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Abstract
Iterative refinement clustering algorithms (e.g. K-Means, EM)
converge to one of numerous local minima.  It is known that
they are especially sensitive to initial conditions.  We present a
procedure for computing a refined starting condition from a
given initial one that is based on an efficient technique for
estimating the modes of a distribution.  The refined initial
starting condition leads to convergence to “better” local
minima.  The procedure is applicable to a wide class of
clustering algorithms for both discrete and continuous data.
We demonstrate the application of this method to the
Expectation Maximization (EM) clustering algorithm and
show that refined initial points indeed lead to improved
solutions.  Refinement run time is considerably lower than the
time required to cluster the full database.  The method is
scalable and can be coupled with a scalable clustering
algorithm to address the large-scale clustering in data mining.

1 Background   
Clustering has been formulated in various ways in the
machine learning [F87], pattern recognition [DH73,F90],
optimization [BMS97,SI84], and statistics literature
[KR89,BR93,B95,S92,S86].  The fundamental clustering
problem is that of grouping together data items which are
similar to each other.  The most general approach to
clustering is to view it as a density estimation problem [S86,
S92,BR93].  We assume that in addition to the observed
variables for each data item, there is a hidden, unobserved
variable indicating the “cluster membership” of the given
data item.  Hence the data is assumed to arrive from a
mixture model and the mixing labels (cluster identifiers) are
hidden. In general, a mixture model M having K clusters Ci,
i=1,…,K,  assigns a probability to a data point x as follows:
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mixture weights.  Many methods assume that the number of
clusters K is known or given as input.
The clustering optimization problem is that of finding
parameters associated with the mixture model M (Wi and
parameters of components Ci) to maximize the likelihood of
the data given the model.  The probability distribution
specified by each cluster can take any form. The EM
(Expectation Maximization) algorithm [DLR77, CS96] is a
well-known technique for estimating the parameters in the
general case.  It finds locally optimal solutions maximizing
the likelihood of the data.  Maximum likelihood mixture
model parameters are computed iteratively by EM:
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1. Initialize the mixture model parameters, producing a
current model,

2. Compute posterior probabilities of data items, assuming
the current model (E-Step)

3. Re-estimate model parameters based on posterior
probabilites from 2, producing new model, (M-Step)

4. If current and new model are sufficiently close,
terminate, else go to 2.

We focus on the initialization step 1. Given the initial
condition of step 1, the algorithms define a deterministic
mapping from initial point to solution. EM converges
finitely to a point (set of parameter values) that is locally
maximal for the likelihood of the data given the model. The
deterministic mapping means the locally optimal solution is
sensitive to the initial point choice.
We shall assume a model that represents a mixture of
Gaussains. Associated with each data point x is the “weight”
or posterior probability that x was generated by mixture
component l, p(x|l). We focus on mixture models in which
individual component densities are multi-variate Gaussians:
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is d-dimensional mean and Σl is dxd covariance matrix.
There is little prior work on initialization methods for
clustering.  According to [DH73] (p. 228):

"One question that plagues all hill-climbing
procedures is the choice of the starting point.
Unfortunately, there is no simple, universally good
solution to this problem."

"Repetition with different random selections" [DH73]
appears to be the defacto method.  Most presentations do
not address the issue of initialization or assume either user-
provided or randomly chosen starting points [DH73,R92,
KR89]. A recursive method for initializing the means by
running K clustering problems is mentioned in [DH73] for
K-Means.  A variant consists of taking the mean of the
entire data and then randomly perturbing it K times
[TMCH97].  This method does not appear to be better than
random initialization in the case of EM over discrete data
[MH98].  In [BMS97], the values of initial means along any
one of the d coordinate axes is determined by selecting the
K densest "bins" along that coordinate. Methods to initialize
EM include K-Means solutions, hierarchical agglomerative
clustering (HAC) [DH73,R92,MH98] and “marginal+noise”
[TMCH97].  It was found that for EM over discrete data
initialized with either HAC or “marginal+noise” showed no
improvement over random initialization [MH98].

2 Refining Initial Conditions
We address  the problem of initializing a general clustering
algorithm, but limit our presentation of results to EM.  Since
no good method for initialization exists [MH98], we
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compare against the defacto standard method for
initialization: randomly choosing an initial starting point.
The method can be applied to any starting point provided.
A solution of the clustering problem is a parameterization of
each cluster model. This parameterization can be performed
by determining the modes (maxima) of the joint probability
density of the data and placing a cluster centroid at each
mode. Hence one clustering approach is to estimate the
density and attempt to find the maxima (“bumps”) of the

estimated density function.  Density estimation in high
dimensions is difficult [S92], as is bump hunting [F90]. We
propose a method, inspired by this procedure that refines the
initial point to a point likely to be closer to the modes.  The
challenge is to perform refinement efficiently.
The basic heuristic is that severely subsampling the data
will naturally bias the sample to representatives “near” the
modes. In general, one cannot guard against the possibility
of points from the tails appearing in the subsample.  We
have to overcome the problem that the estimate is fairly
unstable due to elements of the tails appearing in the
sample. Figure 1 shows data drawn from a mixture of two
Gaussians (clusters) in 2-D with means at [3,2] and [5,5].
On the left is the full data set, on the right a small subsample
is shown, providing information on the modes of the joint
probability density function.  Each of the points on the right
may be thought of as a “guess” at the possible location of a
mode in the underlying distribution. The estimates are fairly
varied (unstable), but they certainly exhibit “expected”
behavior. Worthy of note here is that good separation
between the two clusters is achieved. This observation
indicates that the solutions obtained by clustering over a
small subsample may provide good refined initial estimates
of the true means, or centroids, in the data
 Clustering Clusters
To overcome the problem of noisy estimates, we employ
secondary clustering. Multiple subsamples, say J, are drawn
and clustered independently producing J estimates of the
true cluster locations.  To avoid the noise associated with
each of the J solution estimates, we employ a “smoothing”
procedure.  However, to “best” perform this smoothing, one
needs to solve the problem of grouping the K*J points (J
solutions, each having K clusters) into K groups in an

“optimal” fashion.  Figure 2 shows 4
solutions obtained for K=3, J=4. The
“true” cluster means are depicted by
“X”. The A’s show the 3 points
obtained from the first subsample,
B’s second, C’s third, and D’s
fourth. The problem then is
determining that D1 is to be grouped
with A1 but A2,  not with {A1, B1,
C1, D1}.
The Refinement Algorithm
The refinement algorithm initially

chooses J small random sub-samples of the data, Si,
i=1,…,J.   The sub-samples are clustered via EM with the
proviso that empty clusters at termination will have their
initial centers re-assigned and the sub-sample will be re-
clustered.  The sets CMi , i=1,…,J are these clustering
solutions over the sub-samples which form the set CM. CM
is then clustered via K-Means initialized with CMi

producing a solution FMi.  The refined initial point is then
chosen as the FMi having minimal distortion over the set
CM.  Note that this secondary clustering is a K-means
clustering and not EM. The reason is that the goal here is to
cluster solutions in a hard fashion to solve the
corresondence problem. Other procedures could be used for
secondary clustering including hierarchical agglomerative
clustering.  Clustering CM is a smoothing over the CMi to
avoid solutions “corrupted” by outliers included in the sub-
sample Si. The refinement algorithm takes as input: SP
(initial starting point), Data, K, and J (number of small
subsamples to be taken from Data):
Algorithm Refine( SP, Data, K, J)

CM = φ
For i=1,…,J

Let Si be a small random subsample of Data
Let CMi = EM_Mod(SP, Si, K)
CM = CM ∪  CMi

FMS = φ
For i=1,…,J

Let FMi = KMeans(CMi, CM, K)
Let FMS = FMS ∪  FMi

Let FM = { }),( CMFMLikelihoodArgMax i

iFM

Return (FM)
We define the following functions called by the refinement
algorithm: KMeans( ), EM_Mod( ) and  Likelihood( ).
KMeans is simply a call to the classic K-Means algorithm
taking:  an initial starting point, dataset and the number of
clusters K, returning a set of K d-dimensional vectors, the
estimates of the centroids of the K clusters.  EM_Mod takes
the same arguments as KMeans (above) and performs the
same iterative procedure as classic EM except for the
following slight modification.  When classic EM has
converged, the K clusters are checked for membership.  If
any of the K clusters have no membership (which often
happens when clustering over small subsamples), the
corresponding initial estimates of the empty cluster
centroids are set to data elements which have least
likelihood given the current model, and classic EM is called
again from these new initial centriods.
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Figure 2.  Multiple Solutions from Multiple Samples.

Figure 1.  Two Gaussian bumps in 2-d: full sample versus small subsample.
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Figure 3. The Starting Point Refinement Procedure

The heuristic re-assignment is motivated by the following:
if, at termination of EM, there are empty clusters then
reassigning all empty clusters to points with least likelihood,
maximizes likelihood the most at this step. Likelihood takes
set of K estimates of cluster parameters (the means and
covariances) and the data set and computes the likelihood of
the data set given the model.  This scalar measures the
degree of fit of a set of clusters to the dataset.  The EM
algorithm terminates at a solution which is locally optimal
for this likelihood function [B95,DLR77,CS96]. The
refinement process is illustrated in the diagram of Figure 3.

3 Scalability to Large Databases
The refinement algorithm is primarily intended to work on
large databases.  When working over small datasets (e.g.
most data sets in the Irvine Repository), applying the classic
EM algorithm from many different starting points is a
feasible option.  However, as database size increases
(especially in dimensionality), efficient and accurate
initialization becomes critical.  A clustering session on a
data set with many dimensions and tens of thousands or
millions of records can take hours to days.  In [BFR98], we
present a method for scaling clustering to very large
databases, specifically targeted at databases not fitting in
RAM.  We show that accurate clustering can be achieved
with improved results over a sampling based approach
[BFR98].  Scalable clustering methods obviously benefit
from better initialization.
Since our method works on very small samples of the data,
the initialization is fast. For example, if we use sample sizes
of 1% (or less) of the full dataset size, trials over 10 samples
can be run in time complexity that is less than 10% of the
time needed for clustering the full database. For very large

databases, the initial sample becomes negligible in size.
If, for a data set D, a clustering algorithm requires Iter(D)
iterations to cluster it, then time complexity is |D| * Iter(D).
A small subsample S ⊆ D, where |S| << |D|, typically
requires significantly fewer iteration to cluster. Empirically,
it is reasonable to expect that Iter(S) < Iter(D).  Hence,
given a specified budget of time that a user allocates to the
refinement process, we simply determine the number J of
subsamples to use in the refinement process.  When |D| is
very large, and |S| is a small proportion of |D|, refinement
time is essentially negligible, even for large J.
Another desirable property of the refinement algorithm is
that it easily scales to very large databases.  The only
memory requirement is to hold a small subsample in RAM.
In the secondary clustering stage, only the solutions
obtained from the J subsamples need to be held in RAM.
Note we assume that it is possible to obtain a random
sample from a large database. In reality this can be a
challenging task. Unless one can guarantee that the records
in a database are not ordered by some property, random
sampling can be as expensive as scanning the entire
database (using some scheme such as reservoir sampling,
e.g. [J62]). Note that in a database environment a data  view
may not exist as a physical table. The result of a query may
involve joins, groupings, and sorts. In many cases database
operations impose a special ordering on the result set, and
“randomness” of the resulting database view cannot be
assumed in general.

4 Experiments on Synthetic Data
Synthetic data was created for dimension d = 2, 3, 4, 5, 10,
20, 40, 50 and 100.  For a given value of d, data was
sampled from 10 Gaussians (hence K=10) with elements of
their mean vectors (the true means) µ sampled from a
uniform distribution on [-5,5].  Elements of the diagonal
covariance matrices Σ were sampled from a uniform
distribution on [0.7,1.5].  The number of data points
sampled was chosen as 20 times the number of model
parameters.  The K=10 Gaussians were not evenly weighted.
The goal of this experiment is to evaluate how close the
means estimated by classic EM are to the true Gaussian
means generating the synthetic data. We compare 3
initializations:
1. No Refinement: random starting point chosen uniformly
on the range of the data.
2. Refinement (J=10, 1%): a starting point refined from (1)
using our method. Size of the random subsamples: 1% of
full dataset , the number of subsamples: 10.
3. Refinement (J=10, 5%): same as (2) but subsample of
size 5%.
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Figure 5.  Comparing performance as dimensionality increases



Once classic EM has computed a solution over the full
dataset from any of the 3 initial points described above, the
estimated means must be matched with the true Gaussian
means in some optimal way prior to computing the distance
between these estimated means the true Gaussian means.
Let Kll ,,1, K=µ  be the K true Gaussian means and let

Klx l ,,1, K= be the K means estimated EM over the full
dataset.  A “permutation” π is determined so that the

following quantity is minimized: ∑
=

−
K

l
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)(πµ . The

“score” for a solution computed by classic EM over the full
dataset is simply the above quantity divided by K.  This is
the average distance between the true Gaussian means and
those estimated by EM from a given initial starting point.
Results
Figure 5 summarizes results averaged over 10 random initial
points determined uniformly on the range of the data.  Note
that the EM solution computed from refined initial points is
consistently nearer to the true Gaussian means generating
the dataset than the EM solution computed from the original
initial points.  On the left we summarize average distance to
the true Gaussian means. On the right we show
corresponding log-likelihood of the data given the model.
For low dimensions, effect of initialization is not as strong
as it is for high dimensions, as expected. Sampling at 5%
produces better refinement, but of course costs more. With
non-synthetic data, sampling more sometimes results in
worse solution as effect of “finding modes by subsampling”
is reduced.

5 Results on Public Data
We present computational results on two publicly available
“real-world” datasets. We are primarily more interested in
large databases -- hundreds of dimensions and tens of
thousands to millions or records.  It is for these data sets that
our method exhibits the greatest value. The reason is simple:
a clustering session on a large database is a time-consuming
affair. Hence a refined starting condition can insure that the
time investment pays off.
To illustrate this, we used a large publicly available data set
available from Reuters News Service. We also wanted to
demonstrate the refinement procedure using data sets from
the UCI Machine Learning Repository1. For the most part,
we found that these data sets are too easy: they are low
dimensional and have a very small number of records. With
a small number of records, it is feasible to perform multiple
restarts efficiently. Since the sample size is small to begin
with, sub-sampling for initialization is not effective. Hence
most of these data sets are not of interest to us.
Nevertheless, we report on our general experience with
them as well as detailed experience with one of these data
sets to illustrate that the method we advocate is useful when
applied to smaller data sets. We emphasize, however, that
our refinement procedure is best suited for large-scale data.
The refinement algorithm operates over small sub-samples
of the database and hence run-times needed to determine a
“good” initial starting point (which speeds the convergence
on the full data set) are orders of magnitude less than the
total time needed for clustering in a large-scale situation.
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We note that it is very likely that the cluster labeling
associated with many real-world databases do not
correspond to the clusters assigned by EM (whose objective
is to maximize likelihood). So evaluation of results on such
data is not as easy as synthetic data where truth is known.
5.1  Datasets from UCI ML Repository
We evaluated our method on several Irvine data sets.  First
we discuss one set, then general comments on others.
Image Segmentation Data Set
This data set consists of 2310 data elements in 19
dimensions. Instances are drawn randomly from a database
of 7 outdoor images (brickface, sky, foliage, cement,
window, path, grass).  Each of the 7 images is represented
by 330 instances.
Random initial starting points were computed by sampling
uniformly over the range of the data.  We compare solutions
achieved by the classic EM algorithm starting from: 1)
random initial starting points, and 2) initial points refined by
our method. A best measure in this case is to report the log-
likelihood of the data given the extracted model. The results
are as follows:

Refinement Method Log Likelihood % increase
None -123857 45.6%
1% Refined (J=10) -85577 1%
5% Refined (J=10) -85054 0

Other Irvine Datasets
We evaluated the refinement procedure on other data sets
such as Fisher’s IRIS, Star-Galaxy-Bright, etc. Because
these data sets are very low dimensional and their sizes
small, the majority of the results were of no interest.
Clustering these data sets from random initial points and
from refined initial points led to approximately equal gain in
entropy and equal distortion measures in most cases. We did
observe, however, that when a random starting point leads
to a “bad” solution, then refinement indeed takes it to a
“good” solution. So in those (admittedly rare) cases,
refinement does provide expected improvement. We use the
Reuters information retrieval data set to demonstrate our
method on a real and difficult clustering task.

5.2 Reuters  Information Retrieval Data Set
The Reuters text classification database is derived from the
original Reuters-21578 data set made publicly available as
part of the Reuters Corpus, through available as part of the
Reuters Corpus, through Reuters, Inc., Carnegie Group and
David Lewis2.  This data consists of 12,902 documents.
Each document is a news article about some topic: e.g.
earnings, commodities, acquisitions, grain, copper, etc…
There are 119 categories, which belong to some 25 higher
level categories (there is a hierarchy on categories). The
Reuters database consists of word counts for each of the
12,902 documents.  There are hundreds of thousands of
words, but for purposes of our experiments we selected the
302 most frequently occurring words, hence each instance
has 302 dimensions indicating the integer number of times
the corresponding word occurs in the given document.  Each
document in the IR-Reuters database has been classified
into one or more categories.  We use K=25 for clustering
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purposes to reflect the 25 top-level categories. The task is
then to find the best clustering given K=25.
Reuters Results
For this data set, because clustering the entire database
requires a large amount of time, we chose to only evaluate
results over 5 randomly chosen starting conditions. Results
are shown as follows:

Refinement Method ∆ Log Likelihood
None -5319570
1% Refined (J=10) 0
5% Refined (J=10) -201116

The chart shows a significant decrease in the log likelihood
measure from the best solution. In this case, 1% samples did
better than 5%.  To normalize results per case simply divide
by 12K (size of data). Since each document belongs to a
category (there are 119 categories), we can also measure the
quality of the achieved by any clustering by measuring the
gain in information about the categories that each cluster
gives (i.e. pure clusters are informative). The quality of the
clusters can be measured by the average category purity in
each cluster. In this case the average information gain for
the clusters obtained from the refined starting point was
4.13 times higher than the information gain obtained
without refining the initial points.

6 Concluding Remarks
A fast and efficient algorithm for refining an initial starting
point for a general class of clustering algorithms has been
presented.  The refinement algorithm operates over small
subsamples of a given database, hence requiring a small
proportion of the total memory needed to store the full
database and making this approach very appealing for large-
scale clustering problems.  The procedure is motivated by
the observation that subsampling can provide guidance
regarding the location of the modes of the joint probability
density function assumed to have generated the data.  By
initializing a general clustering algorithm near the modes,
not only are the true clusters found more often, but it
follows that the clustering algorithm will iterate fewer times
prior to convergence.  This is very important as the
clustering methods discussed here require a full data-scan at
each iteration and this may be a costly procedure in a large-
scale setting.
We believe that our method’s ability to obtain a substantial
refinement over randomly chosen starting points is due in
large part to our ability to avoid the empty clusters problem
that plagues traditional EM. Since during refinement we
reset empty clusters to far points and reiterate the EM
algorithm, a starting point obtained from our refinement
method is less likely to lead the subsequent clustering
algorithm to a “bad” solution. Our intuition is confirmed by
the empirical results.
The refinement method presented so far has been in the
context of the EM. However, we note that the same method
is generalizable to other algorithms: an example of this
method used to initialize the K-Means algorithm is given in
[BF98]. Generalization is possible to discrete data (on
which means are not defined). The key insight here is that if
some algorithm ClusterA is being used to cluster the data,
then ClusterA is also used to cluster the subsamples.  The
algorithm ClusterA will produce a model. The model is
essentially described by its parameters. The parameters are
in a continuous space. The stage which clusters the clusters
(i.e. step 3 of the algorithm Refine in Section 2) remains as

is; i.e. we use the K-Means algorithm in this step. The
reason for using K-Means is that the goal at this stage is to
find the “centroid” of the models, and in this case the harsh
membership assignment of K-Means is desirable.
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