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1 Introduction

We investigate analytical properties of the following class of nonlinear systems of initial value
problems of first order:

(1.1a) v =20y 1 sy, 1eo)
(1.1b) Boy(0) = 5,
(1.1¢) y € C[0,1],

where y, f are vector-valued functions of dimension n, M is an n X n matrix, By is an m X n
matrix and £ is a vector of dimension m < n. The results for (1.1) can also be used in the
analysis of second order systems of the form

(1.20) v =0y + 2Oy 1 ). re @]
(1.2b) Boy(0) = 5,
(1.2¢) y € C[0,1],

where Ay, A; are n X n matrices, By is an m X n matrix and 3 is a vector of dimension
m < n. The linear transformation z(t) = (y(t),ty'(¢))T applied to (1.2a) yields a 2n-
dimensional system of the form (1.1a). We briefly comment on the results for (1.2), a more
thorough discussion can be found in [11]. For (1.1a) we will also consider “terminal value
problems” where the boundary conditions are posed at t = 1 instead of ¢t = 0.

1 This project was supported in part by the Austrian Research Fund (FWF) grant P-12507-MAT.
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Mathematical models of various applications from physics, chemistry and mechanics
(e. g. Thomas-Fermi differential equation, see [3], Ginzburg-Landau equation, see [16], prob-
lems in shell buckling, see [5]) take the form of boundary value problems for (1.2a) when,
due to symmetries in the geometry of the problem data, the underlying PDEs can be re-
duced to systems of ODEs. Singular problems arise also in other research fields. Problems
as different as the solution of differential equations posed on unbounded intervals (see [15]),
the computation of connecting orbits or invariant manifolds for dynamical systems (see [14]),
differential-algebraic equations (see [12]) or Sturm-Liouville eigenvalue problems (see [6]) are
in the scope of techniques for singular boundary value problems. Often, numerical methods
are used to approximate the solution, cf. [2] or [7]. Initial value problems of the form (1.1)
are also encountered in the computation of avalanche run-up (see [13]).

Research activities in the above areas are a strong motivation for the search for a method to
be used as a basis for a reliable standard code designed especially for solving singular bound-
ary value problems, and taking into account the specific difficulties caused by singularities.
Initial value methods are often considered an attractive alternative to the computationally
expensive application of direct discretization methods, see for example [1]. Multiple shooting
seems to be of particular interest, because within its framework one can use different con-
trolling mechanisms close to and away from the singular point. Also, higher order methods
often show unsatisfactory convergence properties for singular problems, for results on collo-
cation schemes see [10] and [17]. Moreover, the standard acceleration techniques based on
low-order methods do not work efficiently either, since a proper asymptotic error expansion
for the basic scheme does not exist, in general, cf. [8].

Our aim is to develop a theoretical background for the shooting procedure based on the
numerical solution of singular initial value problems and this paper provides the study of
the analytical properties of (1.1) and (1.2). This knowledge is necessary for the convergence
analysis of the underlying one-step or multi-step methods. Here, existence and uniqueness
of bounded solutions of (1.1) and (1.2), as well as their smoothness, will be discussed. In
the analysis of the linear case in Section 2 we heavily rely on techniques developed in [9].
For the nonlinear problem treated in Section 3 techniques from [9] cannot be applied, a
modified standard technique for initial value problems is the proper tool here. In Section
4 the analogous results for the second order problems are formulated. In order to avoid
repetitions, we restrict our attention to the important case of the initial value problem and
refer to [11] for details of the terminal value problem.

2 Analytic results for linear systems of first order

2.1 Linear problems with constant coefficient matrix M

Here, we consider initial value problems

(2.12) Y0 =y + ), te0.1]
(2.1Db) Boy(0) = B,
(2.1¢) y € C[0,1],

and “terminal value problems” (with the initial condition posed at t = 1)

(2.22) Y0 =y + ), te0.1]
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(22b) Biy(1) = B,
(2.2¢) y € C[0,1].

We discuss this case in a comprehensive and complete manner since it is the key to the
understanding of the rest of the theory. Particular attention is paid to the structure of n lin-
early independent initial conditions (2.1b), (2.1¢) and (2.2b), (2.2¢) necessary and sufficient
for a unique bounded solution to exist.

We first construct the general solution of (2.1a). Let us denote by J the Jordan canonical
form of M and by E the associated matrix of generalized eigenvectors of M. Moreover, let

u(t) = E7'y(),
g(t) == E 'f(t).

Then we can rewrite (2.1a) and obtain

J
(2.3) V'(t) = ?v(t) +g(t).
To simplify matters, we assume J € C**" to consist of only one block,
Al 0
2.4 J= . A=o+ipeC.
(2.4) Vg p
0 A

LEMMA 2.1 Every solution of (2.3) has the form

t
(2.5) o(t) = B(t)e + B (1) / &~ (r)g(r) dr,
1
where ¢ € C" is an arbitrary vector and
®(t) =t := exp(JIn(t))

is the fundamental solution matriz which satisfies®

(2.6) &' (t) = %(I)(t), B(1) =1, te(0,1]
Proof: See [4].

We note that the fundamental solution matrix has the form

In(t)? In(t)" !
1 In(t) =~ ... (1"
0 1 In(t) --- 2
: o In(¢)
0 -+ -+ 0 1

From the structure of this matrix and from Lemma 2.1 it is clear that the solution v(¢) given
by (2.5) is not continuous on [0, 1] in general, and its smoothness depends on the eigenvalues
of M. Consequently, we treat separately the cases® ¢ < 0, A =0, o > 0.

2T denotes the identity matrix in R?*™.
3We exclude the case of purely imaginary eigenvalues of M, A\ = io, leading to solutions of the form
t'% = cos(oInt) + isin(o Int).
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Eigenvalues with negative real parts

Before formulating the main result of this section, we state the following lemma. Here and
in the following,

17l += e |10,
where | - | denotes the maximum norm in C". For 6 = 1, we define || f|| := maxo<;<1 | f(?)].

LEMMA 2.2 Lety >0 and in J from (2.4) assume either 0 < 0 or A = 0. Then for

1
u(t) := t’y/ s/ f(st) ds
0
the following estimate holds:
lu(t)| < const.t”||flls, t € [0,d].

Proof: Clearly,

1 1n-1 i y—0 k|l
1 s777(—1In(s
/ s s |ds < / E sT 1 - z+1)k
0 v —0) 0

zOlcO
1
— < 0.
;(7_0)14—1 >

LEMMA 2.3 Let all eigenvalues of M have negative real parts. Then for every f €
C?[0,1], p > 0, there exists a unique solution y € C[0,1] of (2.1a). This solution has the
form

1
(2.8) y(t) =t / s Mf(st)ds = tn(t),

0
and satisfies* y(0) = 0. Moreover, y € CPT'[0,1] and the following estimates hold:
(2.9) ly(®)] < const.Z|| £,
(2.10) ly/(t)] < const.| f]]

Proof: We first rewrite (2.5) and obtain®
1 t

(2.11) v(t) =t/ (c— / 7 7g(r) dT> + 7 / T 7g(r)dr
0 0

1
= tJE+t/ s 7 g(st) ds =: vh(t) + v,(t).
0

Since the function G(¢, s) := s~/ g(st) is continuous on [0, 1] x [0, 1], v, € C]0, 1] follows, and
it is clear from (2.7) that v € C[0,1] iff ¢ = 0. Thus the unique solution y € C[0, 1] of (2.1a)
is given by (2.8). The smoothness result follows by substituting (2.8) into (2.1a), on noting
that n € CP[0,1] if f € C?[0,1]. The estimate for y(¢) can be derived from Lemma 2.2 for
v =0 =1, and the estimate for y'(¢) follows by substituting (2.8) into (2.1a).

4This condition is necessary and sufficient for y to be continuous.
5Here, J may consist of more than one Jordan block.
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Eigenvalue A =0

Let X, be the eigenspace of M associated with the eigenvalue A\ = 0, and let us denote by
R the orthogonal projection onto Xy. Let R € C™" be the matrix consisting of the linearly
independent columns of R, and denote by R(R) the range of R. In order to simplify the
subsequent analysis we select a basis in which M is reduced to Jordan form and use this
basis to construct the projections.

LEMMA 2.4 Let all eigenvalues of M be zero. Then for every f € CP[0,1], p > 0, and
every v € R(R), there exists a solution y € C[0,1] of (2.1a). This solution has the form

(2.12) y(t) =~ + t/ol s™M f(st) ds

and satisfies My(0) = 0. Let m = r and assume that the r X r matriz ByR is nonsingular.
Then there exists a unique solution y € C[0,1] satisfying (2.1). This solution is given by
(2.12) with v = R(ByR)™'B. Moreover, y € CP*1[0,1] and the following estimates hold:

(2.13) ly(t)] < comst.tl|f[| + |R(BoR) 4,
(2.14) 1Y (t)] < const. | f||-

Proof: We first show that v,(¢) in the representation of the solution (2.11) is continuous.
Define functions

1
hm(t) :=/ s™7g(st)ds, m €N,

and

Then, see the proof of Lemma 2.2,

Hm |he(t) = b ()] < 1 tn_l ~ al In(m)
im [holt) = ()] < Tim const. 303 =

m—oQ

=0

=0 k=0

and hence hy, is continuous as the uniform limit of continuous functions.
It is obvious from (2.7) that v € C]0,1] iff Jé = 0 in (2.11). This is equivalent to v(0) = ¢é
and yields (2.12) with y(0) = v € ker M = R(R). Consequently, My(0) = 0 is a necessary
and sufficient condition for the solution of (2.1a) to be continuous. The smoothness results
for the solution follow immediately from the smoothness of f and (2.12).
Finally, we derive a condition which is sufficient for y from (2.12) to satisfy (2.1b). We
substitute y into (2.1b) and obtain Byy = (. This yields ByRa = § on noting that for every
v € R(R) there exists a unique o € C" such that v = Ra. This system of m linear equations
for o is uniquely solvable iff m = r and ByR is nonsingular. In that case,

7= R(ByR)"'B.

The estimates (2.13) and (2.14) can be shown using the results of Lemma 2.2 for A = 0.
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We now consider (2.2). Since in this case all initial conditions need to be posed at ¢t = 1 the
only possible form of M is limited® to M = 0. This case is not interesting in its own right,
but in the case of a matrix with more complex spectral properties (see Assumption A.3.2)
the classical existence and uniqueness results and bounds for the solution of (2.2) will be
incorporated into the analysis.

Eigenvalues with positive real parts

LEMMA 2.5 Lety > 0 and in J from (2.4) assume o > 0. Then for

u(t) = /; (;)JTH dr, tel0,d]

the following estimates hold:
const. (£)” (14 |In (%) ‘Wl) 8, o<,
[u(®)] < 4 const. (1+ ‘ln (%) ‘n) ; o=,

const. 17, o> .

Proof: We treat separately the cases 0 <y, 0 =~y and o > 7.

u(t)] < Const./f (;) (1 +
In (%)

(i) o<y

< const. t? (1 +

(i) o =1

lu(t)] < const.t? (1+

¢ n—1 5 .
In( = / T dT.
5) )/

(iii) o > v: In this case there exists an € > 0 such that 0 = v + 2¢ and hence the result

follows from

[ Y+e € n—1

t t t
const./ (—) !(—) (1+ In (—) )] 7 ldr
. \T T T
(5 t 7+5
< const./ (—) " ldr.
. \T

We now use the above result to prove the following lemma.

IN

|u(?)]

To see this consider the structure of the solution v from (2.11) for n = 2:
v1(t) = c1 + c2In(t) + vp1(t), va(t) = c2 + vp2(t) with v1(1) = ¢1 + vp1(1), v2(1) = ca + vp2(1). Clearly,
¢z = 0 is required for v € C[0, 1] which is equivalent to the initial condition v3(1) = v, 2(1), but the value of
the particular solution vy, 2(1) is unknown, in general.
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LEMMA 2.6 Let all eigenvalues of M have positive real parts. Then for every f €
C?[0,1], p > 0, and every ¢ € C, there exists a solution y € C[0,1] of (2.2a). This so-
lution has the form

(2.15) y(t) = tMe+tM /ltT_Mf(T) dr =: yp(t) + yp(2).

If the matriz By is nonsingular, then there erists a unique solution of (2.2). This solution is
given by (2.15) with ¢ = By ' B, and the following estimates hold:

const. 17+ (1 + [In(t) ") (IB '8 + | f]), o4 <1,

(216) (@] < { const.t(1+ @) (BB A, o =1,
const.t(|By 6] + 1), 7> 1,
const. 1+ (14 | In(t) =) (BB + [I7]), o4 <1,

217)  y(®)] < { const.(1+ [In(o)"=)(|B 8l + 7], o =1,
const. (|B7 8] + 1), 7> 1,

where o is the smallest of the positive real parts of the eigenvalues of M and Ny 1S
the dimension of the largest Jordan block in the Jordan canonical form J associated with
M. This solution satisfies y € C[0,1] N CP*1(0,1]. Moreover, if p < o, < p+ 1, then
y € CP[0,1] N CP*1(0,1] and if o > p+ 1, then y € CPT[0,1].

Proof: Clearly, y,(t) € C|0,1], see (2.7). Also, y,(t) € Cle, 1], for any € > 0, and the limit
lim, o y,(€) exists according to Lemma 2.5, where 6 = v = 1. Therefore, y € C[0,1]. The
estimate (2.16) follows immediately from

tM| < const. 27+ (1 4 | In(t)|"m=x1)

and Lemma 2.5, v = § = 1. The estimate (2.17) follows by substituting y(t) into (2.2a) and
using (2.16).
We now discuss the smoothness properties of . It is clear from

T

. d
y,(z)(t) = <%tM> c=MtM"le, r=1,...,p+1,

that p < o, < p+1 issufficient for y, € C?[0,1]NCP*(0,1] and oy > p+1 for y, € CPT0, 1].
We now consider y,(t). The substitution of y,(¢) into (2.2a) yields

yi(t) = MM /1 My dr 4 F(t) = M /1 t (;)M_ITI F(7) dr + (1)

and it follows immediately from Lemma 2.5 that y, € C'[0,1] if f € C[0,1] and o} > 1. We
use integration by parts to rewrite the above representation for y,

yp(t) = M(I— M)~ f(t) — Mt"=1(T — M)~ f(1)

t
M [ dr ),
1
and from the differentiation thereof we have’

0 =210 (50 + [ 74y ) + o)

"Note that s~ (I — M)™! = (I — M)~ ts!-M,
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Consequently, if o, > 2 and f € C'[0,1], then y, € C?[0,1]. Continuing this process we
obtain analogous expressions for higher derivatives of y,

p—1 k42

‘ (p+1) ()| = MM+ (/tTpI M dT+ZH —1I f(k )) +f(p)(t).
1

k=0 I=p
For o, >p+1and f € C?[0,1], y € CP*1[0,1] and the result follows.
Remark: From the estimate (2.16) it is clear that it is not possible to prescribe initial

conditions at ¢ = 0 to define a unique solution in the case where all the real parts of
eigenvalues of M are positive. In this case, for every solution of (2.2a) y(0) = 0 holds.

General systems

The above discussion of the structure of smooth solutions suggests to associate different
spectral properties of M with (2.1) and (2.2), respectively. For the subsequent investigations
we therefore make the following assumptions.

A.3.1 In (2.1) we assume all real parts of the eigenvalues of M to be nonpositive®.

A.3.2 In (2.2) we assume all real parts of the eigenvalues of M to be nonnegative. If zero
is an eigenvalue of M, then the associated invariant subspace is assumed to be the
eigenspace of M.

From the results of Lemmas 2.3, 2.4, and 2.6 and classical results for the case M = 0 it
follows that in (2.1) the smoothness requirement (2.1c) is equivalent to rank(M) = n —
rank(R) homogeneous initial conditions, My(0) = 0, the solution y must satisfy. In (2.2) the
smoothness requirement (2.2c) is satisfied by any solution of (2.2a). Clearly, both statements
are correct for the special spectral properties of M formulated in A.3.1 and A.3.2. We stress
that these assumptions establish most general singular initial value problems of the form
(2.1) and (2.2), where all conditions necessary and sufficient for a unique solution y € C|0, 1]
have to be prescribed at one point, either at ¢t = 0 or at ¢t = 1. Now the next results follow
immediately.

THEOREM 2.7 Let the r xr matriz BoR be nonsingular. Then for every f € c?0,1], p >
0, and any vector 3 € C", there is a unique solution y € CP*1[0,1] of (2.1). This solution
has the form

(2.18) y(t) = R(ByR) '8 + t/l s™M f(st) ds.
0

Furthermore,

(2.19) ly(8) < const.t||f|| +|R(BoR) B,

(2.20) y'(t)] < const.|f]|.

THEOREM 2.8 Let By be nonsingular. Then for every f € CP[0,1], p > 0, and any vector
B € C*, there is a unique solution y € C[0,1]N CPT1(0,1] of (2.2). This solution is given by

(2.21) y(t) =tMB g +tM / tT*M f(r)dr,
1

8 Again, if 0 = 0, then A = 0.
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and the following estimates hold:

const. (17 (L + | In(t)|"=) + 1)(|B, 5| + [If]), o <1,
@ < § const. (((1+ |Im@)") + V(BB +If),  ox =1,
const. (¢ + 1)(| By B[ + | /1I) oy > 1,
const. (17+= (L + [ In(t) ") (|B "B + | f[) + 1) o+ <1,
'@ < 4 const. (1+ | n(@)[*=)(|B 5] + [IFII) oy =1,
const. (|B 8|+ [I£1); oy > 1.

Moreover, if p < o, < p+ 1, theny € CP[0,1] N CP*1(0,1] and if oo > p + 1, then
y € CPTH0,1].

2.2 Linear problems with variable coefficient matrix M (t)

Here we study initial value problems of the form

M)

(2.9) v ="y ), te)
(2.220) Buy(0) = 5.

(2.22¢) My(0) =0,

where M := M(0), and

(2.230) v ="y ), reo)
(2.23b) Byy(1) = 6.

We discuss two cases, M € C[0,1] N C'(0,1] and M € C'[0,1], where M is chosen to have
the form ] .
(2.24) M(t)=M~+1tC(t), >0, Ce€C[0,1].

It follows that in the latter case we can choose v = 1.

2.2.1 Coefficient matrix M(t) € C*(0,1]
Consider (2.22) with M (t) given by (2.24) and assume that M (0) satisfies A.3.1.

THEOREM 2.9 If ByR is nonsingular, then for every f € C[0,1] and CO' € C[0,1], there
erists a unique, continuous solution of (2.22). This solution satisfies y € C*(0,1].

Proof: Let ¢t € [0,d]. Then, according to Theorem 2.7, any continuous solution of the initial
value problem (2.22) satisfies

(2.25) y(t) = (KCy)(t) + ¥ (1),

where

o

(KCy)(t) = t7/0 s M7 10(st)y(st) ds

and
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Hence y is a fixed point of the operator (KCyy)(t) := (KCy)(t) + ¢ (t), where KXC : C[0,6] —
C10, 4] is a bounded linear operator with

IKCyl|ls < D§||ylls, D = const.,

see Lemma 2.2. Therefore, the operator KC,, is contracting for ¢ sufficiently small, § < (%)%
Now the Banach Fixed Point Theorem implies that there exists a unique solution y € C|0, 4]
of (2.25). This solution satisfies the initial condition (2.22b) and can be continued uniquely
to t = 1. Finally, we substitute y into (2.22a) and see that the structure of its first derivative
is

y'(t) =t77E(t) + f(t), €€ C0,1].
Hence, y € C'(0, 1], and this completes the proof.

We now estimate y(t) for ¢ € [0, ], where 0 is chosen such that ||KC|ls = L < 1. Using
Lemma 2.2 we derive a bound for v,

Ills < |R(BoR)~" 8| + const. || fl|s,

and by the Banach Lemma we conclude

llls = 1Z ~ K€) ™ lls < = [9lls < const. (IR(BoR) ™51+ [1£5).

Moreover, we can describe the local behavior of y by deriving an estimate for y(¢) for ¢ close
to zero. This is done by applying Lemma 2.2 and using the above bounds for ||¢||s and ||y||s
in (2.25), o o

(2.26) ly(&)] < const. (|| flls + [R(BoR) *B]) + |[R(BoR) 'B.

We now turn to (2.23) and assume that M (0) satisfies A.3.2. For a nonsingular matrix By, the
classical theory yields the existence of a unique solution z(t) of (2.23), z € C[6,1], 0 < 6 < 1.
Define z(0) =: w. In the following theorem we answer the question whether such a solution
can be extended to ¢t = 0.

THEOREM 2.10 If B; is nonsingular, then for any f € C[0,1] and Ce C0,1], there
exists a unique, continuous solution y of (2.23). This solution satisfies y € C'(0,1].

Proof: Consider (2.23a) for t € (0,0]. Then, according to Theorem 2.8, any solution of
(2.23a) subject to y(d) = w satisfies

(2.27) y(t) = (KCy)(t) + ¥ (),
where

cei)o = | t (E)Mﬂ-lé(f)ym dr

T

o(0) = (g)Mw+ A (;)Mfm dr.

Again, y is a fixed point of the operator (KCyy)(t) := (KCy)(t) + (), where the integral
operator KC : C[0,6] — C]0, 4] is linear and bounded. We now use Lemma 2.5 to estimate
KCy. For o = v we obtain

and

IIKCyl|s < D(57/2||y||5, D = const.
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on noting that [#7/2 (1 + |In (%) ‘n) | is bounded uniformly in ¢ € [0,6]. For the cases 0 < v,
o > v, and for the contribution associated with A = 0 we have

IKCylls < D&||ylls, D = const.
and therefore KC,, is contracting for a sufficiently small ¢.

Estimates for the solution and its first derivative, analogous to those in Theorem 2.8, hold.
We omit them here to avoid unnecessary repetitions.

Due to the unsatisfactory smoothness properties of the solution y, the case M € C*(0,1] or
v < 1 is not going to be considered any further. However, the above considerations can now
be utilized to cover the case M € C'[0, 1] with no additional effort.

2.2.2 Coefficient matrix M (t) € C'[0,1]

In this section we study initial value problems (2.22) and (2.23), where M (t) is given by
(2.24) with v = 1. The existence of continuous and unique solutions is obvious from the
considerations in the previous section. Therefore, in the following two theorems we discuss
in more detail only the smoothness properties of y.

THEOREM 2.11 If ByR is nonsingular, then for every f, Co* € C?[0,1], p > 0, there ezists
a unique solution y of (2.22). This solution satisfies y € CP*1[0, 1].

Proof: In (2.25) we set v = 1 and conclude that any continuous solution of (2.22) has the
form

y(t) =tn(t) + R(ByR)™B, n(t) € C[0,1].

We now substitute y into (2.22a) and conclude y € C*[0,1]. The result follows by successively
applying the above argument in Theorem 2.7.

THEOREM 2.12 If B; is nonsingular, then for any f, Co' € C?[0,1], p > 0, there exists a
unique solution y of (2.23). Moreover, if p < oy < p+ 1, then y € CP[0,1] N C?*(0,1] and
if o, >p+1, then y € CPT0,1].

Proof: The smoothness results can be shown using techniques developed in Lemma 2.6.

3 Analytic results for nonlinear systems of first order

In this section we discuss nonlinear problems of the form

(3.12) v =Dy 1 9, re o)
(3.10) Boy(0) = 5,

(3.1¢) My(0) =0,

and

(3.20) v ="y + fLuw), e,

(3.2b) Biy(1) = 5,
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where f(t,y) is assumed to be continuous and Lipschitz-continuous with respect to y on a
suitably defined domain.

We restrict our attention to the case, where M € C'[0, 1] is of the form (2.24) with y = 1.
Here, we assume that all quantities (except for the eigenvalues of M) are real.

THEOREM 3.1 Let f € C?(]0,1] x R"), Co’ e C?[0,1], p > 0, and let the matriz BoR be
nonsingular. Assume f(t,y) to be Lipschitz-continuous with respect to y on [0, 1] X R*. Then
there exists a unique solution y of (3.1) and y € CPT1[0,1].

Proof: We first prove the result on the subinterval [0,d]. Then standard arguments yield
the extension to the whole interval, see Section 2.2.

Clearly, solving (3.1) on [0, ¢] is equivalent to finding a fixed point of the nonlinear operator
(KF,y)(t) := (KFy)(t) + 7, or equivalently, solving the nonlinear integral equation

(3-3) y(t) = (KFy)(t) +v, te[0,9],

where
(wa@)=t£:fM(5@®M%)+f@LM%D)%
and . .
v = R(ByR) 8.

From Lemma 2.2 we conclude that for a sufficiently small 6 the operator X F,, is contracting
(with constant L < 1) on C[0,d]. Consequently, there exists a unique solution y of (3.3) and
y € C[0,0]. The smoothness of higher derivatives of y, y € CP*![0,1], can be shown in a
manner indicated in Theorem 2.11.

Finally, we estimate y and y'. From
IKFyylls — IKF,0lls < IKFyy — KF,0lls < Lllylls
we obtain
ol < 12 (1l + D ma ,001) =
We can now estimate f on the bounded domain
U:=1[0,0x{yeR": |yl <r}

and define

Fs .= t )
s (gg)fgjlf(,y)l

Using this bound and Lemma 2.2 we obtain for ¢ € [0, J]

: ly(2)]
(3-5) [y (2)]

For weaker smoothness assumptions on f, f € C?([0,1] x {y € R* : |y| < r*}) with r* > r,
the arguments of Theorem 3.1 can be used to show the existence, uniqueness and smoothness
of y on [0,0]. In this case, though, the classical theory does not answer the question if this
solution can be extended to the whole interval [0, 1].

const. t(Fs + |R(ByR)~'A|) + |R(B,R) ™' 5],

<
< const. (F5 + |R(ByR)'4|).
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THEOREM 3.2 Let f € C?([0,1] x R™), 5‘ € C?[0,1], p > 0, and let the matriz B,
be nonsingular. Moreover, assume f(t,y) to be Lipschitz-continuous with respect to y on
[0,1] x R*. Then there exists a unique solution y of (3.2). This solution satisfies y €
C[0,1]NCPT(0,1]. Ifp < oy < p+1, theny € CP[0,1]NCP(0,1], and if o > p+1, then
y € CPT10,1].

Proof: The existence result follows by representing the solution in a way indicated in
Theorem 2.10° and applying techniques from Theorem 3.1 with Lemma 2.5 instead of Lemma
2.2. The smoothness results can be shown using techniques from Theorem 2.12.

We note that for the solution of (3.1), y € C*[0, 1], the value of 3'(0) can be calculated by
using the local Taylor expansion at ¢ = 0,

(3-6) y'(0) = (I — M(0)) (M'(0)y(0) + £(0,y(0)))-

Note that M (0) has only nonpositive eigenvalues and hence, I — M(0) is nonsingular. The
above representation does not hold for the solution of (3.2) in general.

4 Analytic results for systems of second order

In this section we briefly discuss second order problems of the form (1.2). No conditions
for y'(0) are incorporated into the initial condition (1.2b), since we will show that y'(0) is
uniquely determined by the smoothness requirement (1.2c). In order to keep the presentation
short, we have decided not to discuss the case where f depends on %’ here. This analysis does
not result in gaining more insight, but requires a lot of new notation related to a redefinition
of the involved Banach spaces, cf. [18]. This restriction is also well justified by applications.
For the same reasons terminal value problems at ¢ = 1 are not considered in this section, all
results can be found in [11].

We use the linear transformation z(t) = (z1(¢), 22(¢))" := (y(¢),ty'(t))" to rewrite the second
order system to the first order form and obtain

(4.1) 2'(t) = MT(t)z(t) + t}(t,z(t)), t € (0,1],

where

(12) M0 = (4t 1o ) 7= 0% )

Clearly, techniques and results from Sections 2 and 3 can now be utilized in the investigation
of (1.2). Notation is used accordingly. Especially, we again associate the assumption A.3.1
with the matrix M := M(0) from (4.2). In this section I; and I, denote the n upper and n
lower rows of the 2n-dimensional identity matrix, respectively.

Linear problems with constant coefficient matrices A, and A;

As a first step in the analysis of second order systems we study the linear problem

(1.30) V()= S0+ S0 + 50, te 1]
(4.3b) Boy(0) = 5,
(4.3¢) Agy(0) =0, ¢'(0) =0.

9Here, by classical theory, a solution on [, 1] exists.
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THEOREM 4.1 Let m = r and assume that the r x r matriz Byl R is nonsingular. Then
for every f € CP[0,1], p > 0, there exists a unique continuous'® solution of (4.3). This
solution has the form

(4.4) y(t) = LR(ByLR)™'p+ 1 /ISS_M}(St) ds,
0

[e}

1
(4.5) y'(t) = tlg/ ss~Mf(st) ds.

0
Moreover, y € CP*20,1], and the following estimates hold:

(4.6) ly(t)] < const.?’|f|| + |[R(BoliR) A,
: [y'(t)] < const. | f]],
(4.8) ly"(t)] < const. | f]|-

Proof: The result follows in a straightforward manner from the discussion of the related first
order problem analogous to (4.1). The representation of the solution can be obtained from
Theorem 2.7, and the condition A¢y(0) = 0 from M2z(0) = 0. ¢'(0) = 0 is a consequence of
(4.5). The smoothness result is derived by substituting (4.4) and (4.5) into (4.3a) and using
Theorem 2.7.

Linear problems with variable coefficient matrices Ay(t) and A;(?)

We consider the problem

(4.9a) y'(t) = Alt(t) y'(t) + A(I;(t)y(t) + f(t), te(0,1],
(4.9b) Bay(0) = 5,
(490 Agy(0) =0, §/(0) =0,

where Ay := Ap(0). Motivated by the smoothness statements from Theorems 2.9 and 2.11,
we assume Ay, A; € C'[0,1] and write both matrices in the form

(4.10) Ai(t) = Ai(0) +tCi(1), CieCl0,1], i=1,2.

However, in the next theorem we need a finer structure of Ay than of A; and therefore we
additionally assume

(4.11) Ag(t) = Ap(0) +tCo(t) = Ap(0) +tAL(0) +t>Do(t), Dy € C[0,1].

THEOREM 4.2 Let the matriz Byli R be nonsingular. Then for every f, Cy € C?[0,1]
and Cy € CPT[0,1], p > 0, there exists a unique solution y of (4.9) iff Ay(0)y(0) = 0. This
solution satisfies y € CP72]0,1]. Moreover, there exists a 6 > 0, such that for every t € [0, d]
the following estimates hold:

(4.12) y(®)] < const.*(|R(BoLLR) ™' B| + || flls) + | R(Bol1R) '],
(4.13) Y1) < const.t(|R(Boli R)™ 6] + [|flls),
(4.14) [y"(t)] < const. (|R(BoLR) 8]+ ||fls).

10Conditions (4.3c) are necessary and sufficient for the solution of (4.3a) to be continuous.
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Proof: Again, consider the equivalent first order problem corresponding to (4.9). Define v :=
(71,0)7 € R(R), 1 := LR(ByL,R)~'". It follows from Theorem 2.11 that for sufficiently
small § there exists a unique solution z € CP*'[0,8] of (4.1). This solution has the form
z(t) = v+ t{(t) and satisfies M z(0) = 0. Substituting z into (4.1) yields

o o o

(115) 2(0) = T Ma(t)+ Clthy + HCOCH+7(0),

where (t) is defined in an obvious way. We conclude y = z; € CP*2[0, ] on noting that

o

C(t)y = (0,Co(t)m)" € CP*H0,6] and CO‘(t)C(t)+}(t) € C?[0,9], see Theorem 2.11 and
Theorem 4.1.
It is clear that in general 3'(0) # 0, since from

2(0) = (I — M)™'C(0)y

one only has'?
y'(0) = —(A(0) + A;(0)) " Co(0)y(0).

In order to show that Aj(0)y(0) = 0 is sufficient for y to satisfy y'(0) = 0 we rewrite é’(t)’y,

1= agtoy 0 )7+t ( ooy oo )1=D0m DO =( ply 0 )

and substitute the latter expression into (4.15),

o o o

2(t) = 7 Ma(t) + DOV
Consequently,
2(t) =y +20(), y(t) =y +E0I({), y(t) = thi(),
where .
I(t) ::/O ss M (lo)(st)”y—i-Co’(st)C(st)—i-}(st)) ds, v € C]0,0].
Clearly, the above y can be uniquely continued to ¢ = 1 and the result follows.

We stress that any continuous solution z of (4.1) satisfies M(0)z(0) = 0 and the correspond-
ing conditions expressed in terms of y solving (4.9a) and (4.9b) read either

Ap(0)y(0) =0, (Ag(0) + A1(0))y'(0) + Co(0)y(0) = 0,
Ap(0)y(0) =0, %'(0) =0,

if y(0) € kerA}(0). To avoid technicalities we use the second set of conditions derived above
while analyzing the nonlinear problem. This set of initial conditions is particularly relevant
for applications, where typically Aj is a constant matrix.

UNote that A¢(0)y; = 0.
12(49(0) + A1 (0)) is nonsingular because (I — M) is nonsingular.
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Nonlinear problems

Consider the problem

(4.162) v = 20y + 200 1 sy, te©)
(4.160) Boy(0) = 5,
(4.16¢) Agy(0) =0, ¢'(0)=0.

The following result is a consequence of Theorem 4.2 applied to (4.16), where the Lipschitz-

(o]
condition for f is used.

THEOREM 4.3 Let f € C?([0,1] x R*),C; € C?[0,1],Cy € CPTH0,1]"3, p > 0, and let
the matriz Byl R be nonsingular. Assume f (t,y) to be Lipschitz-continuous with respect to
y on [0,1] x R*. Then there ezists a unique solution y of (4.16) iff Ay(0)y(0) = 0. This
solution satisfies y € CP*2[0, 1].

Finally, using Taylor’s Theorem we can derive a representation for y”(0), where y € C?[0, 1]
is a solution of (4.16),

A0(0)> y"(O) — Ag(())

5(0) + £0,4(0)).

(4.17) (I — A;(0) —

This is a system of n linear equations for y”(0) which is uniquely solvable iff the leading
coefficient matrix is nonsingular.

When applying a numerical method to solve (3.1) or (4.16) one often needs to provide a
discretization at ¢t = 0 for the system (3.1a) or (4.16a), respectively. In most of the methods
this involves an evaluation of the corresponding right-hand side at t = 0 which is not possible
when the singularity is present. In such a case the local behavior of y'(0) or y”(0) described
in (3.6) and (4.17), respectively, can be used to remedy the difficulty (see [9], [17]).
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