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ABSTRACT

A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture
has been developed for the Poseidon ocean circulation model and tested with a Pacific basin model configuration.
There are about 2 million prognostic state-vector variables. Parallelism for the data assimilation step is achieved
by regionalization of the background-error covariances that are calculated from the phase–space distribution of
the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby
PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the
background-error covariances are given compact support by means of a Hadamard (element by element) product
with a three-dimensional canonical correlation function.

The methodology and the MvEnKF implementation are discussed. To verify the proper functioning of the
algorithms, results from an initial experiment with in situ temperature data are presented. Furthermore, it is
shown that the regionalization of the background covariances has a negligible impact on the quality of the
analyses.

Even though the parallel algorithm is very efficient for large numbers of observations, individual PE memory,
rather than speed, dictates how large an ensemble can be used in practice on a platform with distributed memory.

1. Introduction

a. Background and motivation

Many of the early advances in ocean data assimilation
have emerged from practical applications in the tropical
Pacific. These applications have been driven by the need
to initialize the ocean state for coupled atmosphere–
ocean forecasts of the El Niño–Southern Oscillation
(ENSO) phenomenon. In addition, hindcast estimates of
the ocean state have been useful in diagnosing the evo-
lution of El Niño. Over much of the world’s oceans,
large-scale assimilation is facilitated by the availability
of satellite altimetry because of the sparsity of in situ
data. However, in the tropical Pacific, the ocean ob-
serving system was vastly improved by the deployment
of the Tropical Atmosphere Ocean (TAO) array of
moored buoys (e.g., McPhaden et al. 1998) to support
seasonal-to-interannual (SI) climate studies and predic-
tion. One of the major successes of the Tropical Ocean
Global Atmosphere program was the emergence of cou-
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pled physical models (as opposed to statistical models)
with some prediction skill (e.g., Chen et al. 1995; Ji et
al. 1996).

Recently, the NASA Seasonal-to-Interannual Predic-
tion Project (NSIPP) has been established to further the
utilization of satellite observations for prediction of
short-term climate phenomena. NSIPP undertakes rou-
tine experimental forecasts in a research framework with
global coupled ocean–atmosphere–land surface models.
The initial implementation has used an ocean analysis
system employing a simple assimilation methodology—
a univariate optimal interpolation (UOI)—with the Po-
seidon isopycnal ocean general circulation model
(OGCM; Schopf and Loughe 1995; Konchady et al.
1998; Yang et al. 1999). Like several other ocean data
assimilation systems currently in use at other institutions
(e.g., Ji and Leetma 1997), it is based on the assumption
that the forecast-error covariances are approximately
Gaussian and that the covariances between the temper-
ature-field errors and the salinity-field and current-field
errors are negligible.

Largely due to the high-resolution coverage and ac-
curacy of the TAO measurements, the UOI is effective
in improving surface and subsurface temperature-field
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estimates in the equatorial region in comparison with
the estimates obtained without temperature assimilation.
As a result, its introduction into the NSIPP coupled
forecasting system has resulted in significant improve-
ments in the coupled model’s hindcast skill of Niño-3
temperature anomalies.

The UOI has the advantage of being inexpensive in
terms of computing resources. Nevertheless, it suffers
from three major shortcomings: first, it can only be used
to assimilate measurements of a model prognostic var-
iable; second, it does not use any statistical information
about the expected inhomogeneous distribution of mod-
el errors; third, it is based on a steady-state error–co-
variance model, which gives the same weight to a unit
innovation regardless of how accurate the ocean-state
estimate has become as a result of previous analyses.
Directly linked to this shortcoming is the failure to pro-
vide time-dependent estimates of the model errors.

In response to the first two shortcomings, a parallel
multivariate OI (MvOI) system has been implemented.
The MvOI uses steady-state estimates of the model-error
statistics computed from ensemble runs of the OGCM
in the presence of stochastic atmospheric forcing from
an ensemble integration of the atmospheric general cir-
culation model (AGCM) (Borovikov and Rienecker
2002). Yet, the MvOI cannot adjust to dynamically
evolving error statistics. A parallel multivariate ensem-
ble Kalman filter (MvEnKF) has been developed to ad-
dress this shortcoming. This paper discusses its design,
implementation, and initial testing.

b. Overview of the ensemble Kalman filter

Although the Kalman filter (Kalman 1960) and its
generalization to nonlinear systems, the extended Kal-
man filter, are statistically optimal sequential estimation
procedures that minimize error variance (e.g., Daley
1991; Ghil and Malanotte-Rizzoli 1991; Bennett 1992),
they cannot be used in the context of a high-resolution
ocean or atmospheric model because of the prohibitive
cost of time stepping the model-error covariance matrix
when the model has more than a few thousand state
variables. Therefore, reduced-rank (e.g., Cane et al.
1996; Verlaan and Heemink 1997) and asymptotic (e.g.,
Fukumori and Malanotte-Rizzoli 1995) Kalman filters
have been proposed. Evensen (1994) introduced the en-
semble Kalman filter (EnKF) as an alternative to the
traditional Kalman filter. In the EnKF, an ensemble of
model trajectories is integrated and the statistics of the
ensemble are used to estimate the model errors. Closely
related to the EnKF are the singular evolutive extended
Kalman filter (Pham et al. 1998) and the error-subspace
statistical estimation algorithms described in Lermu-
siaux and Robinson (1999).

Evensen (1994) compared the EnKF to the extended
Kalman filter in twin assimilation experiments involving
a two-layer quasigeostrophic (QG) ocean model on a
square 17 3 17 grid. Evensen and van Leeuwen (1996)

used the EnKF to process U.S. Navy Geodesy Satellite
(Geosat) altimeter data into a two-layer, regional QG
model of the Agulhas current on a 51 3 65 grid. Hou-
tekamer and Mitchell (1998) and Mitchell and Houtek-
amer (2000) used the EnKF in identical twin experi-
ments involving a three-level, spectral QG model at
triangular truncation T21 and parameterized model er-
rors.

Keppenne (2000, hereafter K00) conducted twin ex-
periments with a parallel MvEnKF algorithm imple-
mented for a two-layer, spectral, T100 primitive equa-
tion model with parameterized model errors. With about
2 3 105 model variables, the state-vector size was small
enough in this application to justify a parallelization
scheme in which each ensemble member resides in the
memory of a separate CRAY T3E processor [hereafter,
processing element (PE)]. To parallelize the analysis,
K00’s algorithm transposes the ensemble across PEs at
analysis time, so that each PE ends up processing data
from a subregion of the model domain. The influence
of each observation is weighted according to the dis-
tance between that observation and the center of each
PE region.

To filter out noise associated with small ensemble
sizes, Houtekamer and Mitchell (2001) developed a par-
allel EnKF analysis algorithm that applies a Hadamard
(element by element) product (e.g., Horn and Johnson
1991) of a correlation function having local compact
support with the background-error covariances. They
tested this analysis scheme on a 128 3 64 Gaussian
grid corresponding to a 50-level QG model using ran-
domly generated ensembles of first-guess fields. The
benefits of constraining the covariances between ensem-
ble members using a Hadamard product with a locally
supported correlation function has also been investi-
gated by Hamill and Snyder (2000) in the context of an
intermediate QG atmospheric model.

In this paper, we build upon the contributions made
by each of the previously mentioned studies to imple-
ment a parallel MvEnKF for the Poseidon OGCM. Ini-
tial tests are undertaken with a 20-layer, Pacific basin
configuration of the model with about 2 million state
variables. The system noise is accounted for in a manner
similar to that used in K00, by including a stochastic
component in the forcing fields. Following Houtekamer
and Mitchell (2001), an element-by-element product
with an idealized three-dimensional compactly sup-
ported correlation function is used to remove spurious
long-range signals from the background-error covari-
ances.

c. Organization of the following sections

The remainder of this paper is concerned with the
parallel MvEnKF design for the Poseidon OGCM. The
model is briefly discussed in section 2 and the algo-
rithms are presented in section 3. The scalability of the
algorithms and the effect of distributing the analysis
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calculations between PEs are discussed in section 4,
where an initial test of the MvEnKF is conducted in the
context of TAO temperature data assimilation. Section
5 contains a summary.

A complete description of the algorithms is available
as a NASA technical report (Keppenne and Rienecker
2001, hereafter KR01). The application of the MvEnKF
to the assimilation of altimeter data into Poseidon is
discussed in Keppenne and Rienecker (2002a, hereafter
KR02a). The impact of the assimilation of temperature
on the model currents, salinity and sea surface height
(SSH) is presented in Keppenne and Rienecker (2002b,
hereafter KR02b).

2. The Poseidon parallel ocean model

a. Model summary

The Poseidon model (Schopf and Loughe 1995) is a
finite-difference reduced-gravity ocean model that uses
a generalized vertical coordinate designed to represent
a turbulent, well-mixed surface layer and nearly iso-
pycnal deeper layers. Poseidon has been documented
and validated in hindcast studies of El Niño (Schopf
and Loughe 1995) and has since been updated to include
prognostic salinity (e.g., Yang et al. 1999). More re-
cently, the model has been used in a numerical study
of the surface heat balance along the equator (Borovikov
et al. 2001) and in an examination of El Niño variations
during the 1990s.

Explicit detail of the model, its vertical coordinate
representation, and its discretization are provided in
Schopf and Loughe (1995). The prognostic variables
are layer thickness, h(l, u, z, t), temperature, T(l, u, z,
t), salinity, S(l, u, z, t), and the zonal and meridional
current components, u(l, u, z, t) and y (l, u, z, t), where
l is longitude, u latitude, t time, and z is a generalized
vertical coordinate which is 0 at the surface and incre-
ments by 1 between successive layer interfaces.

Following Pacanowski and Philander (1981), vertical
mixing is parameterized through a Richardson number–
dependent mixing scheme implemented implicitly. An
explicit mixed layer is included with a mixed layer en-
trainment parameterization following Niiler and Kraus
(1977).

A time-splitting integration scheme is used whereby
the hydrodynamics are done with a short time step (15
min), but the vertical diffusion, convective adjustment,
and filtering are done with coarser time resolution (half-
daily).

b. Model setup

The version of Poseidon used here has been paral-
lelized as in Konchady et al. (1998) using the same
message-passing protocol and 2D horizontal domain de-
composition used for the NSIPP-1 AGCM (Schaffer and
Suarez 2000).

The experiments of section 4 use a 20-layer Pacific basin
version of the parallel model with uniform 18 zonal res-
olution. The meridional resolution varies between 1/38 at
the equator and 18 in the extratropics. Solid boundaries
are imposed at 458 south and at 658 north. At lateral bound-
aries, a no-slip condition is used for the currents and a
no-flux condition is used for mass, heat, and salinity.

There are 173 3 164 3 20 grid boxes, of which 28%
are situated over land, resulting in a total of 2.0422 3
106 individual prognostic variables. A 16 3 16 PE lat-
tice is used as shown in Fig. 1. Although the PEs located
over land do not directly take part in the ensemble in-
tegrations, they are involved in the calculation of surface
heat fluxes using the atmospheric mixed-layer model of
Seager et al. (1995).

Figure 2 illustrates the horizontal setup for one PE
box. Locally within the box, the grid cells are numbered
1 # i # I, zonally and 1 # j # J, meridionally, from
the box’s lower-left, southwest corner. In order to min-
imize the communication overhead in the horizontal dif-
ferencing of the model equations, the PE boxes overlap.
The overlapping regions, called halo regions, have width
i1 2 1 to the west, I 2 i2 to the east, j1 2 1 to the south
and J 2 j2 to the north. The PE-private regions are thus
defined by i1 # i # i2 and j1 # j # j2.

3. Assimilation methodology

a. Horizontal domain decomposition

Since the version of Poseidon used here is paralle-
lized, the same domain decomposition used to run the
model can be used in the analyses, provided the back-
ground-error covariance matrix, P f , is locally approx-
imated. The main advantage of this parallelization strat-
egy is that it avoids the costly ensemble transpositions
across PEs that would be required at analysis time if
the ensemble integration were parallelized by letting
each ensemble member run on a different processor ar-
ray, as in KR00. Thus, the ensemble is distributed so
that the memory of each PE contains the same elements
of each ensemble member’s state vector. These elements
correspond to every variable contained within the PE
boxes, the PE-private portions of which (inner rectan-
gles in Fig. 2) are delineated by thick lines in Fig. 1.
This decomposition is used for the ensemble integra-
tions as well as for the analyses.

b. Assimilation on geopotential surfaces

The temperature measurements from each TAO
mooring are recorded at specific depths, which are fairly
consistent between moorings. Since Poseidon uses an
isopycnal vertical coordinate, the model fields must be
interpolated to the latitude, longitude, and depth of each
observation. When the UOI was implemented, the
choice was made to treat the temperature observations
in the usual (l, u, z) coordinate system in light of the
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FIG. 1. Horizontal domain decomposition for the Pacific model. The thin lines delineate grid cells. The
thick lines correspond to the boundaries of each PE box’s PE-private area on the 16 3 16 PE lattice. Each
dark circle corresponds to a TAO mooring.

absence of corresponding salinity observations. To
maintain compatibility with the UOI, which interpolates
model fields vertically to a series of prespecified depths
(hereafter, levels) prior to each analysis, the same ap-
proach is used here and the background covariances are
calculated on levels rather than on layers. Therefore, the
T, S, u, and y fields are converted from isopycnals to
levels and the analysis increments are calculated on the
levels before being mapped back to the isopycnals. The
mapping is made as though the vertical variations of the
field were piecewise linear, with the discontinuities in
the slope occurring in the middle of the layers. This is
illustrated in Fig. 3 for the temperature field. Sixteen
levels in the depth range from 0 to 500 meters are used
in section 4. To minimize vertical interpolation errors,
the levels include the depths of the TAO temperature
measurements.

This scheme results in only T, S, u, and y being up-
dated. The layer thicknesses, h, are left unchanged by
the assimilation. The procedure allows the model to
dynamically recalculate h from the new density distri-
bution and the target interface buoyancies, as it does at
every time step (see Schopf and Loughe 1995).

c. Ensemble size

With the MvEnKF, PE memory imposes constraints
on both the domain decomposition and the ensemble

size. The platform used in this work is a 1024-PE CRAY
T3E-600 with 128MB local RAM per PE. The Pacific
basin version of Poseidon is typically run on 64 PEs.
The goal is for the MvEnKF runs to be done on a few
times as many PEs. In this study, 256 PEs are used and
the memory available on these PEs imposes a limit of
about 40 ensemble members on this platform. Encour-
aging results have been obtained with comparably sized
ensembles by Mitchell and Houtekamer (2000) with a
three-level QG model and by K00 with a two-layer shal-
low water model.

d. Decomposition of analysis between PEs

The small ensemble size introduces the need to filter
out spurious long-range correlations when the back-
ground covariances are computed. Following Houtek-
amer and Mitchell (2001) and a suggestion by Gaspari
and Cohn (1999), this filtering is achieved through a
Hadamard product (i.e., A · B such that {A · B} ij 5
AijBij) of the error covariance matrices with a local com-
pactly supported correlation function. This function is
the product of a horizontal correlation function,
Ch( ), 5 [(l2 2 l1)2/ll 1 (u2 2 u1)2/lu]0.5, and(12) (12)r rh h

a vertical correlation function, Cy ( ), 5 | z2 2(12) (12)r ry y

z1 | /lz, where (l i, ui, z i) are the coordinates of point i.
In this study, Ch 5 Cy 5 C0, where C0 is defined by
Gaspari and Cohn (1999, their section 4.10). The nor-
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FIG. 2. Schematic setup for one PE. The halo regions are colored
gray. The thin lines delineate grid cells. The thick lines delimit the
halo regions and PE boundaries. In this example, I 5 J 5 9, i1 5 j1

5 3, and i2 5 j2 5 7.

FIG. 3. Mapping of the model temperature field to a specified level, z 5 zk. Within the current grid cell, zk is contained
between the layer interfaces z 5 l and z 5 l 1 1. In the model discretization, only the layer-average temperature
matters. Yet, to avoid ambiguities when more than one specified level passes through the same layer in the grid cell,
the field is interpolated linearly as shown.

malization is such that C0(r) 5 0, r $ 2. The correlation
scales used in section 4 for the assimilation of TAO
temperature data are ll 5 308, lu 5 158, and lz 5 500
m. Shorter correlation scales give better results when
gridded altimeter data are assimilated (KR02a).

Although the TAO temperature data assimilated in
section 4 are sufficiently few (about 600 at each anal-
ysis) for each PE to process them all, an approach
whereby each PE processes data from a subregion of
the model domain is used. When more numerous data

are assimilated, such as in KR02a, the regionalization
becomes a necessity.

The regionalization of the analysis is justified by the
Hadamard product: only data within an ellipse with sem-
iaxes 2ll and 2lu exhibit nonzero correlations with the
state variables within each grid cell. Taking advantage
of this fact, the region from which the observations
assimilated on each PE are collected is chosen to be the
smallest rectangle, with sides li2, j1 2 li1, j1 1 4ll and
ui1, j2 2 ui1, j1 1 4lu, containing all the ellipses that cor-
respond to the PE-private grid cells of this PE. This is
illustrated in Fig. 4.

e. Analysis procedure

Without the Hadamard product of the background-
error covariances with the compactly supported corre-
lation function, the EnKF analysis can be written as

f fy 5 J(x 2 ^x& ), (1a)i

f fl 5 L (y 1 ^x& ) 2 L (^x& ), (1b)i i

Y 5 (y , . . . , y ), L 5 (l , . . . , l ),1 m 1 m

fT(LL 1 W)b 5 d 2 L (y 1 ^x& ) 1 e , (1c)i i

a f Tx 5 x 1 YL b. (1d)i i

In (1) and throughout this discussion, uppercase bold-
face symbols represent matrices, lowercase boldface
symbols represent vectors and lowercase regular (i.e.,
not bold) symbols denote scalar variables. The vector,
d (nd 3 1) contains nd observations, xi (nx 3 1), 1 #

i # m, is the ith ensemble-state vector of length nx, and
m stands for the ensemble size. The superscripts a and
f refer to the analyzed state and the forecast, respec-
tively, J is an optional smoothing operator and ^ & de-
notes an ensemble average. The vectors y i (nx 3 1) and
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FIG. 4. Domain decomposition for the analysis. The outer rectangle
delimits the area, A , from which the data assimilated on one PE are
collected. The innermost rectangle depicts the boundary of the PE-
private area, B . The ellipse delimits the influence region of the PE-
private area’s southeastern corner cell, (i2, j1). The shaded area con-
tains the ellipses for all grid cells, (i, j), contained in B . The region
C contains all the PE’s grid cells including the halo regions.

li (nd 3 1) are columns of the matrices Y (nx 3 m) and
L (nd 3 m), respectively, and L (x) is a measurement
operator that relates the state vector to the observations.
Matrix W (nd 3 nd) is the observation-error covariance
matrix. It includes measurement errors as well as rep-
resentation errors. The representer matrix, R 5 LLT,
maps the background-error covariance matrix, P f (nx 3
nx), to the error subspace of the measurements. The
elements of bi are the representer-function amplitudes
used to update xi.

The nd 3 1 vector, z i 5 d 2 L (yi 1 ^x& f ) 1 e i in
(1c), contains the innovations with respect to the ith
ensemble member. The rationale for applying J to pres-
mooth xi prior to their calculation is discussed in section
3h. Following Burgers et al. (1998), e i is a random per-
turbation chosen such that ^e i& 5 0 and ^e i & 5 W. ItsTe i

role is to maintain the influence of observation uncer-
tainty in the error covariances estimated directly from
the ensemble so that these covariances are consistent
with the theoretical estimates. Its inclusion helps prevent
the ensemble from collapsing, resulting in a systematic
error underestimation.

When L(x) is a linear operator and J is an identity
mapping, (1) simplifies to the usual Kalman filter anal-
ysis equations (e.g., Gelb 1974) applied to update each
ensemble member in turn.

When the Hadamard products with the compactly
supported correlation function are introduced and when
the subscript ranges are explicitly written down, (1c)
and (1d) are replaced by

(pq) (pq)c 5 c 5 C (r )C (r ), 1 # p # n ,pq qp h h y y d

1 # q # n , (2a)d

T(C · LL 1 W)bi

f5 d 2 L (y 1 ^x& ) 1 e , 1 # i # m, (2b)i i

(kp) (kp)h 5 C (r )C (r ), 1 # k # n ,kp h h y y box

1 # p # n , (2c)d

Tg 5 L b · h , 1 # i # m, (2d)ik i k 6a fx 5 x 1 y + g , 1 # k # n , (2e)ik ik k ik box

where + and · refer, respectively, to the inner product of
two vectors and to the Hadamard product of two ma-
trices, and C (nd 3 nd) is a compactly supported cor-
relation matrix whose elements are defined by (2a),
where the indices p and q refer to the data wp and wq.
The components of the nd 3 1 vector hk defined by (2c)
contain idealized correlations between the (l, u, z) co-
ordinates, of grid box k and the coordinates of each
measurement. To simplify the notation, only one sub-
script is used to identify the grid box. The index, 1 #

k # nbox, thus loops over the three dimensions of the
(l, u, z) coordinate system. The m 3 1 vector, yk 5
{y1k, . . . , ymk}, contains optionally smoothed deviations
from the ensemble mean of the m ensemble state vectors
in the kth grid box. It is thus a single row of matrix Y.
With the MvEnKF, yik actually has four components,
that is,

y 5 J[(T, S, u, y) 2 (^T&, ^S&, ^u&, ^y&) ].ik ik k

The m 3 1 vector, g ik, contains the weights with
which the elements of yk in the k th grid box, {T, S, u,
y}ik, are combined to update the ith ensemble member.
In each grid box, the analysis update, (2c–e), involves
m matrix-vector multiplications of LT by bi · hk (2d). If
the analysis calculations were not distributed between
PEs, or if the observations allowed to influence the var-
iables of each grid box were not limited to a subregion
of the entire domain as a result of imposing compactly
supported background covariances, these multiplica-
tions would be very costly. For the Poseidon model
distributed across 256 PEs, they correspond to a tol-
erable fraction of the total cost of the MvEnKF. For
example, when TAO temperature data are assimilated
every 5 days as in section 4, the ensemble integration
takes about 1100 s per analysis cycle while the analysis
takes about 380 s. Of these, about 270 s are spent in
the matrix-vector products of (2d).

f. System-noise representation

The theory of the Kalman filter (e.g., Gelb 1974)
assumes that the first- and second-order statistics of the
errors in the model and external forcing are known.
Higher-order statistics are neglected. Let the evolution
of the true state be represented by

]x
5 F(x, t) 1 j(x, t), (3)

]t

where j combines forcing errors and errors due to im-
perfections in the model, and is commonly known as
system noise or process noise. The vector F (nx 3 1)
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contains the right-hand sides of the model partial dif-
ferential equations, which include the model hydrody-
namics, physics, and forcing. It is assumed that the mod-
el and forcing are unbiased, that is, [^j(x, t)&] 5 0, and
that the j vectors are uncorrelated in time:

^j(x , t )j(x , t )& 5 G(x , x )d(t 2 t ),k k l l k l k l (4)

where the system-noise covariance matrix, G, is as-
sumed known. Of course, the unbiased assumption is
rarely correct in practice. This is especially true with
ocean models in which the thermocline layer is usually
too diffuse.

In an effort to separately account for the bias and
unbiased forecast-error components, an algorithm, de-
rived from Dee and Da Silva (1998), to estimate and
correct systematic model errors has been implemented
into the MvEnKF code. However, it is not used in this
study. Rather, as in most atmospheric and oceanographic
data assimilation applications, no attempt is made here
to dissociate the bias from the unbiased error compo-
nent.

In meteorological and oceanographic data assimila-
tion, the statistics of j are generally unknown and are
the object of parameterization. Adaptive Kalman filters
that simultaneously estimate the state and system-noise
statistics have been developed. Blanchet et al. (1997)
summarize and compare several adaptive filtering al-
gorithms. In practice, the prohibitive cost of the adaptive
filters has limited their application in meteorology and
oceanography.

Motivated by the current lack of information about
the model-error statistics, the system noise is repre-
sented solely by modeling the errors in the surface wind
stress and heat flux forcing. A system-noise represen-
tation in which not only the forcing errors but also the
model errors are parameterized is in development.

Because of the focus on seasonal variability, the forc-
ing errors (uncertainties) are modeled on SI timescales,
with each ensemble member being forced by a different
monthly mean perturbation of the monthly mean basic
state. The basic state is the superposition of the cli-
matological seasonal cycle with interannual anomalies.
The climatology is provided by Special Sensor Micro-
wave Imager (Atlas et al. 1996) winds and Earth Ra-
diation Budget Experiment heat flux data. The inter-
annual anomalies are obtained by integrating the AGCM
over observed sea surface temperature (SST) data
(Reynolds and Smith 1994) starting from different initial
conditions. Thus, the perturbations applied are due en-
tirely to internal atmospheric chaos. By using the same
SST, each member of the atmospheric ensemble used
to force the ocean ensemble has the same SI phase. The
spread of the atmospheric ensemble is meant to be rep-
resentative of the uncertainty of the forcing products
used to force the model in nonensemble runs.

g. Parallel algorithm

All information exchanges between PEs use message-
passing functions from the Goddard Earth Modeling
System (GEMS) library. The GEMS functions provide
a high-level, object-oriented interface to the CRAY na-
tive SHMEM (shared memory) communication library
(see Schaffer and Suarez 2000).

The analysis relies principally on two GEMS func-
tions, which are mentioned here in template form in
order to simplify the discussion. The first function,
pepcollect (. . .), is used to collect data from either the
entire two-dimensional PE array or from a row or col-
umn of this array. The second function, halo (. . .), up-
dates its array argument in the halo regions of each PE
(gray areas in Fig. 2), after each PE has modified its
PE-private elements of this array corresponding to the
inner rectangle in Fig. 2.

Seen from the point of view of one PE referred to as
the current PE, the parallel MvEnKF analysis involves
the following steps. This overview starts after the cur-
rent PE has obtained the observations, db, made within
its PE-private region (B in Fig. 4). For a more detailed
discussion, the reader is referred to KR01.

• Step 1: Vertical interpolation of the T, S, u, and y
fields from the model layers to the analysis levels as
explained in section 3b.

• Step 2: Calculation of the anomalies with respect to
the ensemble mean over the entire domain of the cur-
rent PE (area C in Fig. 4), 2 1 # i # m.c f c fx ^x & ,i

• Step 3: Calculation of , the current PE’s portion ofcy
yi in (1a). Prior to this step, calls to pepcollect ( ) are
used to collect the state elements required to apply
the optional smoothing operator, J (section 3h).

• Step 4: Identification of the PE-private data required
by the other PEs. For each other PE, the current PE
calculates which elements of its fall inside thatbd
other PE’s rectangle, A, which is the region from
which the other PE will need to collect data (Fig. 4).

• Step 5: Evaluation of the measurement operator. The
current PE calculates a 3 m matrix, L whereb b bn , nd d

is the number of observations contained in its PE-
private region. The element at the intersection of the
pth row and ith column of L isb

p f p fbL 5 L (y 1 ^x& ) 2 L (^x& ),pi i

where L p, discussed in KR01, is an interpolation op-
erator that maps its argument to the location of ,bdp

the pth PE-private observation on the current PE.
• Step 6: Calculation of z, the innovations with respect

to the ensemble mean for the current PE’s private
region. The innovation corresponding to isbdp

b b p c fz 5 d 2 L (^x & ).p p

• Step 7: Gathering of L a 3 m matrix analogousa a, nd

to L but corresponding to the measurements madeb a, nd

within area A (Fig. 4). The function pepcollect ( ) is
called NPE times, where NPE is the number of PEs.
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Each call results in a different PE completing the col-
lection of its version of La.

• Step 8: Collection of the innovations, required byaz ,
each PE. As for gathering L pepcollect ( ) is calleda,
NPE times. Each PE passes to pepcollect ( ) the ele-
ments of its innovation vector required by the otherbz
PEs.

• Step 9: Calculation of the representer amplitudes by
solving a local equation system corresponding to the
restriction to area A of the global equations (2). A
local representer matrix, R 5 L (L and its Had-a a a T) ,
amard product with a local compactly supported cor-
relation matrix, C · R are computed. Then, locala a,
versions of the m right-hand sides of (2b) are calcu-
lated as 2 Li 1 e i, 1 # i # m. Finally, the localaz
equivalent of (2b) is solved m times, yielding the bi

vectors for the current PE.
• Step 10: Computation of the portions of the analysis

increments corresponding to each PE-private grid box.
A local version of (2c–e) is used. Then, calls to halo
( ) are used to fill the elements of 2 x f in the currentax
PE’s halo regions.

• Step 11: Transformation of the T, S, u, and y incre-
ments from the analysis levels to averages on the mod-
el layers. This step is the reciprocal of step 1.

h. Prefiltering and other miscellaneous features

The resolution of the model is much higher than that
of the observational TAO network and includes spatial
scales much shorter than those of the SI variability of
interest in this application. Hence, it was found that it
is best to apply the smoothing operator, J in (1a), in
the application discussed in section 4. In this respect,
J serves to remove from the representer matrix, R,
short-range covariance structure that is not resolved by
the observing system. Spurious long-range covariances
are filtered out by imposing that the covariance func-
tions be compactly supported.

In the current implementation, the J operator relies
on successive applications of a simple one-dimensional
recursive (infinite impulse response) filter that is applied
horizontally in each layer to damp small-scale vari-
ability prior to calculating L and after subtraction of the
ensemble-mean from each ensemble member’s state
vector, as indicated in (1a). The filter equations and its
response function are discussed in KR01.

Incremental analysis updating (IAU; e.g., Bloom et
al. 1996) is used to insert the analysis increments into
each ensemble member’s state vector in a gradual man-
ner. The IAU is used here for two reasons. First, it
lessens the unwanted effects of intermittent data assim-
ilation, specifically initialization shocks resulting from
imbalances between the model fields when the analysis
increments are inserted directly. Second, it allows the
model to gradually adjust the h field in response to the

T, S, u, and y increments without violating the con-
straints imposed by the continuity equation.

As is common when several measurements are made
at the same location between successive analyses and
to reduce the overall computational burden, the obser-
vations are smoothed temporally. A discussion of this
operation, sometimes referred to as superobing and in-
troduced by Lorenc (1981), can be found in KR01.

4. Verification

a. Effect of parallel decomposition on analysis

The parallel algorithm relies on the assumptions that
the analysis calculations can be partitioned, resulting in
each processor assimilating local data, and that the par-
titioning does not have a deleterious effect on the analysis
results. To verify these assumptions, the impact of per-
forming a different local inversion on each processor rather
than inverting the global system matrix, S 5 C · LLT 1
W in (2b), is examined in this section.

The squares in Fig. 5a show the evolution of the root-
mean-square (rms) innovation (rmsi) in an experiment
in which TAO temperature data are assimilated into Po-
seidon every 5 days for January 1993 to March 1993
using a 40-member ensemble distributed on 256 PEs
(the details of the experiment are given in section 4c).
In this case, sufficiently few data are involved that (2b)
can also be solved on each PE without distributing the
observations (i.e., without partitioning S between PEs).
Hence, another experiment was run in which each PE
assimilates all the available data (circles in Fig. 5a). The
effect on the rmsi is minimal. Its time-mean value over
the 3-month period is reduced by less than 1% from
0.9068C to 0.9058C. In contrast, in a third experiment
run without imposing the condition that S be compactly
supported [i.e., with C · LLT 1 W in (2b) replaced by
LLT 1 W, as in (1c)], the time-mean rmsi is 1.4098C.
The respective effects on the rms residuals (rmsr) of
imposing that S be compactly supported and of distrib-
uting the locally supported covariances is very similar
(Fig. 5b). The time-mean rmsr is 0.7298C in the case
of the compactly supported localized inversions (i.e.,
application of the Hadamard product and distribution of
observations, squares). When compactly supported
global inversions are used (application of the Hadamard
product to the global representer matrix, circles), the
rmsr is 0.7278C. With globally supported global inver-
sions (i.e., no Hadamard product, diamonds), it is
1.3098C.

The results illustrated in Fig. 5 confirm (1) that ap-
plying the Hadamard product, thus solving (2b), is a
better idea than solving (1c), as investigated in depth
by Houtemaker and Mitchell (2001) in the context of a
QG model, and (2) that it is safe to distribute the ob-
servations between PEs rather than having each PE as-
similate them all. The latter confirmation becomes im-
portant when it is truly necessary to distribute the as-
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FIG. 5. Evolution of (top) the rms temperature innovation and (bottom) the rms residual during 3-month MvEnKF
temperature assimilation runs spanning Jan–Mar 1993. The diamonds, circles, and squares correspond to cases with
globally supported global inversions, compactly supported global inversions, and compactly supported localized in-
versions involving distribution of the observations between PEs, respectively.

similation because there are too many data for each PE
to process them all at one time, as when gridded TO-
PEX/Poseidon altimeter data are assimilated (KR02a).

To gain further insight into how the parallel decom-
position impacts the analysis, the temperature analysis
increments from a single analysis using all the TAO
mooring data on 1 January 1997 are compared in Figs.
6 and 7. For this test, 25 members and 100 PEs were
used.

Figure 6a shows the SST increment in the tropical
Pacific in the case of a globally supported global so-
lution of (1c). Likewise, Figs. 6b and 6c correspond to
the locally supported global solution of (2b) and to the
locally supported solution of a distributed version of
(2b) [see (9d) in KR01], respectively. Equatorial sec-
tions through the temperature increment corresponding
to each of Figs. 6a–c are shown in Figs. 7a–c.

The most obvious effect of the Hadamard product of
C and LLT on the assimilation increment is that the latter
is tapered away from the equator where no measure-
ments are available (Fig. 6b). The large corrections away
from the equator would not be expected on physical
grounds and are the result of the spurious long-range
background-error covariances discussed in section 3d.

The effect of the Hadamard product on the vertical struc-
ture of the temperature increment is not as dramatic (Fig.
7b) since the data come from several depths between
the surface and 500 m. Yet, even here where there is
fairly good data coverage, there are noticeable differ-
ences. The differences indicate that spurious long-range
correlations also occur along the vertical.

Comparing Figs. 6c and 6b or Figs. 7c and 7b shows
that the analysis increments obtained when the analysis
calculations are distributed are virtually identical to
those obtained with (2), even though the global inver-
sion (2b) is bypassed. Indeed, the rms difference be-
tween the SST increments of Figs. 6b and 6c is 1.0 3
1023 C. Between the equatorial temperature increments
of Figs. 7b and 7c it is 6.0 3 1024 C. Thus, the tre-
mendous computational savings associated with substi-
tuting the local S for the global S occur with a negligible
impact on the quality of the analysis.

b. Scaling

At present, the two main limitations of the parallel
MvEnKF are 1) that is scales poorly beyond 100 PEs
on the present machine (CRAY T3E) and at the current,
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FIG. 6. Tropical portion of the analysis increments for SST (8C). (a) Global inversion without compactly supported
covariances. (b) Global inversion with compact support. (c) Distributed inversion with compact support.

relatively coarse, model resolution, and 2) that the max-
imum ensemble size attainable is dictated by the mem-
ory of the individual PEs on a massively parallel pro-
cessor (MPP) with distributed memory. Since the ex-
pected lifetime of a modern supercomputer is about two
years, it is unlikely that these limitations will impose
the same restrictions by the time the MvEnKF is used
with the global OGCM to initialize the NSIPP produc-
tion forecasts. Therefore, the software engineering ap-
proach used to implement the MvEnKF has focused on
portability, modularity, and object-oriented design, rath-
er than on optimally using the resources of the current
platform.

Figure 8a shows how tm, the time spent per ensemble
member in a 5-day analysis cycle involving the assim-
ilation of TAO temperature data, scales with NPE (dia-
monds). The dashed curve labeled EnKF perfect ex-
trapolates the value of tm for 16 PEs in the range from
16 to 256 PEs, assuming linear scaling. According to
Amdhal’s law, such scaling can never be achieved. In-
stead, the time per ensemble member used on p PEs is
given by tm 5 ts( f 1 (1 2 f )/p), where ts is the time
used per ensemble member on a serial machine and f
is the fraction of the operations that must be performed
sequentially.

The observed scaling is not easily compared with
theory. First, because ts is unknown. Second, because
f depends on NPE. Still, tm decreases by a mere 16%
when NPE doubles from 128 to 256. Rather, tm decreases
by 45% between 16 and 32 PEs. This is indicative of
saturation. The horizontal resolution of the Pacific basin
version of Poseidon used in these experiments is too
coarse for the distribution of its state vector over more
than 100 PEs to be optimal. In contrast, the global ver-
sion of Poseidon to which the MvEnKF will be applied
next has enough state variables to warrant its distribu-
tion over more than 100 PEs. For reference, the ob-
served and perfect scaling curves are also shown for
the UOI. In this case, the saturation becomes apparent
with 64 PEs at the current model resolution. For each
value of NPE, the UOI timing number is higher than the
corresponding MvEnKF number because the latter cor-
responds to the total time divided by the ensemble size
(mmax below).

In Fig. 8b, the largest ensemble size allowed by the
individual PE memory on the CRAY T3E-600, mmax, is
shown as a function of NPE. For each value of NPE, the
timing number in Fig. 8a corresponds to running the
MvEnKF with mmax ensemble members, so that memory
is saturated. Between 16 and 128 PEs, mmax increases
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FIG. 7. Same as in Fig. 6 except for the equatorial temperature increments.

approximately linearly from 6 to 36. On 256 PEs, mmax

is 46.
To increase mmax for given NPE, one could simulta-

neously run several small ensembles on smaller PE par-
titions rather than a single ensemble on a large partition.
However, this would require a communication mecha-
nism not currently supported by the GEMS library. Al-
ternatively, running the MvEnKF on a platform with
globally addressable memory would also allow larger
ensemble sizes. The 40-member ensembles used in sec-
tion 4c and in KR02a,b achieve a good compromise
between accuracy and keeping the cost of the data as-
similation within acceptable limits.

c. Application

As mentioned in section 4a and to verify that the
various MvEnKF components are working properly, an
experiment was run in which TAO temperature data are
assimilated every 5 days into Poseidon for January 1993
to March 1993 using a 40-member ensemble distributed
on 256 PEs. The initial ensemble configuration in this
experiment is such that the state vector of each ensemble
member corresponds to the final state of a different mul-
tiyear Poseidon run. The different runs vary in the forc-

ing anomalies used in each run to simulate the forcing
errors (see section 3f).

For reference, a run without assimilation and one in
which the data are assimilated using the UOI are ini-
tialized with the initial ocean state corresponding to the
MvEnKF central forecast (ensemble member closest to
the mean in terms of rms distance in the phase space
spanned by the model state variables) at the beginning
of the experiment.

After the 3-month assimilation period, the central
forecast from the MvEnKF run is used to initialize a
12-month hindcast run of Poseidon forced with clima-
tological winds, SSTs, and heat fluxes, and without tem-
perature assimilation. The hindcast is a test of the im-
proved ‘‘memory’’ of the subsurface ocean state fol-
lowing the assimilation of the TAO data. Two similar
hindcasts are initialized with the states of the UOI and
control runs at the end of the assimilation period.

Figure 9 shows the evolution of the spatial-mean tem-
perature anomaly at the TAO-mooring locations, in the
observations as well as in the MvEnKF, UOI, and con-
trol runs. The anomalies shown are with respect to the
mean seasonal cycle calculated at each mooring and at
each measurement depth for the 1990s. For the MvEnKF
run, the anomalies are those of the central forecast.
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FIG. 8. (left) Time per ensemble member required to complete one 5-day analysis cycle when TAO temperature data
are assimilated (tm in text). The curves labeled perfect correspond to an unattainable linear scaling. (right) Largest
ensemble size possible as a function of NPE (mmax in text) on the CRAY T3E-600.

Initially, the UOI and MvEnKF runs have the same
positive bias as the control run, since the same initial
ocean state is used in the three runs. The temperature
bias in the equatorial region—loosely defined here as
the difference between the spatial-mean temperature
anomaly in the model and the mean anomaly in the
observations—is a common feature of most OGCMs. It
is the result of the thermocline layer becoming too dif-
fuse in response to the numerical diffusion applied to
model for long timescale dissipative processes. There-
fore, the initial effect of the temperature assimilation is
to tighten the thermocline along the equator. Once this
adjustment has taken place, the assumption of unbiased
forecast errors is approximately satisfied and further im-
provements caused by the assimilation are mainly the
result of correcting the unbiased error component. After
a few assimilation cycles, the mean anomalies from the
MvEnKF and UOI runs are close to the corresponding
observed anomalies during the period with temperature
assimilation.

When the temperature assimilation ceases, the UOI
and MvEnKF runs start drifting back towards the warm
conditions of the control run. However, even after a year

with climatological forcing and no data assimilation, the
positive bias of the MvEnKF run (diamonds) is only
29% that of the control run (squares). At that point, the
level of bias seen in the UOI run is 72% that seen in
the control. This result suggests that, even though the
assimilation of the TAO temperature data using either
method has a positive impact on the forecast-model bias
for temperature, the better performance of the MvEnKF
can partly be attributed to the underlying multivariate
correction in which not only T, but also S, u, and y, are
updated. Results from runs conducted under different
experimental conditions and in which T only is updated
(i.e., the MvEnKF is replaced by a univariate temper-
ature EnKF) have confirmed this assumption. The two
other likely reasons for the improvement over the UOI
are that the MvEnKF allows for the anisotropy of the
background-error covariances and that it evolves the
error-covariance estimates together with the model flow.

Figure 10 shows how the ratio of the rms ensemble
spread for temperature (hereafter, Enrms) to the rmsi
evolves during the 3-month period with temperature as-
similation. The Enrms is calculated before each analysis,
after interpolation of the model temperature field to the
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FIG. 9. Evolution of spatial-mean temperature anomaly at the TAO
mooring locations during the 3-month period with TAO temperature
data assimilation and during the 1-yr hindcast period without tem-
perature assimilation. The mean anomalies shown correspond to the
TAO observations (dotted line), the MvEnKF run (diamonds), the
UOI run (circles) and the free-model control run (squares).

FIG. 10. Evolution of the ratio of the rms ensemble spread for
temperature (taken at the location of each measurement) to the rms
temperature innovation during the 3-month period with temperature
assimilation. The diamonds indicate the time of each analysis.

location of each TAO measurement. It estimates the rms
forecast error for temperature. Its ratio to the rmsi is
thus an indicator of the how well the ensemble spread
accurately predicts the rms error.

The initial value of the rms ratio is 1.73. The ensem-
ble initialization method used in this experiment is
roughly equivalent to randomly picking m initial con-
ditions from a time series of model states. Thus, the
ensemble mean is initially close to the model climatol-
ogy and the fact that the Enrms is initially larger than
the rmsi reveals that the initial errors for temperature
have less amplitude than the climatological variability.

The ratio of the Enrms to the rmsi drops to a value
of 0.98 between the first and fourth analyses. Hence,
the ensemble spread is in good agreement with the actual
errors at the time of the fourth assimilation. After the
fifth analysis the rms ratio keeps declining, albeit more
slowly than between the first and fifth analyses. More-
over, the rate at which the rms ratio declines between
two successive analyses is roughly constant after the
fifth analysis. A plausible explanation is that the pro-
cess-noise model does not account for enough vari-
ability since the system noise is represented solely by
modeling the errors in the surface wind stress and heat
flux forcing (section 3f). In order for the rms ratio to
stay close to unity until the end of the experiment, it
will be necessary to include a term to simulate the model
errors in the system-noise representation. As mentioned
in section 3f, such a system-noise representation is in
development. Without it, the data assimilation would
eventually fail if the experiment were continued for sev-
eral years. The failure would result from the MvEnKF
gradually attributing less weight to the observations
even though the forecast does not become gradually
more accurate after the rmsi has reached a steady state.

In this example, the rmsi stays close to 0.88C after about
eight analyses (Fig. 5a).

5. Summary

This article describes the MvEnKF design and its
parallel implementation for the Poseidon OGCM. A do-
main decomposition whereby the memory of each PE
contains the portion of every ensemble member’s state
vector that corresponds to the PE’s position on a 2D
horizontal lattice is used. The assimilation is parallelized
through a localization of the forecast-error covariance
matrix. When data becomes available to assimilate, each
PE collects from neighboring PEs the innovations and
measurement-functional elements according to the lo-
calization strategy. The covariance functions are given
compact support by means of a Hadamard product of
the background-error covariance matrix with an ideal-
ized locally supported correlation function. In EnKF
implementations involving low-resolution models, one
has the freedom to work with ensemble sizes on the
order of hundreds or thousands. Rather, with the state-
vector size of approximately 2 million variables con-
sidered here, memory, communications between PEs,
and operation count limit the ensemble size. In most
instances, 40 ensemble members distributed over 256
CRAY T3E PEs are used.

Besides the details of the observing system imple-
mentation, the impact of the background-covariance lo-
calization on the analysis increments is discussed, as
well as performance issues. To confirm that the data
assimilation system is working properly, the discussion
also includes results from an initial test run in which
the MvEnKF is used to assimilate TAO temperature data
into Poseidon.

Some issues that must be addressed to improve the
MvEnKF are the deficiency of the system-noise model,
which only accounts for forcing errors, the problem of
ensemble initialization, which can be addressed using a
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perturbation-breeding approach, and the memory limi-
tations inherent with running the MvEnKF on a MPP
with distributed memory. On a machine with globally
addressable memory, the memory-imposed constraints
would be less severe. Fortunately, the modular, object-
oriented approach used to develop the MvEnKF allows
an easy port of the implementation from the CRAY T3E
to almost every distributed-memory or shared-memory
parallel computing architecture.
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