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1. Introduction.

We consider the initial value problem (IVP) of the heat convection equation (HCE)
of Boussinesq type in an exterior domain Q=K‘cR"™ (m=2 or 3), where K is a com-
pact set with a smooth boundary I'=0Ke C?. We denote Q=0x(0, T). Then the
problem (IVP) for (HCE) is as follows:

u,+ W Viu=—(Vp)p+{1—of—B)g+vAu in @,
{ divu=0 in @, (1)
0,+(u-V)0=xAb in Q, :

ulp=0, 0|;=0,>0, lm ux,)=0, lim 6(x,t)=0 for te(0,7), (2)

|x{—w |x|—
u|t=0=aa Oli=o=h- €)

Here, u=u(x, t) is the velocity vector, p=p(x, t) is the pressure and 8=0(x, t) is the
temperature; v, k, «, p and g = g(x) are the kinematic viscosity, the thermal conductivity,
the coefficient of volume expaﬁsion, the density at =60, and the gravitational vector,
respectively. '

Hishida [2] and Hishida-Yamada [3] studied the exterior problem for (HCE) and
proved the global existence of the strong solution of (IVP) when K is a ball, while the
second author of our present paper has recently shown in [6] (which is her Master
thesis) the existence of a weak solution of (IVP) for (HCE) in the case that K is a
compact set with a smooth boundary of class C2. In Oeda-Matsuda [10], we announced
the existence result (m =2 or 3) together with the uniqueness of a weak solution for the
2-dimensional problem. In the present paper, we will give details of proofs of the results
announced in [10], and furthermore, show the uniqueness theorem of a weak solution
for the 3-dimensional problem. As the equations (1) tell us, (HCE) is the system which
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consists of the Navier-Stokes equation with the buoyancy term and the heat equation
with the convection term. In the Navier-Stokes equation, a sufficient condition for the
existence of a strong solution of the initial-boundary value problem is given as a smallness
condition on data. On the other hand, it is known that a weak solution exists for a
large data. Concerning the Navier-Stokes equation, Serrin [11], for example, studied
and reviewed the existence, uniqueness and the regularity of the solution when the
domain  is a bounded or unbounded one in R™ (m > 2). Our existence and uniqueness
results on the weak solution obtained in this paper correspond to those for the
Navier-Stokes equation.

Now, to prove the existence of the solution, we employ “the extending domain
method”. In other words, we can expect that problems on domains Q,=Q ~ B, (B,
being balls with radii » and center O) will approximate the problem on the domain Q
as n— o0. As for “the extending domain method”, Ladyzhenskaya [4] referred briefly
in relation to the Navier-Stokes equation, but skipped details. We are inspired by [4]
and we will give the proof by this method in detail for (HCE). Moreover, we will use
some inequalities with absolute constants (independent of domains) to estimate functions.

2. Preliminaries.

We make assumptions (Al) ~(A3):
(Al) 0Q=I=0KeC>.
(A2) g(x)is a bounded and continuous vector function in R™\intK and ge L*(Q).
(A3) K< B=B(0,d) (a ball with radius d and center O).
We use an auxiliary function & which is introduced as a solution of a problem:
A0=0 (in Q) with (I)=0, and lim 6(x)=0.

|x|—o

Then, we see 0=08¢e C*(Q) ~ C(Q) and ||VI|| , =ess.sup, .ol VOx)| < co.
Now, we make a change of variables:

u=i, 0=0+8, (x,y,2)=d(x* y* z*) ((x,y)=d(x* y*) in R?),
t=d*t*/v, d=vu*/d, 0=v0.0*/x, p=pvip*/d*.

By these relations, we have new variables u*, 8* and so on, but we abbreviate asterisks
for simplicity and use the same letters.

Then, equations (1), (2) and (3) are transformed to the following homogeneous
boundary value problem:

divue=0
0, +w V=P 1A —(u-V)T i

{ u,+ W Viu=—Vp+Au—RO+d3g/v?—RO—P™ 1) in
i 4)

5 B
O
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ulp=0, 0|r=0, lim u(x,t)=0, lim 6(x,t)=0 for te(0,7),

|x|=w [x]— o0
u't:():a, 6{I=0=ha

where R=ag®,d>/xv, P=v/x and d is a radius of B.
Here, we define several function spaces:

WEHQ)={u; D*ue L7 (Q), |a| <k},
WEP(Q)=the completion of CX®) in W*?(Q),
D,(Q)={pe C5(Q); dive=0},
H_(Q) (resp. HX(Q))=the completion of D,(Q) in L*(R2) (resp. W1'*(Q)),
D (Q)={peCy@Q);dive=0} (Q'=02x[0,T]),
H (D) (resp. H}(Q))=the completion of D () in L¥) (resp. W),
where {|u|ly1.2={ g Il F20) + [ V()| F2)dlt } 12 5
furthermore
D(Q)={peCyQ I oI=0},
H}(Q)=the completion of D(€2) in W 23(Q),
Bil)={peCe@ T pN)=0} @UT'=@u %[0, T,
AY()=the completion of D($) in WD),
and moreover
D (D={peD (), p=0at =T}, GQ)={yeD@);y=0at =T},
U(R)={p € HQ)); ess.supo << 101 120y < 20}
T (D)= {y € B"(D)); ess.supg <, < 7 |W()l| L2 < 0} -
REMARK 1. (i) If B A'($3), then we have 8],,=0.

361

(5)
(6)

(i) We note H () x L(Q)=H,(Q)x 0+0 x L*(). We identify ue H,(2) with
(u, 0)e H,(Q) x L*Q), and moreover, 8 e L¥(Q) with 10, 0)e H,(Q) x L*£), if necessary.

Later we use Friedrichs’ lemma, so we state it here (see Remark 2 below):

LemMA 2.1 (Friedrichs). Suppose G is a bounded domain in R™ and its boundary
8G is of class C2. Let {w} - be an orthonormal basis of LXG). Then for an arbitrary
positive number &, we can take a number N, such that the following inequality holds for

all ue WH2(G):
N, 1/2
||“||L2(G)S( Z (u, Wk)z) +elullwr.re »
k=1

where p>2mj(im+2) (m=2), p=1 (m=1) and N, is independent of u.

(7
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REMARK 2. (7) valids for all ue W!-?(G) not only for W}?(G). (See Lemma 2.4
of Chap. II in [5] (p. 72-73) which is proven by Theorem 2.1 and (2.5) (p. 61 of [5]),
since 0Ge C2))

LEMMA 2.2 (Chap. I of [4]). Let Q<R3. Then
el Loy S 3N VUllfagliuliiag  for ue WiQ), (8)

where 2<g<6, a=3/2—3/q and ¢, =(48)"/5,

3. Results,

For the simplicity of the representation, we prepare some notations. We put

I(s, G; u, )= J (4 96 +(60, Y6 + (- V)@, W)+ (- VIV, O)g
0
(1, A@)g+ P8, AW)s— (- VB, Wo—(RY, @)o +(f, Pt ()
E(s, G; u, )= Juls)1 2+ 16(s) 1 +2 f s ||Vu(r)uédr+% f IVo@I2dz,  (10)

where (-, *)g=(", )2y |- lc=1" | L2y and f=d’g/v*—R@-P).

Before we state results, we give the definition of a weak solution.

DErRINITION 3.1.  U="(u(x, t), 6(x, t)) defined in Q is called a weak solution of (IVP)
if (i) and (i) hold: |

(i) “(u, 8) e UL) x T (§).

(ii) For all (¢, ) e 2,(2) x 2(R), the equality

(T, 2, u, 0)= —(a, p(0)o—(h—0, y(0), (11)
1s satisfied.

Then, we have the existence theorem.

THEOREM 3.2. Suppose the space dimension m is 2 or 3 and let assumptions
(A1)—(A3) be satisfied. Then for any ‘(a, h)e H (Q) x L*(), there exists a weak solution
of (IVP) and the following (1), (i) and (iii) hold:

(i) "ut), 8()="((u( -, 1), O(-, t)) is defined for all te[0, T and (u(t), ¢(t))o+ (0(¢),
V(1)) is continuous on [0, T for every (¢, y)e D, (8) x D(RQ).

(ii) The following energy inequality holds for te[0, TT:

E(t, 2 u, O)<exp(cT)lallg+Ilh— 0] 3+ F(T) (12)

where ¢= | V8| o, + | Rll o + 1, Wl =€55.50p, ool WC0) |, F(T) =[5 (D).
(i) For every (¢, Y) € D (§2) x D($2), the next equality holds for all te[0, T]:

(1), o(1))g +(8(e), Y()o=(a, p(0)g +(h— b, Y(0)o + I(t, 2; 1, 6). (13)
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Moreover, we have unigueness theorems:

THEOREM 3.3. Suppose the space dimension m is 2. If ge L*(Q) n L*'3(Q), then the
weak solution of (IVP) for (HCE) is unique.

THEOREM 3.4. Let the space dimension m be 3 and assume g e L*(Q) n L**(2). Then
the weak solution *(u, 0) of (IVP) is unique if

uel*O, T, L)) and 0elL%0, T, L(Q2) : (14)
hold for some r>3, s=2r/(r—3).

4. Proof of theorems.

In order to prove the existence theorem, we employ “the extending domain method”,
We set Q,=B,n Q2 (B,=B(0, n)) and dQ,=TI +dB,. We note that since K is included
in a ball B=B(0, d) by the assumption (A3), so K< B, after changing of variables.
Then, we propose the following approximate problem (P,) in 2,

u+W-Vu= —Vp+Au—R0+d3g/v*—R(E—-PY) in 8,,
{ divu=0 in Q,, (15)
O+ V=P 'AO—(u- V)] in 4,
ulaﬂn=0 N 6(5_0":0 . fOI‘ tG(O, T) N (16)
u|t=0=an’ 0|t=0=hn_9-nﬂ : (17)

where a,=yq a, h,—0,=yxq, (h—0) and g, is the characteristic function on the set ,.
We notice a,€ H,(2,) and h,—0,e L*Q,). Since R=0g®,d3/xv, P=v/x and d is an
original radius of the ball B, therefore they are independent of ».

DEFINITION 4.1.  U="'(u(x, t), 0(x, t)) defined in &2, is called a weak solution of (P,)
if (i) and (ii) hold:
(1) ‘', O)eu(Q,)x 7(Q,).
(ii) For all (o, y)e Z,(8,) x S(3,), the equality
I(T’ Qn; u, 9) = _(an, (P(O))g" _(hu - gm !/I(O)).Q,. (18)
is satisfied.

We begin with the existence theorem for a weak solution in the interior domain Q,,.

LEMMA 4.2. There exists a weak solution '(v,, ®,) of the problem (P,) and the
Sfollowing facts hold:

(1) Hov,r), Ot)) is weakly continuous on [0, T] in H(R2,) x L*(,).

(ii) The energy inequality holds:

E(t7 Qm Uys @n) < CT = exp(CT)(”a“ Iz.z(ﬂ) + ”h - g“lz.z(ﬂ) + F(T)) ’ (19)
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where ¢=|| V8|, + |Rll, + 1, hence Cy does not depend on n and t.
(iii) For every (¢, y)e D, (Q,) x D(Q,) and te[0, T] the next equality holds:

(A1), 9()g, +(O1), Yo, =@, ¢O)g, + (hy—b,, Y(0)g, +1(2, 2,5 v,, ©,) . (20)

PrOOF OF LEMMA 4.2 (see [6],[9]). Let n be fixed. We employ Galerkin’s method.
Let {¢;} (resp. {;}) be a basis of H;(£,) (resp. Hj(£2,)) and an orthonormal sequence
of L*(Q,) (resp. L*(R2,)). First we note that H.(Q,) is dense in L*(Q,) and H(2,) is dense
in L*(8,). Therefore, for a,e L*Q,) and b,=h,—0,e L*£2,), we have

=3 aye, in LAQ), b= 3 B¥, in LA@,). @1)
i=1 i=1
We put
uB(0)= 3. aPlg,. 0= ¥ BRI, @)
i=1 i=1

Then we consider the following equations:

5; @ (1), 9;)—(@™(t) - Vg, u®() — (Vu®(1), Vo) +(RON(), 0))=(f,, @;), (23)

% O®(), ) — (@™ () - V)5, G‘k’(t))+% (VO®©(2), V) +(u®(r)- V)8, ¥;)=0, (24)
with the initial condition

k k
uP0)=aP= 3 o,;0;, 0%0)=b"= 3 B.¥;. (25)
j=1 i=1

J

where (-, *) stands for (*, *)z2q,. Multiplying (23) (resp. (24)) by a(r) (resp. p*(z))
and summing up with respect to j and noting (u® - Vu®, 4" =0, (™ - V)§%¥, 6®) =0,
we have

S OE, 4 BVOIE, + IVHXDE, + - VOOE,
<1 (@) - VI, 890} | + | (ROW(E), u™(t))g |+ (s w ¥t

<(IVBI o+ IR g 109D g+ 1 fy 29O L,

<3 (IV8) o+ IRl + D2®O)I3, + 1090I2) ++ 1413, (26)

From (26), we have an a priori estimate:
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[ 13, + 1890) 13, < explerX a3, + nb;">||é"+f exp(— et} fl3,4)
V]

<expl(er)(lla,ll3, + Hb"||?,"+f I £l 5,47)
0

<exp(cT)lalg+ IIh—9IIé+I If13d) 27
0

where ¢c= | V8|, +|R|l,+1.
Moreover by means of (26) and (27) we have

t t
Ilu""(t)llé,,*"||9""(t)llé,,+2f lqu(k’(T)||§ndt+%f IVo®(z)l|§,de
0 0
14 . 1
SCJ (D)3, + |19‘k’(r)!|é“)dr+f I £l 3, de + a3, + 15011,
0 0

SC[ e"(llanlléﬁ Hb.,ll?z,,+_[ anlléndS)df+ll%ll?zﬁllhlléﬁj I full 3,
o] 0

0

T
s(c—g(e“—l)+1)(na,,||é,,+nb,.nf?,,+ J Hflléndr)

0
T
Se)(p(cT)(lIa!II?nL ||h—9IIf;+j Ilfllfza't)E Cr, (28)
0

where Crisindependent of k, # and ¢. Thus we have a k-dimensional energy inequality:
E(t, 2, u®(), 8%N<Cr . (29)
Fix n, then, by virtue of (29), we find that
{u™} is a bounded sequence in L0, T; H(Q,)) and L=, T; LXR,)),
{8%1 is a bounded sequence in L3(0, T; Hi(R,)) and L=(0, T; L*(RQ,)),

therefore, there exist subsequences {u™}, {0%} (we use same symbols) and the limits
v, and &, such that

u® sy, weakly in L0, T; HY(R,)), weakly* in L0, T; L*(Q,)),
0% —>e,  weakly in L*Q, T; HXR,)), weakly* in L=(0, T; L¥Q,)) .

Furthermore, by using compactness argument, we can select subsequences (we use same
symbols) such that (see [9], Theorem 2.2 of Chap. IIl in [12])

u® >y, strongly in L*(0, T, L*(R2,)),
@, strongly in L0, T L3(R2,)) .
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Owing to these facts, we find that the limit ‘(v,, ®,) is a weak solution of (P,) with the
initial value ‘(a,, b,). Moreover we also see similarly that it satisfies (iii) in Lemma 4.2.
Concerning the energy inequality (ii), by the lower semicontinuity of the norms of
Hilbert spaces with respect to the weak convergence, we have

t 2 t
loa®)IS, + 10N 5, + ZJ‘ Vo (1)1, + 7 f IVO,(1)l1 5.4t
0 4]

t
<liminf |u®#)| 3 +liminf||6%®(r)||2 +2liminf J IVu®(7)|| 5, dv
k— k= k= 0

k— w

t
+liminf 2 J IVe®(z) (12, dr
P Jo

t t
sliminf(uu""(t)n?,,,+ue""(t)ua"+2 f uvw“(r)néndw%f IIVB""(‘C)IIZ,dr)

T

SCXP(CT)(IIGII?z+ Ilh—91|s2;+J

“f“zz.l(r))d‘t) . (30)
0
Thus we obtained the energy inequality (ii). To get (i), we show that

for any fixed j, the sequence {(u™(?), @;)a, +©O®(), ¥)o,}i>;

is uniformly bounded and equicontinuous on [0, 7] . (31)

Once we show that (31) is right, then by means of Ascoli-Arzela’s theorem, for
each j we find a uniformly convergent subsequence. Moreover, with the aid of diagonal
argument, we can get a subsequence commonly with respect to j. Since {¢;} and {y,}
are dense in H,(2,) and L*(R,) respectively, for ¢ € H,(Q,) and € L*(£2,) the sequence
{@®(2), @), +(0%(2), Y)p,} > | forms a uniform Cauchy sequence on [0, T] except for
an arbitrary ¢>0. This implies (i) holds for any ¢ € H,(,), ¥ € L*(Q,).

We return to the claim (31). Uniformly boundedness is an immediate consequence
of (30). To show the equicontinuity, we integrate (23) and (24) on (s, t]. Indeed,

| @®(2), @)a, +(O@9(), Y o, — ™M), @), —(0F(s), ), |
sj {C2IVe; Il + llu®(@)] 121 Vu®(x)| 34

+ C2 [Vl - 09I L IVO V@I EE 1 D)l 15 Ve P ) 1 22

+IVe; Il - IVu®@)l L2 + /P, - [VOR(E) 2

+CF2 N - IVl + CH2 IR & Nyl + 1 f N2 = N, Ml e
S2TRCECATINV (1 — )1 +(4/P)TIBCECYATIET IR Wy (e — 5)H

+(Cr/2) 21V, ll(t —3)'2 + (2P) ™ 2 C2|| Vi, i (£ —5)'/2

+CH2 Y, - 1Y) (= 5)+ CH2 I R] o - Nl@; IE—=9)+ 1 f 122+ ;i (=),
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where [[wll =maxo<,<r [W()llL20,) and C is a dimension constant. Hence we have the
equicontinuity and the lemma is shown.

Here, we will give a series of lemmas which yields a candidate pair of functions
for a weak solution of the exterior problem. First, we make functions defined on whole
of the region £. '

LemMA 4.3, Put u(x, t)=v,x,t) if xeQ, and u,x,t)=0 if xe Q\Q,; 0.(x,t)=
O,(x, 1) if xeQ, and 0,(x, 1)=0 if xe Q\Q2,, where v,, O, are those obtained in Lemma
4.2. Then we have

(i) ', 0,0 HYQ) x WhQ) and ,]sg,=0, 8,]an, =0.

(ii) E(t, Q;u,, 0,)<Cy.

(iii) For every (¢, Y)e D (@) x D(Q), there exists n, such that if n>ny then the
next equality holds for te [0, T'}:

(1), @) +{O,(6), Y1) = (@ PN+ — B, Y(ONg+1(2, ; 1y, 6,).
Since supp ¢ and suppy are both compact sets in £, we can easily show Lemma 4.3.

LEMMA 4.4. Let (@, Y)eD,(Q) x D(Q) be any element and let us fix it. Then, if N
is the least number satisfying supp @ = Qy and suppy = Qy, then the system of functions
{(u,(1), @)+ (6D, (t))Q} ¥ is uniformly bounded and equtcontmuous on [0, T].

ProorF oF LEMma 4.4. Recall the constant Cy (which appears in (ii) of Lemma
4.2) is independent of n, ¢, then we get the uniform boundedness by the energy inequality.
Next, we show the equicontinuity. To this end, with the aid of the equality in (iii) of
Lemma 4.3 and by means of Holder’s and Sobolev’s inequalities, we calculate as follows:

[ (,(2), @(2)q+(0,(2), Y(2))o — (u,(5), @) —(0,(5); Y(s)al
=|1t, 2; u,, 6,)—1(s,2;u,,0,)|

SJ {CT2 Nl @l + CH2 WM + C2 NI Vol - llu, (1=)|!l’leVun(”f)lI?”2

+CIVYIL - 10,011 L2 IVOLN 2 s 26 | V(DU 25* + N1Vl < V(D) 2
+A/PIVEN - V00 2+ CH2 I - IVl + CH2IRI @l + 1Lf 1122 - @l } o
< CY Nl =)+ CH2 N2 —5)+27 34 C2CH* 34| Volli(e —s5)'1*
+(4/P)T3PCECHATIET I V|| (1 — ) +(Cr/2) 2 IVl 2 — 5)* 72
+(2P)“I’ZC‘T/ZIIIV!IIIII(i—S)”Z+C¥2lll!//||| VO] (=)

+CH2 IR @l =)+ 1L 2= Nl —s),

where ||w{l =max, ., <1 Iw(t)] 12 and C depends only on the space dimension. Thus
we have shown the equicontinuity.
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LemMA 4.5. There exists a subsequence {'(u,(t), 8,.(t)} of { (), 0,{t)} such that
the following (i), (ii) and (iii) hold:

(1) There exists *u(t), K1) e H,(Q)x L*(} such that ‘(u,(t),0,[(t)) converges
weakly to ‘(u(t), 0(t)) uniformly on [0, T']. Consequently, ‘(u,, 0,,) converges to "(u, 8) weakly
in LH(9) x L*($3).

(ii) ‘(Vu,,¥8,) converges to ‘(Vu, VO) weakly in L*(Q)x L*£3). Hence "(u,0)e
AYQ) x AY5).

(iii) If we rechoose a subsequence {'(u,,, 0,,)}, if necessary, then '(u,, 8, ) converges
strongly to '(u, 0) in the sense of L*(§') x LX(§2'). Here Q' is an arbitrary bounded domain
satisfying Q' < Q.

PrOOFOF LEMMA 4.5. Inorder to prove (i) and (ii), we use Ascoli-Arzeld’s theorem,
the diagonal argument and Riesz’s representation theorem (see [1], [6], [9]). To prove
(iit), we need Lemma 2.1 (the extended Friedrichs’ lemma). Let {w,} x {z,} be an
orthonormal basis of H (') x L*(’) and we take p=2. Then, thanks to the Friedrichs’
lemma, for any given e£>0 there is N, such that the following estimates hold (see
Remark 2):

N, 1/2
”u”u(g')$( Z (u, Wi)iz(ﬂ’)) +ellullwrzg for ue Wh-¥Q",
i=1

Ng 1/2
||9”L2(9')S( Z o, Zi)zz,z(n')) +8”0”W1’2(f)’) ) for fe Wl'z(Q’) .
i=1
Therefore we have (|| - |- stands for | * [ L2

'[ {240 (6) — 2t ()15 + 110,,(8) — 0, ()| 2 } At
1]

T Ne
< j {2 _; (@ (1) = 240, (1), Wid + 282 (l1, (1) — 24, (N 3 + 11V (00, () — 24, (D] )

0

N,
+2 .;1 (0,,(8)—8,,(0), 2.0 +28°(110,,() — 0, ()| 3 + | V(0,,(1)— 0, (¢ ))llé')}df

T( N,
SJ {2 _Z (n (1) — 1y, (1), w)§y +26*RCr +2C 1+ | V(1 (1) — 14, ()| 3)

0

+2 i (00 (1)— 0,,(2), 2:) +26*(2Cr +2Cr + ”V(Bnk(t)—Bn,(t))”!z)')}df
i=1

=< J“T {2 % (unk(t) - un. (t), wi)?)’ + 2 if (Bnk(t) - Gm (t)’ Zi).(z?'}dt
i=1 i=1

0

+2eX8CrT+2Cr+2CrP) > 4624C,; T+ Cp+ CoP)  as nym—w0,  (32)
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here we used (i) of the lemma and the energy inequality (ii) of Lemma 4.3. Since ¢ is
arbitrary, we established the proof of strong convergence in L3(Q").

ProoOF OF THEOREM 3.2. Let ‘(u, 6) be the limit element which is obtained by
Lemma 4.5. We only show that the equality (which is in Definition 3.1)

T
I (W, 9)+ (0, ¥)+((u* V)@, ) +((u - VI, )+ (u, Ap)+ P (0, 4¢)
o

~((u* V)8, ¥)— (RO, @) +(, @)}dt = —(a, ¢(0)) — (A —0, Y(0))

holds for all @, )€ Z () x H(Q). Here (-, +) means (*, *)2q)-

To this end, we investigate the convergence of the two nonlinear terms and we
skip the remaining part. First we notice that for a given test function (o, ¥)
€9 (@) x G(), we can take a bounded domain Q’ and a number n, satisfying suppo,
suppy = Q' x [0, T] and Q'<=Q, <Q, for all n=n,,.

If Q< R3, we use [|W| Lo < €3 VW| 12(q), Where c3 =(48)"/®. Owing to (iii) of Lemma
4.5, we have (C is a dimension constant)

J | (@, * V)@, ) — (- Voo, )g |dt

T
SJ C{ ||t — ]| L202y ety | Lo V@ | 32y + ”“HL«S(Q)||unk“u|iL2(fz')HV‘P||L3(s2')}dt
0

T

<e;CY*C OIBELXT V() L3(Q’)( J

1/2
240, () — (D) | L2l ) -0  (asrm— ).
0

Moreover, we see

T
J | (o - VI, 0, )0 — (2 - VIV, O)o ldt

T
SJ' C{Henk—OHLZ(.Q’)“unkHL5(Q)”V‘/I”L3(Q’)+ ||9”L6(9)H“nk—””LZ(Q)”V‘/’”LS(Q’)}dt

o

1\112/ (T 1/2
ch,C}’zcolllta(XT Hv‘p(t)“u(g'){(f) (j |'9nk(t)—9(t)“12‘2(9')dt)

0

P2 T 1/2
i (3) ( j “ u""(t)_u(t)“?-z(ﬂ')dt) } -0 (asm— ).
0

If QcR2, we use || W] Laq < W 1an | VW1, where c, =21
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T
J | (@n,, » V)@, ) — (1~ V)@, u)q |dt
0

T
< f C{ I Uy, — ull L2(f) Il Up,, I L) Ve ||L4(n') + ||ull L) I u,, —uf L2(f2) Ve "L‘*(Q’)}dt
0

T 172/ T 1/2
=cC C%'MC omax'r IVe(t) “L4(n')( f 24, (2) — ual£) ”fz(n')dt) ( f I Vu, |l le))
<t< (]

0

T T 1/2
+c,CF*C Jmax 1Ve(r) Ilumq( f et (2) —2(2) ||izm')dt)” 2( J. I Vull:.zm))

(o] 4]

1/2
< 262 C%_M-C%’/Z(z) C max ” V(p(t) ”L“(Q')( J
2 0<1<T

0

T

12
ety (2) —ul2) ll%Z(ﬂ')dt) -0

(as n, — 00).
Moreover, we see

j | (.= VI, B0 )a—(u * VIV, B)g |l
(4] .

T
< f C{ f Gn,, - 9"1_2(9') I u..,JI LA(52) ||V'/’ I Lyt 18l L“(Q)” Uy, — ul L2(2%) |V "Ls(r)')}dt

]
T

T 1/2 1/2
<c,Cy*C max || V(1) L‘(ﬂ’)(‘[ [l Bnk(t) —8(z) ||12,2(9')dt) ( ”V“nk “Ll(m)
0<t<T 0 0

T 12/ (T 12
+ CZC;MCOIE?SXT ”V‘ll(t)”l,“(ﬂ‘)(f ||u,,k(t)—u(t)||fz(9.,dt) (J ”VBHLZ(Q))

0 0

L\ (T 12
<c;CY4CY*C max | V() ||L4(n'){(7) (J [0,,(£)— 9(1)”12,2(9')07)
0<t<T

0

P 12 T 1/2
+ (‘2") (J “umg(t)_u(t)”%}(ﬂ')dt) }—) 0 (aS n, — w) .
0

Hence we have established Theorem 3.2.

PROOF OF THEOREM 3.3. Suppose Q< RZ Put V,=HXQ), V,=HQ) and let V}
(resp. V) be the dual space of V, (resp. ¥,). We note that if {(u, 6) is a weak solution
of (HCE), then their distribution derivative (with respect to time variable r) «’ and 6’
belong to the spaces L0, T; V7) and L0, T; V3) respectively. Indeed, using |w|, <
2wl V2| Vw|| 2 <c,|lwly,, we have the following estimates for g e ¥V, and y e V,:
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(- V), )| < Cllu|l 4| Vo - llulls < cZCllull - [ Vul « o]y,

|(Vu, Vo) | < | Vull - Vol <[IVull « o]y,

HRO, @) [ <RI, 10 - o < IRl N0 * I @lly,

[ o< fllaslola<cl flaslely,

[ (G- V)Y, O) | < Cllull o[V || - 18114 < 3 Cliull V2 Vall 2 [l 0112 VO 12
[(VO, V) [< VO] - IVl < VO « Iy,

(= V)8, ) < VO o lleell - Wl < (VO] el « 1l »

here C is a dimension constant and we used geL*Q)n L*3Q). By the energy
inequality, we see —(u-V)u+Au—RO+feL*0,T,V;) and —(u-V)8+(1/P)AO—
(u-V)8e L*0, T; V3), sou e L*0, T; Vi) and 8’ € L0, T; V3). Then we have (see (3.62)
of Chap. III of [12])

d/dt|[ut)|* =2<u'(s), u(t)> and d/dt)0(2)|>=2¢0'(2), 0(¢)) . (33

Here, let “(u;,0,) (i=1,2) are two weak solutions of (IVP) and put ‘(u, 6)=
(uy—u,, 8, —0,). Then we prepare several estimates:

W Vug, W) | < Cllull oI Vag || = ull o < C - 212 |+ 1Vt = Ve |
<o [Vull? +2C%ul®|Vuy 1 <4 IVl +5 (Jull® +1612) - 4C3 (| Vuy |12, (34)

[ (= V)01, )| < Cllull VO, ] - 18] C+ 222 [u|| /2] Vue| 12| V8, [|121/4] 0] /2 VO 2
<7 QRYV2CHull - |Vul - VO, +2"2V6,| - 6] - | VOI)

ﬁ%(ﬁ IVu|? +—2C4||ull Ive, | +ﬁ!|Vi9||2 2||V91||2||9||2)
S% IVl + 5p IVOI* +- (Hull +||9||2)(C“|[V9 ||2+—||V9 ||2) (35)

Now we can consider u; (resp. ;) satisfies the equation (4) as an element of L0, T; V)
(resp. L*0, T; V%)). Subtracting each sides of corresponding two equations (i=1, 2),
taking the scalar product of the difference of equations with », € in the duality
between V; and V}, integrating on [0, t] and using #(0)=0, 8(0)=0, then we get by
above estimates (34) and (35)
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= L@+ 10012+ J |Vu(o) | 2de+ J V()| 2
o] 0
= —f {((u* Vyuy, W)+ ((u- V)0, 0)+ (- V), 0)+(RE, u)}dt
¢

t
Sj {—% (luli? + I|9||2)(4C2|IVu1 12+ C*|v8, IIZ+% IV, 12+ 1V8ll . + IIRIIw)}dT

0

1 s L | 2

+5 L | Vau(z)|| “dt + 2p L IVO(z)||“dr . (36)
Since 4C?||Vu, |2+ C*|V8,]2+ 5 IV0, ]2+ |V, + I R|, belongs to L'(0, T), so by
(36) and Gronwall’s inequality, we obtain the uniqueness.

ProoF oF THEOREM 3.4. Let (u, 8) be a weak solution of (IVP) satisfying the
condition {14):

uel¥0, T; L'(Q) and 0eL0, T; L'(2) (r>3,s=2r/(r-3).

From (14), we can show

weL0,T:V)) and 8'eLX0,T:V3), (37)
where V, = H}(Q) and V,= H}(). To do this, we will verify
(u-VueL*0, T; V}) and (u*V)0eL?0,T;V3). (38)

Indeed, if we take 2 <g <6 such that 1/¢g+ 1/r=1/2, then, for ¢ €V, we have
| (- Vo, )| < Cllufl, Vel lull,  for e@eV,, (39)

where ||+ ||,=1l * sy and C is a dimension constant. Here we use Lemma 2.2 with
«=3/2—3/q. Then we have

laall, < €51 Vaell*llael)* %, (40)
from which we have
| (u - V), | < CeslVul*llull ' = Vol - [ull, . (41)
Since |Vo| <[ olly,, therefore we find
(e - V)ully, < Cegl Vol *uall ~faell, - (42)

By means of the energy inequality, we obtain
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T T
f e » V)ullﬁ;dtsj C2e3 1Vl > |uel| >4 =2 ue|| 2dt
0

0

T T a T 1—=
sczc?C‘T-“f |Vl el 2kt < C2c2 %—“( f nVunZdt)( f uuufﬂl-“’)
0 O V]

< C?e3*Cr H(Cr/2P )k = C2e3*C{1/2) lul 2, , (43)

where |lu|l, ;= lullzs, 7.0y and we used a=3/r and s=2/(1—o) because of 1/q=
1/2—1/r. Similarly we get

T a
f (- V)O3, < czc%“cr(% ) 1012, (44)
(1}

Therefore we showed (38). Moreover, thanks to geL*(Q)n L*3Q), we find fe
L*0, T; V}) (we omit verifications about other terms). Thus we obtain (37). Hence
we have

djdt||lu(t)||* =2<u'(2), u(t)) and d/dt||6(t)]> =240'(z), 0(2)) . (45)

Let “(u,, 8,) and “(u,, 0,) be two weak solutions of (IVP) with the same initial data
satisfying the condition (14). Put (u, 8)="(u, —u,, 0, —0,). We can show

e = Vg, ) | <2 [1Vull? + (1 —a®)(Ce3)> 0 2fu]|? luy |17 (46)
(> V). )| <4 IVull 2+ (1/2P)| VO + (1 — 2N Cep TPV D u 216,15, (47)
In fact, we see by (40)
[ (- VIuy, ) | =1 (e - V), uq) | < Cllaadl IVl = g |,
<(Ce§lIVal o)l =yl - (48)

Here we take p'=2/(1+a), ¢'=2/(1 —a) (=s5) and k such that (k' /p')(Cc%)*' = 1/4. Then,
for such a k, we find (1/¢'A*)=(1 —«?)(Cc%)?**® Then we have from (48)
k¥ . Lt 1 (1-a)g .
(Ce)P IVl F O [y, |2
' q’kP
=2 IV + (L= a2 Ce)? 2 2 [luy |5 (49)

| (@ * VI, w)| <

Similarly we have -
|+ V)01, 0)| < Cllul g VOl - 104 1], < (Ce3lIVuell*2/PY 2 VOIN(P/2) 2 [luell * =116, 1,)
<% |V 20 T2/ P+ )| §g| 20+ 4 (1 — a2 Ce) ™ *(P/2)M =) 2|16, |15 . (50)
Here, for A=(1 +a)/x and u=1+a, we find

1 1 2 (L/(1+a)u
”Vu" 2af(1 +a.)(2/P)1/(1 +a)”V9N2/(1 +az)s7 ”Vu”ZaA/(i +a:)_4_F (F ) “VBH(ZJ(I +a)u .

(5D
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By (50) and (51), we obtain (note 0<1/4, 1/u<1)

|- V)0, 0)| < Iqu|I2+ ||V9||2+(1 —a Y Ceg) AP/ Du| 28,117 . (52)
Now, using (49) and (52), putting C,=(1 —a2)}(Cc5)?>"' **, then we get

5 )2+ 18] +L | Va(w)|2ds + 4 L |V8(2)|12de

=3 f ”V“(f”"d”—f ||V6(r)nzafr+f A a2+ 10821 V8l o + IR )
0

(4]

t P 141 —a)
+j IIuIIZ(C,IIulllHCa(?) 164 ||5)df
0

1| 2 1 ! 2
ST L | Vu(z))| “dr + >P L [VO(z)|| “dx

tl P /(1 —a)
+'[ 5(I|ullz+!191i2)(2C,|lu1||‘§+2Ca(7) I|91||§+HVEIIOO-!-IIR!Im)dT . (53

[¢]

Since 2C,|u, |+ 2C,(P/2) 2|10, |15+ | VO| . + | Rl . € L(0, T), by virtue of (53) and

Gronwall’s inequality, we have the uniqueness theorem.
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