating the siz-
ing rules.

Within 2, the performances are only weakly nonlinear [8]. This
is particularly beneficial for gradient-based deterministic opti-
mization techniques.

3.2. Geometric Illustration

Finding the center of ©? is a nonlinear problem. Since P is not
given analytically, and circuit simulation only allows a point-wise
evaluation of ¢(p), a numerical optimization with approximations
to P has to be carried out. In the neighborhood of a particular siz-
ing vector p<0) the function ¢(p) can be approximated by a linear
Taylor expansion:

__ 9e(p)
C(p) ~ ap p(o)

((p—p @) +e(p'?) =80 2p0 1+ 0. (2)
This yields the following linear approximation to (1):

29— (pO £ Ap® |80 . Ap® 4 ) < g1 3)

'In this paper, regular lower case letters denote scalars. Vectors are
written in bold lower case. Matrices are bold capitals.
ZVector inequalities are interpreted elementwise.
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Figure 1: Iteratively finding center point using ellipsoids

choose p<0) with ppin < P(O) < Pmax, and let j = —1

¢0) = ¢(p()) from simulation

increase j by 1

SU) = §(p/)) from finite differences, DC simulation
pUtD = plt1)(§U) (1)) via Ellipsoidal Update (Sec. 3.4)
¢t = ¢(pUtD) from simulation
until ||p(j+1) _p(j)” <eg Acith <o

Ps = p(j+1)

Figure 2: Overview of initial sizing algorithm

The Jacobian matrix S(?) € R™ x R” contains the sensitivities of
the sizing rules with respect to the transistor parameters. It can
be approximated by finite differences from a number of quick DC
circuit simulations. Geometrically, (3) describes a polytope in the
parameter space [20].

Fig. 1 illustrates the basic idea behind our algorithm. The dot-
ted lines indicate the bounding hypersurfaces of 2. The lineariza-
tion at p(o) according to (3) yields the polytope @(0). The further
the point p(0> is outside P, the worse §(0)
P.

Computational geometry provides algorithms to determine an
ellipsoid with maximum volume, which is contained in a given
polytope [4, 19]. It can be seen from Fig. 1, left, that the center
p(]) of such an ellipsoid roughly lies in the middle of the polytope

usually approximates

?(0). Even more, p(l) moves closer to the center of P.
As shown in Fig. 1, right, a new linearization at p(') yields a

better estimate ?m of . Newly inscribing a maximum volume
ellipsoid yields a further improved center point estimate p(z). This
procedure is repeated until point p(j“) lies close to pm. Then,
the sought initial sizing is ps = pUt1).

3.3. Overview of Algorithm

Fig. 2 gives an overview of the algorithm. As an initial approxi-
mation to the center point, we randomly choose an arbitrary sizing
p(o) from within the parameter bounds ppi, and pmax that has DC
convergence.

In a loop, SU) and ¢l) are obtained from simulations at the
current point p(j ), and a new center p(-i+1) is calculated until con-
vergence is detected. For termination, all sizing rules have to be
satisfied and the distance between the center point approximations
[pUtD —pl)| has to be sufficiently small. This distance is mea-
sured using the Euclidean norm and an appropriate normalization
of the parameter vectors. As an extra feature not shown here, the
value of |[pU+!h) —pU)|| is monitored to verify a monotonic de-
crease.



3.4. Determination of New Linearization Point via Ellipsoidal
Update

As indicated in Fig. 2, the determination of the new linearization
point p(j‘H) is the critical step in the entire algorithm. For this
purpose, we developed a robust ellipsoidal update procedure. This
section first introduces the MVE algorithm, which is used to cal-
culate the maximum inscribed ellipsoid. Afterwards, it discusses
the entire update procedure, which embeds the MVE algorithm.

3.4.1. MVE Algorithm

Originally developed for linear programming, the ellipsoid algo-
rithm according to Khachiyan [9] can be used to find a maximum
volume ellipsoid inscribed in a polytope [1, 4]. For this appli-
cation, however, the algorithm is not very efficient. Recently, a
much superior maximum volume ellipsoid (MVE) algorithm was
published that aims at practical performance rather than particular
theoretical properties [19]. It owes its remarkable performance to
two corner stones: First, it is based on an advantageous mathe-
matical formulation of the underlying geometric idea. Second, the
resulting problem was partially solved symbolically. Therefore, at
runtime, only a simplified problem has to be attacked numerically.
The key ideas of this algorithm are summarized in the following.

Given a center point p, € R” and a symmetric, positive definite
matrix E € R" x R”, the associated ellipsoid £ is uniquely defined
by

E(pe.E)={p| p=pe+E-v A [v[[ <1} 4

Geometrically, the ellipsoid is the image of a unit ball under the
linear map E with its center point shifted to p,.

With Apéj ) = Pe— p<-7 ), the ellipsoid £0) is inscribed in ?U),
ie. £U) ¢ ?(1), if and only if

\ sup st

PSS v =1

: (Apgj) i <0

eV sV apd) sV ED | 4 <o.

1<i<m

&)

Here, SE”T is the i™ row of S(/) and cl(j) is the i entry of ¢(/).
If V}, is the volume of the n-dimensional unit ball, then the

Ellipsoid E has the volume

V, = det(E)-V,,. (6)

Therefore, det(E) could be used as an objective function for the
maximization of the ellipsoid volume. Yet, using the logarithm of
the determinant, (5) and (6) yield the following convex optimiza-
tion problem:

,EU)] = argmax log det(E)
[Ap. E]

(apt)

st Vo SUT ap,+ I8V Bl +cP <0, (7

1<i<m
Here, the notation [Apgj ),E<j >] denotes a matrix comprising Apg‘i )
and E), The argmax operator yields the argument leading to the
maximum objective value.
For finding an initial sizing, solely the ellipsoid center
pt/ =pl/ +ap!/
p(j+1) _ pgj) '

®
®

The matrix E<j>, however, cou}d be used as an estimation of the
shape and the orientation of pU) [1].

is required:
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It is possible to directly solve problem (7) numerically. How-
ever, in [19] it was shown how its complexity can be reduced by a
far-reaching symbolic simplification.

Setting up the Karush-Kuhn-Tucker (KKT) conditions for (7)
yields n? + n + 2m single equations. With clever transformations,
n? equations can be eliminated symbolically.

In the MVE algorithm, the thus simplified KKT conditions are
solved numerically using a primal-dual algorithm. This approach
involves iteratively finding the roots of the perturbed KKT con-
ditions [12]. A symbolic transformation of the resulting system
of equations to triangular shape further improves the performance
because, at runtime, the roots can be found by simple back substi-
tution.

Note that these symbolic simplification steps were done man-
uvally only once. The resulting algorithm is purely numeric in na-
ture.

To succeed, the MVE algorithm needs an interior starting point

Ap,(,{) with SU) -Aps,‘p +¢) < 0. It can be obtained solving the
following auxiliary linear programming (LP) problem:

5, ap))

argmin z s.t. S('7>~Ap+c('7> <1-z.
[z,Ap]

10)

In (10), the vector 1 € R™ consists of all ones. The argmin operator
yields the argument leading to the minimum objective value. An

interior point exists if and only if zﬁ,{) < 0. Then, Ap,S{> is the
required starting point for the MVE algorithm, which yields p(j +1)
according to (7) — (9). We can formally write

plUt) = mvESY, eld) Api)y. 11)

3.4.2. Robust Ellipsoidal Update Algorithm

Depending on how well ?U ), given by SU) and ¢/, approximates
the feasible parameter space P, we have to distinguish two cases:
()

Case 1: 73" <0

For a polytope ?O ) with a non-empty interior, the auxiliary LP
problem (10) finds a starting point Ap,(,{ ) and the MVE algorithm
(11) yields p(j+1).

()

Case 2: z;5° >0

Any meaningful circuit topology under reasonable operating con-
ditions has a non-empty feasible parameter space P. If (10) can-
not find an interior point, then the linearization point p(j) is most
likely too far outside P, resulting in a poor approximation. In this
case, we seek a point p(j“) closer to P: First, a suitable search
direction emanating from p(j> is identified and second, an appro-
priate step length is estimated. A subsequent simulation-based line
search yields pUt1.

Search direction: The rows of the Jacobian Matrix S contain
the gradients of the sizing rules with respect to p. For the i ! sizing
rule, the gradient at p/) is Vei(p)lpo-

Since for p = p(j) we have Ap(j) = 0, the sizing rule i is vi-

) = ci(p)) > 0. Let V) C {1,...,m}
comprise the indices of the violated sizing rules at p(j ). Then, a
step pr reduces the violations if

olated at this point if ¢

Y veip)lyo -apt) <o0. (12)
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Figure 3: Relaxed polytope
Of course, no remaining sizing rule may be violated:
Vei(p)lpo - ApY + ) <0. (13)

Here, the operator \ denotes the set difference. Combining (12)
and (13) we obtain
. (149

; T 5 (0, i€V
SW.ApW) 4e) <9, & =]
PrAem <l G e my\

From a different point of view, and with < instead of <, (14)
can be interpreted as a relaxed version of the original polytope

§(1)’ where the point p</‘ ) has been made feasible by moving the
boundaries of the violated sizing rules appropriately.
Fig. 3, left, illustrates this interpretation. Four linearized siz-

ing rules are shown. The hatchings mark the side of the bound-
Iw () == Vei(p)lpo -ApW) +c§j) > 0. There is no
point satisfying all sizing rules. In pm, rule k is violated. Ge-

()

ometrically, modifying the constant ckj
()

the associated boundary. Forcing c;;

aries, where ¢

means a parallel shift of

= 0 makes the boundary go

through the linearization point p<j>, which results in a non-empty
relaxed polytope.
As can be seen from Fig. 3, right, the center of this polytope

indicates a suitable search direction Apfl" ) because it provides an
improvement in all violated sizing rules while staying away from

the remaining boundaries. Therefore, Ap((/ ) is determined from

(14) using the MVE algorithm as described above.
Step length: The point p(j ) +Ap3j )
J+1)

could be used as new lin-
earization point p( . However, the efficiency of the algorithm
can be improved if we maintain the search direction Apé’ ) but cal-

(/)

culate a maximum step length xy)x

(/)

Xmax = Maxx  s. t.

according to

sU). Apf/) x+ed <o, 15

In the linear approximation, the step xﬁlﬁx ~Ap((j’ ) yields large re-
ductions of the sizing rule violations without newly infringing any
remaining sizing rules (cf. Fig. 3, right). Being aware of the limi-
tations of the linear approximation, the actual determination of the
new linearization point pU +1) is done with a simulation-based line

search in direction Apff ) with the initial step size xggx. Gradually
> 0, a new linearization

G) > ()

max —

decreasing the step length xU),
point it = p(/) 4 x{1) ~Ap((1") has been found if it satisfies

Y (@< ¥ (el

eyt icev ()
VU < v, (16)

VU = v A

V

where | - | denotes the cardinality of a set.
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3.5. Comparison to Ellipsoid-Based Design Centering

Our initial sizing algorithm bears some resemblance to geomet-
ric design centering approaches. These techniques seek the center
of the feasible parameter space as given by explicit performance
specifications. Both deterministic [1, 2, 7, 16, 18] and stochastic
[10, 11] methods using ellipsoidal approximation were suggested.

Our technique can be interpreted as a new solution method for
ellipsoid-based geometric design centering. It has the following
characteristics: First, it copes with a starting point far away from
the feasible parameter space, second, it deals with a small feasible
region that is determined by a very large number of bounding hy-
perplanes, and third, it features a particularly efficient solution to
the maximum volume ellipsoid problem.

o Arbitrary starting point p(0>:

Deterministic design centering procedures usually require some
a priori knowledge of the location of the feasible region. Even
stochastic techniques [10, 11] can have difficulties in finding
feasible designs due to the small size of the feasible parameter
space (c.f. Sec. 4.1). No such information is required in our
case. In fact, an efficient and robust convergence to the center of
the feasible region from a remote starting point with numerous
heavily violated sizing rules is an emphasis of our algorithm.

Efficient approximation of the feasible parameter space P:

To identify the boundaries of the feasible region, the mentioned
deterministic design centering techniques identify a number of
boundary points, either by nonlinear optimization [16, 18] or a
multitude of line searches [1, 2, 7]. These strategies are not fa-
vorable in the face of a high-dimensional parameter space and
a large number of implicit specifications. For an increased ef-
ficiency, we determine a linear approximation to the feasible
parameter space by simultaneous linearization of all implicit
specifications in one point. In this way, we avoid the time-
consuming identification of boundary points. This approach is
justified because experimental results show that sizing rules are
usually only weakly nonlinear and that the feasible parameter
space is very small in comparison to the space as defined by the
upper and lower parameter bounds (c.f. Sec. 4.1).

e Advanced solution to the maximum volume ellipsoid problem:
We take advantage of a new MVE algorithm, as opposed to [1,
2], where the traditional ellipsoid method is used. Experimental
results show that we gain a speedup of almost two orders of
magnitude compared to the prevailing ellipsoid algorithm.

A limitation, which our approach shares with all the ellipsoid-
based design centering techniques, is that for nonconvex feasible
regions there might not be a unique center point. So far, however,
we have not encountered such a case in practice.

4. EXPERIMENTAL RESULTS

The experimental results in the following sections 4.1 — 4.3 were
obtained from a folded cascode and a Miller compensated opera-
tional amplifier as depicted in Fig. 4. For these two circuits, the
simulations were based on a 0.65 um CMOS process with a sup-
ply voltage of 5 V. The experiments for Sec. 4.4 were done with
a commercial bandgap operational amplifier. This circuit was re-
alized in a 0.18 yum CMOS process and had a supply voltage of
1.5V

For these circuits, the numbers of transistors, inequality sizing
rules (= m from (1)) and designable circuit parameters (= n) are
given in Tab 1.
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Figure 4: Folded cascode (1) and Miller (r) operational amplifiers
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# inequality
circuit # transistors | sizing rules | # parameters
folded cascode 22 204 11
Miller 8 79 8
bandgap amplifier 30 107 15

Table 1: Characteristics of sample circuits

4.1. Smallness of Feasible Parameter Space

Earlier, we argued that only a small fraction of the entire param-
eter space yields legal sizings. To verify this claim, we randomly
generated a number of 10,000 samples p with Ppin < P < Pmax-
For the folded cascode amplifier none of the samples satisfied all
sizing rules, while for the Miller amplifier only 182 of them were
feasible. This result shows that especially for complex circuits
purely stochastic techniques have difficulties in finding legal siz-
ings. Needless to say that this problem even increases for low-
voltage designs.

4.2. Performance of Initial Sizing Algorithm

The initial sizing procedure has to be carried out only once for
a given circuit topology in a certain technology. Yet, in order to
demonstrate the reliability of our algorithm, we generated 100 ran-
dom samples from within the lower and upper parameter limits and
used them as starting points p(o) for one initial sizing run each.

average # average #
circuit # failures steps DC simulations
folded cascode 0 6.0 74.5
Miller 0 33 30.1

Table 2: Performance statistics for 100 initial sizing runs

Tab. 2 gives some overall performance statistics. First of all,
there was not a single failure, which demonstrates that our algo-
rithm reliably converges from practically any starting point. Even
more, the algorithm used only little computing resources. On an
average, for the folded cascode architecture, it needed about 6.0
iteration steps resulting in 74.5 quick DC simulations, which can
readily be parallelized. Reflecting the simpler architecture, for the
Miller operational amplifier only 3.3 steps with 30.1 simulations
sufficed. These results are remarkable considering how small the
feasible parameter spaces are.

In our ellipsoidal update algorithm, we put special emphasis
on the case, where the linearizations yield an empty polytope, i.e.

z,(,{) >0, c.f. Sec. 3.4.2, Case 2. The first column in Tab. 3 shows
that, in practice, there is a substantial number of sizing runs which
have to deal with poor linear approximations in one or more steps.
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# runs with average #
circuit z,(,{ ) >0 line searches
folded cascode 97 2.2
Miller 23 0.3

Table 3: Handling of poor linearizations (100 initial sizing runs)

In our experiment comprising 100 sizing runs, this situation arose
in 97 and 23 cases, respectively. Therefore, the reliable handling
of this case is crucial to a dependable initial sizing algorithm.

Recall that, in this situation, we perform a line search to obtain
a reduction of the sizing rule violations. Experience shows that
steps, which are based on line searches, only occur at the beginning
of the initial sizing run. Once a good linearization describing a
non-empty polytope has been found, a number of ellipsoidal steps
completes the centering.

For the folded cascode amplifier, on an average, the first 2.2
steps out of 6.0 were done based on line searches rather than
direct ellipsoidal centering. It may be surprising that, for the
Miller amplifier, this was only 0.3 steps out of 3.3. This can
be put into perspective from a different point of view. If we re-
late the average number of line searches to the fraction of sizings
that required line searches at all, we find that the folded cascode
needed 2.2/(97/100)=2.3 line search steps and the Miller required
0.3/(23/100)=1.3 of them.

average # average #
circuit steps DC simulations
folded cascode 8.3 100.1
Miller 34 30.5

Table 4: Performance statistics with line search disabled

The discussion above showed that the line search procedure
is an integral part of our algorithm. In Sec. 3.4.2, we argued for
Case 2 that doing an actual line search instead of simply solving
the relaxed problem yields significant speedups. To support this
claim, we effectively disabled the line search feature by assign-

()

ing a constant value of 1 to xyax from (15). Then, we reran the
algorithm using the starting points from above. Tab. 4 shows the
results. The fact that the Miller amplifier is comparatively well-
natured explains the minimal increase in computational cost for
this circuit. In contrast, for the folded cascode architecture, the
number of steps increases by 38% and the number of simulations
by 34%. This indicates that especially for challenging circuits the
line search technique yields a significant performance improve-
ment.

4.3. Performance of MVE Algorithm

number of ellipsoidal iterations in total
algorithm | step 1 | step2 | step3 | step4 duration
MVE 19 25 20 19 13sec
KE 17510 | 17584 | 18152 | 17463 | 17min 27sec

Table 5: Performance comparison

As mentioned in Sec. 3.4.1, for our application, the new MVE
algorithm [19] is superior to alternative algorithms such as the
original ellipsoid algorithm due to Khachiyan (KE) [1, 4]. As an
example, an initial sizing run of the folded cascode amplifier with
four iteration steps was examined. In each step, the two above al-
gorithms, which are iterative themselves, calculated the ellipsoid



centers. Tab. 5 shows the results obtained on a cluster of Pen-
tium III machines. It is striking that the MVE algorithm is almost
two orders of magnitude faster than KE. Considering that the nu-
merical circuit simulations only took additional 18 seconds in this
example, the necessity of a high-performance ellipsoid algorithm
becomes obvious.

4.4. Starting Point for Optimization

To illustrate the impact of the starting point on a subsequent op-
timization process, we applied three different optimization strate-
gies to a bandgap operational amplifier. In each case, we started
from the same set of parameter values, which were located ar the
boundary of P. The results, which are in line with experiences
gained from other circuits, are summarized in Tab. 6.

optimization strategy | # simulations

gradient-based — (failed)
combined evolutionary / gradient-based 7444
initial sizing and gradient-based 596

Table 6: Performances of different optimization strategies

A purely gradient-based optimization failed due to conver-
gence problems.

In such a situation one might resort to a stochastic technique
because it does not require an explicit starting point. We used an
evolutionary technique in combination with a terminal determin-
istic fine-tuning step. This algorithm “implicitly” found its way
into the feasible parameter space and generated a good result after
7444 simulations.

Yet, the combination of the initial sizing procedure with the
gradient-based optimization algorithm terminated successfully af-
ter only 596 simulations. The result was comparable to the one
from the previous approach.

This experiment suggests two conclusions: In comparison to
stochastic techniques, our initial sizing algorithm yields a much
better efficiency. Furthermore, it is evident that a starting point
centered in the feasible parameter space is well-suited to initialize
subsequent (especially gradient-based) optimization steps.

5. CONCLUSIONS

We presented a dedicated numerical algorithm to efficiently and
reliably find an initial sizing of analog circuits without user inter-
action. The result can be used to initialize any kind of subsequent
optimization process or as a starting point for manual design. We
interpret the initial sizing problem as a centering problem with re-
spect to implicit specifications arising from the circuit topology.
Since these specifications also have to be considered in a subse-
quent optimization process, our approach does not need any extra
setup effort. We iteratively linearize the boundaries of the feasible
parameter space and calculate its center using a robust ellipsoidal
update procedure, which embeds an advanced maximum volume
ellipsoid algorithm. Extra care was taken to ensure convergence
in the face of poor linearizations at the beginning of the center-
ing process. In this way, we find a sizing that satisfies all implicit
specifications with maximum safety margins. Experimental results
demonstrate the efficiency and reliability of our method, which
became part of a commercial sizing tool and has since proven its
strength in numerous industrial designs.
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