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Abstract—Increasingly, trust has played a crucial role in the
security of an IoT system from its inception to the end of its
lifecycle. A device has to earn some level of trust even before it
is authenticated for admission to the system. Furthermore, once
the device is admitted to the system, it may behave maliciously
over time; hence its behavior must be evaluated constantly in the
form of trust to ensure the integrity of the system. Currently,
no mechanism exists to establish an initial trust on a device,
without prior knowledge, before its admission to an IoT system.
Even when trust is applicable, trust evaluation models require
direct/indirect observations over time, historical data on past
encounters, or third party recommendations. However, this type
of past data is not available in the first encounter between the
system and the device. The question is how to establish whether
a device can be trusted to a level that merits further evaluation
for admission into a mobile and dynamic IoT system when it
encounters the system for the first time? This paper addresses
this challenge by proposing a challenge-response method and a
trust assessment model to establish, without prior knowledge,
the initial trust that a device places on another in a mobile and
dynamic environment called personal space IoT. The initial trust
is established before further interaction can take place and under
the assumption that only a limited window of time is available
for the trust assessment. The paper describes and evaluates the
proposed model theoretically and by simulation. It also describes
a practical scheme for realizing the proposed solution.

I. INTRODUCTION

A personal space IoT system refers to a group of implanted

and wearable devices providing services to a user, and other

devices that are within the wireless communication radius of

the users devices. In this system, a smartphone or a capability-

comparable device acts as the centralized controller, managing

of the space including admitting devices and monitoring their

activities. As defined in [1], an IoT system can be modelled as

a mobile entity whose constituents vary dynamically. Figure 1

illustrates the personal space IoTs where each circle represents

one personal space IoT system.

The operation of an IoT system, particularly a personal

space IoT system, mainly relies on the cooperation and inter-

connection among devices. In addition, the personal space IoT

system often operates in a hostile environment where there is

high density of malicious and intruders. Existing IoT systems

rely on authentication approaches for establishing secure com-

munications among devices [2]. However, during the operation

phase, an authenticated device may behave maliciously over

time by not cooperating with others, providing inaccurate

data or poor services to gain its own benefits. Moreover,

an authenticated device may deploy improper system tear-

down or decommission to cause damage afterward. In fact,

trust has been used to monitor device’s behavior and detect

malicious device. In order to guarantee the integrity of the

system, the device’s behavior must be evaluated constantly in

the form of trust not only from its admission to the system but

also its entire lifecycle. Specifically, the device must establish

some level of trust before it is authenticated for admission

to the system. Furthermore, it also needs to keep on being a

trustworthy member of the system. Relying on the initial trust

level to admit devices is thus essential for creating a secure

personal space IoT system and the trust assessment algorithm

plays the crucial role in the process.

Currently, no existing work has yet attempted to provide a

solution for establishing the initial trust on an entity, without

prior knowledge and before its admission to the system.

Several trust models proposed for IoT rely on trust evidences

from direct/indirect observations over time, historical data in

past encounters, or recommendations. However, such trust

information is not available at the first encounter between the

device and the IoT system. The proposed trust models only

evaluate trust level of devices after they are admitted to the

system. Therefore, a trust assessment model for establishing

the initial trust on a device on its first encounter is needed.

The question is how to establish this initial trust on a device

when the pre-knowledge about the device is not available at

the first encounter? One view is that it is reasonable to place an

initialized trust value equally to all devices. This assumption

has been used in existing trust models which only assess trust

degree of devices after a long operational period to detect

the misbehaving devices [3]. However, the initialized value

does not represent the real behavior of all devices. Another

idea is that it is necessary to create the knowledge about
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the device by assessing its behavior. A possible approach

is to aggregate a committee to judge the trustworthiness of

the device at the instance of its encounter with the system

[4]. In the personal space IoT scenario, collective community

judgment is not feasible and only a limited amount of time

is available for establishing the initial trust. To overcome this

obstacle, we propose a challenge-response method whereby

the initial trust on a device is to be established by the controller

through the uncertainty level of the device’s behavior cap-

tured from challenge-response rounds. Although the challenge-

response technique has been used in authentication methods

[5], [6], their purposes are different from our challenge-

response mechanism as they only verify the device’s identity

without concerning on trustworthiness of the device. To the

best of our knowledge, we are the first to establish initial

trust value on a device by utilizing the challenge-response

mechanism during the first encounter of the device and the

system.

In this paper, we propose a challenge-response-based initial

trust assessment model to establish the initial trust level that a

device places on another at their first encounter. The challenge-

response mechanism is used to create the knowledge about

the device by learning the uncertainty level in its behavior.

The initial trust assessment model then relies on the results

of the challenge-response process to assess if a device can

be trusted to a level that can be used for its admission

to the personal space IoT system. We extensively evaluate

our proposed model theoretically and via simulation. Results

show that the challenge-response mechanism can capture the

behavior of the device properly. The initial trust assessment

model allows a mobile and dynamic system to establish initial

trust level on devices within a limited time period at the

beginning of their first encounter. We also describe a realistic

scheme for realizing the proposed solution.

The rest of the paper is organized as follows. Section II

provides related work. Section III describes our challenge-

response method and the initial trust assessment model.

Section IV presents the evaluation of our proposed model

via simulation. Section V describes a practical scheme for

realization of the solution. Finally, section VI concludes the

paper and suggests directions for future research.

II. RELATED WORK

Trust has increasingly played an important role in the

security of an IoT system from its inception to the end of

its lifecycle. In the literature, a number of trust management

systems investigating computational trust models have been

introduced in wireless networks and in the context of IoT [7].

In computational trust models, Bayesian approaches have been

widely used in reputation systems to evaluate trust [8]–[11].

Ganeriwal et al. [9] introduced a classical beta reputation-

based framework for sensor networks where nodes use repu-

tation to evaluate other’s trust level. In this work, a node esti-

mates the reputation of other nodes based on their transactions

over a period and reputation information recommended by its

neighbors. By fitting the distribution of the node’s reputation

to Beta distribution, the authors define the trust level of a node

as the statistic expectation value of the Beta probability density

function (pdf) associated with its reputation.

In [11], a probabilistic trust management model is proposed

based on the experience of previous interactions and recom-

mendations. The trust value is influenced by the expectation

value of the Beta distributed probability of a satisfactory inter-

action where the pre-knowledge about the number of previous

satisfied and unsatisfied interactions from direct observations

and recommendations are recorded. However, in this approach

devices must keep lists of all historical interactions with others.

Similarly, Chen et al. [8] proposed a trust management for

service oriented architecture based IoT by adopting Bayesian

framework as the underlying model for evaluating direct trust

towards a service from user’s experience. The trust value is the

weighted combination of his satisfactory direct experience and

recommendations from his friends. This work requires entities

to maintain their past observations of all other entities in the

system.

In [10], Sun et al. argued differently that uncertainty can be

used as a measure of trust. The trust value can be calculated

by determining the degree of uncertainty in the future action

of an agent. When the direct observation is not available, the

uncertainty is measured through concatenation and multipath

propagation of recommendations. However, these techniques

result in a degradation of trust value when it is propagated via

a series of recommenders.

Our work differs from previous work as we introduce an

initial trust assessment model which conducts a challenge-

response process to establish initial trust on a device before

it is admitted into a mobile and dynamic IoT system. We

propose the challenge-response mechanism that allows device

to generate the evidence for trust computation instead of

waiting for the recommendations or actual interactions for a

long period.

III. CHALLENGE-RESPONSE-BASED INITIAL TRUST

ASSESSMENT MODEL

This section describes our proposed challenge-response-

based initial trust assessment model. We first describe the

challenge-response mechanism for evaluating the uncertainty

level in a device’s behavior that encounters the system for

the first time. Then, we explain how the uncertainty level is

measured from the results of the challenge-response process

through information entropy. Finally, we present the translation

of the uncertainty level to the initial trust value.

A. Challenge-response mechanism

The challenge-response mechanism is a process of creating

knowledge about a device by investigating its behavior towards

challenges. It is performed intentionally by the controller

at the creation phase of a personal space IoT system to

investigate the uncertainty level about a device’s behavior.

The process contains several challenges that the controller

requests responses from a mobile/non-mobile device before

its admission to the system. A challenge can be a request

for the knowledge about the surrounding environment. It can

be an action that the device must perform properly. The type



of challenges varies depending on the applications that the

personal space IoT system supports or the environment where

the system is operating.
Each challenge followed by a response can be considered as

a challenge-response round. The result of a challenge-response

round is either an expected response or an unexpected response

provided by the device under testing. Once a round completed,

the obtained result will be combined with previous results to

form the knowledge about the device that is utilized to measure

the uncertainty level in its behavior.
During the challenge-response process, the uncertainty level

in a device’s behavior is measured via information entropy.

Then, the initial trust value that the controller places on the

tested device will be computed from the uncertainty level.

Now, the question is that given the results from the conducted

challenge-response rounds, how to measure the uncertainty

level in the device’s behavior?

B. Uncertainty measurement

The base of uncertainty measurement is the probability. In

our initial trust assessment model, the probability associated

with the uncertainty level in a device’s behavior refers to

the probability that the device will behave as expected to

a challenge, or equivalently the probability that the device

provides an expected response to a challenge.
In [1] we proposed an approach to measure the uncertainty

level through a conditional probability associated with the trust

relationship between the controller and a device. The calcu-

lation of this conditional probability relies on the probability

that a device is considered as an expected device given its

response to a challenge and the probability that the controller

trusts a response from this device. For a more feasible solution,

in this paper we measure the uncertainty amount in a device’s

behavior through Bayesian analysis where the posterior model

describes the distribution of the probability associated to the

uncertainty measurement conditional on the results from the

challenge-response mechanism.
Prior to any challenge-response rounds, the probability

associated with the uncertainty level of a device’s behavior

is a random variable which is uniformly distributed over [0, 1]
as there is no pre-knowledge about the device’s behavior.

When the result from each challenge-response round occurs,

this probability value could reasonably be distributed over a

smaller scope as there is more evidence on how the device

behaves to the challenge. The posterior distribution of this

probability will be derived from the prior distribution and the

results of the challenge-response process to reflect our new

information about the device’s behavior.
Let θ denote the probability associated with the uncertainty

level in a device’s behavior. To estimate the value of θ, we first

assign a prior distribution to θ, p(θ), that is associated with the

uncertainty in device’s behavior before any challenge-response

rounds. Initially, θ is an unknown parameter and equally likely

to take all values between 0 and 1 inclusive. It is reasonable

to take p(θ) from the Beta family which is defined as follows

[8], [9], [12].

p(θ) =
1

B(α, β)
θ(α−1)(1− θ)(β−1) (1)

To represent the non-informative prior distribution of θ before

any challenge-response rounds, we can choose parameters α =
β = 1.

The challenge-response rounds in our initial trust assess-

ment model are considered as binary events with two possible

outcomes. Let R denote the outcome from one round. Thus,

R can take a value in {0, 1} that reflects the unexpected

response or expected response, respectively. In this paper, we

design independent challenge-response rounds for estimating

the value of θ. The probability that the outcome R will occur in

each challenge-response round given the unknown probability

θ can be expressed as follows.

p(R | θ) = θR(1− θ)1−R (2)

Once a challenge-response round completed, the posterior

distribution of θ can be updated by applying Bayes’ theorem.

p(θ | R) =
p(R | θ)p(θ)

1
∫

0

p(R | θ)p(θ)dθ

(3)

Replacing (1) and (2) to (3), the expression of the posterior

distribution of θ becomes as below.

p(θ | R) =
θα+R−1(1− θ)β+1−R−1

1
∫

0

θα+R−1(1− θ)β+1−R−1dθ

=
θα+R−1(1− θ)β+1−R−1

B(α+R, β + 1−R)
(4)

The expression in (4) shows that the posterior probability

of θ has a Beta distribution with parameters (α + R) and

(β + 1 − R) where α and β are parameters of the prior

distribution before the current round takes place. It can be

seen that, when the outcome from the first round occurs,

the posterior distribution of θ has Beta distribution with

parameters (1 + R) and (1 + 1 − R) as its prior distribution

is non-informative.
The estimation of θ in subsequent challenge-response

rounds will take the previous updated posterior distribution of

θ as the prior distribution. Updating from the prior distribution

and the outcomes of the challenge-response rounds by the

same way, the posterior distribution of θ after n rounds

p(θ | R1R2 . . . Rn) is again Beta distribution with parameters

(1 + nR̄) and (1 + n − nR̄) where R̄ = 1
n

∑n

i=1 Ri and

Ri ∈ {0, 1}.
As θ is a probability variable, for a given θ the probability

density p(θ | R̄) represents the probability that θ has a specific

value. Since the variable θ is continuous, the second-order

probability p(θ | R̄) for any given value of θ in [0, 1] is very

small and hence meaningless [12]. It is only meaningful to

compute the posterior expectation value of θ:

E[θ | R̄] =
nR̄+ 1

n+ 2
=

1

n+ 2
+ R̄× (1−

2

n+ 2
) (5)

The form of posterior expectation value calculation in (5)

shows that when we conduct a large number of challenge-

response rounds, i.e., n grows very large, the posterior expec-

tation value of θ mainly relies on the mean of observation

results.
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Fig. 2: Uncertainty measurement with associated probability

Information theory states that entropy is a nature measure of

uncertainty. We measure the uncertainty level in the device’s

behavior by using the Shannon entropy [13].

H(x) = −xlog2(x)− (1− x)log2(1− x) (6)

where x = E[θ | R̄] is the posterior expectation value of θ that

represents the probability associated to the uncertainty level in

device’s behavior after a number of challenge-response rounds.

C. Initial trust computation

Figure 2 shows the uncertainty level in the device’s behavior

measured from the associated probability that refers to the

posterior expectation value of θ, i.e., E[θ | R̄], taking a

value from [0, 1]. In fact, trust is an increasing function of

the probability. Trust value should be increased when the

probability that the device behaves as expected increases from

0 to 1.

In our trust model, the proportion of (nR̄ + 1) to n + 2
decides the uncertainty level in the device’s behavior. The

maximum value of the uncertainty level about the device’s

behavior is at 1 when the device provides the expected

responses and the unexpected responses equally. In this case,

trust should be a neutral value to indicate that there is no trust

or distrust places on this device. In addition, the uncertainty

level reduces from 1 to 0 when the associated probability

spreads far away from 0.5 towards 0 or 1. As the uncertainty

level is a symmetric function of the probability, it reaches

nearly 0 when either nR̄ + 1 ≪ n + 2 or nR̄ + 1 ∼ n + 2.

The corresponding trust value should be interpreted to −1
which refers to a full distrust opinion places on the device

that provided unexpected responses to all the challenges. In

contrast, the trust value should be interpreted to 1 which

indicates a complete trust opinion places on the device that

behaved as expected in all the challenges.

To interpret the uncertainty level of the device’s behavior

to the trust value, (7) is used [10], where x = E[θ | R̄].

T =

{

1−H(x), if 0.5 ≤ x ≤1

H(x)− 1, if 0 ≤ x <0.5
(7)

The mapping in (7) satisfies the requirements for the trust

metric as discussed above. Figure 2 also illustrates our in-

terpretation of uncertainty level to initial trust value with
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Fig. 3: Investigated values changing over 7 C-R rounds with

all expected responses

associated probabilities. The trust level depicts a value from

the range of [−1, 1] which can represent a full distrust, a less

distrust, a neutral trust, a more trust or a complete trust opinion

when the associated probability increases from 0 to 1.

It is important to end the initial trust assessment process

within the creation phase of the personal space IoT system.

We set thresholds for the initial trust to ensure that the trust

assessment process ends upon the established initial trust value

reach a given threshold.

IV. EXPERIMENTAL RESULTS

This section presents the evaluation of our proposed model

via simulation and discusses the obtained results. To study

fully the behavior of the proposed model and the impact

of salient parameters under various circumstances, we will

not impose the time limit or the number of iterations in the

challenge-response (C-R) process in our investigation below.

In the experiment, we conduct a challenge-response process

with seven C-R rounds where each new device will be tested

with seven challenges by the controller. We investigate how the

posterior pdf, expectation value of the associated probability,

the corresponding uncertainty level and initial trust value

change during the challenge-response process with various

cases of device’s responses.

Figures 3 shows the change of investigated values when

a device provides expected responses to all challenges. The

curve representing the posterior pdf has gradually shifted

to the right side when more expected responses received

from the device. The expectation value of the probability

associated with device’s behavior increases from 0.68 to 0.88

that leads to a reduction in the uncertainty level. The initial

trust value increases from 0.1 to around 0.48 which refers

to a trust opinion placed on the device because it provided

good behavior consistently through challenge-response rounds.

After the challenge-response process, the controller gains more

knowledge concerning the device and places an initial trust

value of 0.48 on the device.

Figure 4 presents the change of investigated values during

the challenge-response process when a device provides unex-

pected responses to all challenges. Since the device behaved

badly in all rounds, the posterior pdf has gradually shifted to

the left side. Consequently, the expectation value of associated

probability continuously reduces from 0.34 to 0.11. Thus, the
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Fig. 4: Investigated values changing over 7 C-R rounds with

all un-expected responses
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Fig. 5: Investigated values changing over 7 C-R rounds

with three first expected responses followed by unexpected

responses

corresponding measured uncertainty level reduces to around

0.5. Although the uncertainty level measured in this case

is similar to that in the first case, the initial trust value is

interpreted to -0.48 which refers to a distrust opinion placed

on the device because it continuously provided bad behavior.

Figure 5 summarizes the change of investigated values

during the experiment when a device provides expected re-

sponses at three first challenges and unexpected responses

at subsequent challenges. The uncertainty level reduces over

three first rounds and increases again to a very high value when

the device provides bad behavior at the subsequent rounds. The

corresponding initial trust value increases from a neutral value

to 0.2 in three first rounds and drops to a neutral value as the

device does not provide good behavior consistently.

Figure 6 illustrates the change of investigated values in case

a device provides unexpected responses to two first challenges

and expected responses to subsequent challenges. It can be

seen that the curve of the posterior pdf is narrower and shifted

to the right side and the expectation value reduces in two first

rounds and increases over five subsequent rounds. The initial

trust value drops to -0.5 which refers to a distrust opinion over

two first rounds as the device provided unexpected responses.

Although the device provides expected responses in the five

subsequent challenges, the initial trust value increases to a

small trust value at 0.07. This indicates that the controller

only establishes a low trust level on this device.
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Fig. 6: Investigated values changing over 7 C-R rounds with

two first unexpected response followed by expected responses

In summary, the results show that our challenge-response

mechanism learns the device’s behavior effectively. Based on

this knowledge, the controller places an initial trust opinion

on devices that behaved as expected consistently to the chal-

lenges.

V. PRACTICAL REALIZATION

In this section, we describe a practical realization of our

proposed solution to a personal space IoT system. Note that

our initial trust assessment model relies on the results from

the challenge-response process at the creation phase of the

personal space IoT system where devices encounter the system

for the first time. The challenge-response process is conducted

during the first encounter of devices and the system by

deploying interactions between devices and the controller.

In a practical personal space IoT system, the controller

discovers nearby devices and admits devices that are suited to

the system’s requirements by establishing secure connections

with them during the initial phase. The number of interactions

between a device and the controller during their first encounter

depends on the underlying communication technology used

by the devices. The devices in personal space IoT system

generally use Bluetooth Low Energy (BLE) or other short-

range communication technologies for its communication with

each other. Without loss of generality, we analyze the device’s

interactions during the creation phase of a personal space IoT

system, where devices are connected and communicated with

one another via BLE, to realize the practical implementation

of our proposed solution.

Generally, BLE devices discover others during a discovery

phase and establish secure connection with others through

a pairing process. Figure 7 illustrates typical interactions

between a controller and a device via BLE during their

connection establishment at their first encounter. During the

discovery phase, there are several interactions between devices

for exchanging their identities and additional information such

as the device type, service, manufacturer information, etc.,

through advertising, scan request and scan response packets.

The devices participate in a pairing process when one of them

initiates a connection request packet. During the pairing pro-

cess, two devices exchange information of their input/output

capabilities, random numbers and confirmation values for the

authentication purpose. Note that, in BLE the “LE legacy
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pairing” or “LE secure connection pairing” model can be

used. In Figure 7, the LE secure connection pairing model is

used. There are six pairs of interactions between two devices

during their first encounter before they confirm whether the

peer device is authenticated.

In BLE, the information exchanging over the pairing process

is transferred in plain-text, except for the confirmation values

which are outputs of AES-based functions. It is reasonable to

add challenge and response information into packets that carry

the plain-text information exchanging over the discovery and

pairing processes. In fact, custom information can be included

to advertising packets in BLE before establishing a connection.

Beacons are implementation of using advertisements with BLE

for simple information broadcast [14], [15]

For the example shown in Figure 7, our challenge-response

process utilizes at least four pairs of interactions that exchange

information in plain-text to conduct four challenge-response

rounds (all arrows except for black ones represents the in-

teractions will be used for challenge-response rounds). The

number of rounds may increase if more than one pair of

scan request and scan response packets are exchanged. It is

clear that our challenge-response method can be conducted

during the discovery and connection establishment phase,

where devices encounter the system and establish a connection

with each other, and before device is authenticated. Beacons

are deployed for exchanging challenge-response information.

Before authentication, the controller establishes the initial trust

level on the testing device and decides if it is trusted to a

certain level that can be used to support its admission to the

system.

In fact, the possible interactions between two devices during

the creation phase of the system might be insufficient for

the challenge-response process to establish an initial trust on

a device. To deal with the limited number of interactions,

we design an efficient compression or encoding approach

whereby multiple binary responses can be derived from a sin-

gle challenge-response result. Investigating efficient encoding

techniques for this purpose is underway.

VI. CONCLUSION

This paper proposed a challenge-response-based initial trust

assessment model for personal space IoT systems. The pro-

posed trust assessment model relies on the results from a

challenge-response mechanism conducted at the initial stage of

the system to measure uncertainty level in the device’s behav-

ior and then interpret it to initial trust value. The experimental

results show that our proposed challenge-response mechanism

can estimate effectively the uncertainty of a device’s behavior.

Realization shows that the challenge-response method fits

nicely to possible interactions between devices during their

first encounter. For future research, we are investigating the

multi-level trust for establishing initial trust on a device. We

plan to develop a trust assessment framework that combines

the proposed initial trust model with existing models to inves-

tigate trust level of entities throughout the system’s lifecycle.
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