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 50 

Abstract  51 

Initialized Earth System predictions are made by starting a numerical prediction 52 

model in a state as consistent as possible to observations and running it forward 53 

in time for up to 10 years. Skilful predictions at time slices from subseasonal to 54 

seasonal (S2S), seasonal to interannual (S2I) and seasonal to decadal (S2D) offer 55 

information useful for various stakeholders, ranging from agriculture to water 56 

resource management to human and infrastructure safety. In this Review, we 57 

examine the processes influencing predictability, and discuss estimates of skill 58 

across S2S, S2I and S2D timescales. There are encouraging signs that skilful 59 

predictions can be made: on S2S timescales, there has been some skill in 60 

predicting the Madden–Julian Oscillation and North Atlantic Oscillation; on 61 

S2I, in predicting the El Niño–Southern Oscillation; and on S2D, in predicting 62 

ocean and atmosphere variability in the North Atlantic region. However, 63 

challenges remain, and future work must prioritize reducing model error, more 64 

effectively communicating forecasts to users, and increasing process and 65 

mechanistic understanding that could enhance predictive skill and, in turn, 66 

confidence. As numerical models progress towards Earth System models, 67 

initialized predictions are expanding to include prediction of sea ice, air 68 



pollution, and terrestrial and ocean biochemistry that can bring clear benefit to 69 

society and various stakeholders. 70 

 71 

 72 

Key points 73 

• Initialization methods vary greatly across different prediction timescales, 74 

creating difficulties for seamless prediction. 75 

• Model error and drift limit predictability across all timescales. Although 76 

higher resolution models show promise in reducing these errors, 77 

improvements in physical parameterizations are needed to improve 78 

predictability. 79 

• The effects of land processes, interactions across various ocean basins and the 80 

role of stratospheric processes in predictability are not well understood. 81 

• Predictability on seasonal to decadal timescales is largely associated with 82 

predictability of the major modes of variability in the atmosphere and the 83 

ocean. 84 

• Evolution of Earth System models will lead to predictability of more societal-85 

relevant variables spanning multiple parts of the Earth System. 86 

 87 

[H1] Introduction 88 

There has been an increasing desire for climatic information on timescales from 89 

weeks to months, seasons and years. Such information offers clear benefits to society 90 

and various stakeholders alike. For instance, prediction of the hydroclimate could 91 

allow for better water resource management and improved agricultural maintenance, 92 



whereas temperature and wind predictions could provide critical information for 93 

infrastructure planning and expected energy consumption. To obtain this climatic 94 

information, initialized predictions on various near-term timescales must be used. 95 

Initialized Earth System prediction describes a suite of climate model simulations 96 

wherein the starting conditions are set as close to observations as possible and the 97 

model is run forward for up to 10 years
1
. Internally generated, naturally occurring 98 

variability is therefore considered a key aspect of these time-evolving climate 99 

predictions
2
. They differ from uninitialized simulations — or climate change 100 

projections — where internal variability is removed through ensemble averaging, and 101 

focus is instead given to quantifying the effects of external forcing such as 102 

anthropogenic greenhouse gases
3,4

. 103 

Given the duration of simulations, initialized predictions span various timescales (Fig. 104 

1a): subseasonal to seasonal (S2S; ~2 weeks–2 months)
5,6

, seasonal to interannual 105 

(S2I; 2–12 months)
7
 and seasonal to decadal (S2D; 3 months–10 years)

1,2
. In each 106 

case, efforts have focused on climate phenomena that also operate on similar 107 

timescales. For example, S2S research has concentrated on the Madden–Julian 108 

Oscillation (MJO) and sudden stratospheric warmings (SSWs); S2I on the El Niño–109 

Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean 110 

Dipole (IOD), Southern Annular Mode (SAM) and Quasi-Biennial Oscillation 111 

(QBO); and S2D on slowly evolving oceanic processes such as Pacific decadal 112 

variability (PDV) and Atlantic multi-decadal variability (AMV). 113 

Distinct communities have therefore formed to coordinate research and perform 114 

initialized predictions on each timescale. Efforts such as the S2S Prediction Project 115 

and Database
5
 and the Subseasonal Experiment (SubX

6
) emerged for S2S; the North 116 

American Multi-Model Ensemble
 7

, the Asia-Pacific Economic Cooperation (APEC) 117 



Climate Center (APCC), and the Copernicus Climate Change Service for S2I; and sets 118 

of hindcasts and predictions as part of the Coupled Model Intercomparison Project 119 

phase 5 (CMIP5)
1,2

 and CMIP6 (ref.
8
) for S2D. 120 

Although these communities are often separate, however, they all rely on similar 121 

methodologies (Table 1; see Supplementary Tables 1-3). Thus, there is potential for 122 

‘seamless prediction’
9
, whereby one framework can be used to address prediction 123 

across all timescales, with skill increasingly associated with external forcing as 124 

simulations progress
10

 (Fig. 1b). Yet, in practice, community differences with regards 125 

to initialization frequency, for example, make seamless prediction challenging
1,2

. 126 

In this Review, we bring together research on initialized predictions on timescales of 127 

weeks to years. We begin by outlining current methodologies for initialized 128 

predictions, incorporating discussion of the process, ensemble size, verification and 129 

prediction skill. We subsequently outline prediction on S2S, S2I and S2D timescales, 130 

before discussing priorities for future research that will increase the feasibility for 131 

seamless prediction. 132 

 133 

[H1]  Making Predictions  134 

S2I research using initialized prediction has been taking place since the late 1980s 135 

(ref.
11

). In contrast, it was not until 20 years later that initialized S2D climate 136 

predictions began, in turn, initiating a rapid acceleration of research from which 137 

operational systems are now routinely produced
12

. We begin by describing the 138 

process of initialized prediction, focusing on the methodological aspects involving 139 

forecast verification and measures of prediction skill (the level of agreement between 140 

an initialized prediction and the observed state it is meant to predict). 141 



 142 

[H2]  Process of initialized prediction 143 

Predictions for S2S, S2I and S2D timescales, ranging from weeks to years, use 144 

numerical models with components of (at least) atmosphere, ocean, land and sea ice 145 

that are started from a particular observed state. The process of bringing the model 146 

components into close correspondence with that observed state is termed 147 

initialization, and predictions that are started from such observed states are referred to 148 

as initialized predictions. There are currently many activities taking place in the S2S, 149 

S2I and S2D communities with regards to initialized prediction, with key differences 150 

amongst centres regarding how models are used (Table 1; see Supplementary Tables 151 

1-3). 152 

One key difference between the subseasonal and longer timescale systems is the 153 

origin of the model. Many S2S (and some S2I) prediction systems originate in the 154 

numerical weather prediction community. As such, they tend to have the highest 155 

horizontal resolution in the atmosphere, largely ~0.25–0.5° (Table 1). Atmospheric 156 

initialization in these numerical weather prediction-derived models uses data 157 

assimilation
13

, such as 3D variational assimilation (as in the CMA model). Moreover, 158 

to produce the initial perturbations for ensemble generation, they sometimes use data 159 

assimilation with an ensemble Kalman filter
14 

(as in the ECCC model) or singular 160 

vectors
15

 (as in the JMA model). In comparison, most S2I, and all but one S2D, 161 

prediction systems are based on climate or Earth System models (ESMs) previously 162 

used for IPCC climate projections. In these cases, the majority of models have a 163 

horizontal resolution of ~0.5–1° (Table 1). 164 

In addition to differences in the models and their resolution across prediction 165 

timescales, contrasts are also evident in the components that are initialized and the 166 



degree of coupling between Earth System components. In S2S predictions, for 167 

example, coupling between the atmosphere, ocean, land and sea ice is not considered 168 

crucial (Fig. 1a). As such, only a small number of models initialize the ocean and 169 

employ atmosphere–ocean coupling, but the majority initialize land surface 170 

conditions (Supplementary Table 1). For S2D predictions, however, oceanic 171 

processes are vital and, as a result, all models initialize the ocean and have at least 172 

partial coupling with the atmosphere and sea ice; only a fraction initialize the 173 

atmosphere and land surface (Supplementary Table 3). As S2I falls in the time 174 

window where predictability comes from all Earth System components (Fig. 1a), care 175 

is typically taken to initialize each of them. 176 

Atmospheric initialization is often achieved by interpolating an existing analysis to 177 

the model grid and generating an ensemble spread using the random field perturbation 178 

method
16

 (as in CESM1 for S2S), the lagged ensemble method
17,18

 (as in CCSM3) or 179 

nudging to reanalyses in coupled mode
19

 (as in the CCCma model). Various 180 

approaches have also been used to initialize the ocean state, including a hindcast spin-181 

up in an ocean forced by observed atmospheric conditions
20

, nudging the ocean model 182 

to some observed ocean state
21

 or using full ocean data assimilation
22

. Land variables 183 

are initialized either by assimilation of land observations
23

 or by running an offline 184 

land-only model that is forced with observed atmospheric conditions
24

. The 185 

initialization strategy also differs between the shorter and longer-term prediction 186 

models. All S2S and S2I prediction models use full fields (such as sea surface 187 

temperature (SST)). By contrast, about half of the S2D modes use anomaly 188 

initialization, meaning an initial condition is constructed by adding observed (or 189 

reanalysis) anomalies to the model’s climatology in order to minimize initialization 190 

shock and model drift
25,26,27

. 191 



As individual model components are often initialized in different ways, there is 192 

frequently no coupling between initial conditions for various parts of the Earth 193 

System, thereby creating an imbalance in the initial state of the model. New 194 

methodologies, such as weakly coupled and strongly coupled data assimilation, offer 195 

promising approaches to reduce initialization shock and imbalance in the model
28

. In 196 

the weakly coupled approach, the assimilation is applied to each of the components of 197 

the coupled model independently, whereas interaction between the components is 198 

provided by the coupled forecasting system
28

. In the strongly coupled method, 199 

however, assimilation is applied to the full Earth System state simultaneously, treating 200 

the coupled system as a single integrated system
28

. 201 

There are currently very few modelling centres that have been able to apply seamless 202 

prediction owing to numerous practical aspects (including the initialization method, 203 

initialization frequency, number of ensemble members, among others). The most 204 

seamless system is currently operated by the UK Met Office, which is providing S2S, 205 

S2I and S2D forecasts operationally using almost identical configurations of the 206 

model for all prediction systems
29

. NCAR, although not an operational centre, is also 207 

using the same models, CESM1 and CESM2, to generate S2S, S2I and S2D hindcasts 208 

(and predictions for research purposes) using the same modelling framework, 209 

although at this time initialization details vary among the three prediction systems. 210 

 211 

[H2] Ensemble size 212 

Ensemble size is an important aspect determining predictive skill and reliability. In 213 

most prediction systems, ensemble sizes typically range between 10 and 50 (Table 1). 214 

There is potential to increase the number of ensembles by combining those from 215 

multiple systems
30

 or time-lagged ensembles
31

, or using other techniques such as 216 



subsampling
32,33

 to improve the ensemble properties. Typically, the more ensemble 217 

members, the higher the anomaly correlation coefficient (ACC), a measure of 218 

prediction skill. For example, on S2S timescales, the ACC of global surface air 219 

temperature over land is ~0.29 when using only 4 CESM1 hindcast ensemble 220 

members
34

, increasing to ~0.33 for 8 members and ~0.36 for 16 members (Fig. 2a). 221 

Large ensembles are also advantageous for improving seasonal prediction skill of the 222 

NAO
35

, including on S2D timescales
33,36

. For example, ACC values are ~0.6 for an 223 

average of years 2–8 when using 40 ensemble members
37

 (Fig. 2b). Further increases 224 

in multi-year NAO skill with an ACC of 0.8 are possible with a lagged ensemble of 225 

several hundred members
33

 as a result of the modelled signal to noise ratio being too 226 

small. 227 

There are consequences and trade-offs in terms of computing costs when using more 228 

ensemble members. For instance, an S2S reforecast could run 16 years (SubX) × 4 229 

members × 2 months long × weekly start dates for ~600 model years; an S2I example 230 

could run 30 years × 9 members × 1 year long × 4 start dates per year for 231 

~1,000 model years; and an S2D example (DCPP) could run 60 years × 10 232 

members × 10 years long for ~6,000 model years. 233 

 234 

[H2]  Verification using observations 235 

A key element of initialized prediction is having a solid understanding of the climate 236 

phenomena that are being predicted. Analyses of observations in comparison with the 237 

model simulations are thus required. On S2S and S2I timescales, the observational 238 

record provides a good source of data to verify initialized hindcasts. For example, 239 

observations cover roughly 30 ENSO events and as many as 300 MJO cycles. 240 



However, these data have their limitations. For instance, 3D observations of the 241 

atmosphere and ocean are desired for prediction verification, for understanding of 242 

processes and mechanisms, and for initialization of the predictions in the first place
38

. 243 

Yet such 3D gridded data are limited to the period of the satellite record (dating from 244 

the late 1970s) and to reanalyses that assimilate all available observations. Moreover, 245 

although several ENSO (and similar timescale) events have been observed, these can 246 

exhibit different expressions
39 

and undergo large decadal to millennial 247 

variations
40,41,42

, requiring a long observational record to perform robust analyses. 248 

Researchers in the field of initialized Earth System prediction on S2D timescales 249 

often cite the short observational record as a factor inhibiting understanding. For 250 

example, with reliable observations limited to the latter half of the twentieth 251 

century
43

, only approximately three PDV or AMV transitions have occurred by which 252 

to compare predictions. Although some observations are available earlier in the 253 

twentieth century, these are sparse and reanalyses are highly uncertain, making 254 

consistent comparisons of prediction skill between the pre and post-satellite eras 255 

difficult. Added to that, subsurface ocean observations and critical state atmospheric 256 

variables (such as surface winds) are crucial to understanding slow variations in the 257 

climate system
44

, but such observations also have a very short duration. Moreover, it 258 

is also difficult to objectively separate forced (natural and anthropogenic) and internal 259 

decadal to multi-decadal climate variability, adding further challenges for S2D 260 

prediction verification and triggering debate on best practices for signal 261 

separation
45,46,47,48

. 262 

Nevertheless, efforts are underway to improve methodological approaches and data 263 

provisions for prediction verification. The crucial need for better observations of the 264 



full depth of the ocean have started to be addressed by Argo floats, first for the upper 265 

2,000 m (ref.
49

) but with plans to be expanded to the full ocean depth
50

. 266 

 267 

Proxy-based reconstructions are also increasingly available, shedding light on 268 

processes associated with interannual and decadal timescales of variability
51

 beyond 269 

that possible by instrumental observations. Indeed, the particular limitations of 270 

instrumental data length and coverage for verification of S2D predictions have 271 

pointed to palaeoclimate reconstructions — using trees, corals and speleothems — to 272 

extend observations and provide further realizations of decadal 273 

variability
40,42,52,53,54,55,56 

(Fig. 3). Additionally, such records can provide insights into 274 

the physical mechanisms associated with this variability, including westerly wind 275 

anomalies
51

, upwelling, gyre circulation
57

 and links among major modes of 276 

variability
58

. Together with further advances in palaeoclimate research — including 277 

palaeoclimate synthesis
59,60,61,62

, palaeo data assimilation techniques
63,64,65

 and 278 

development and expansion of proxy system models and toolboxes
66,67

 — 279 

palaeoclimate data will not only help with the verification of climate model 280 

simulations, particularly on the S2D timescale, but also provide context for initialized 281 

predictions by providing insights into the timescales of variability beyond the 282 

instrumental record. 283 

 284 

[H2] Bias correction and prediction skill 285 

To account for model drifts and biases, the skill of initialized predictions is typically 286 

evaluated in terms of forecast time-dependent anomalies that are departures from 287 

some measure of mean climate. However, a prediction will drift rapidly from the 288 

initial observed state towards its own climatology owing to model error. These drifts 289 



start almost immediately in a prediction, and by lead year 1 are already considerable 290 

(Fig. 4). 291 

The calculation of anomalies and correction of model biases are addressed together, 292 

typically by calculating and removing the model climatology. For S2S predictions, the 293 

common methodology is to calculate a lead time-dependent model climatology from a 294 

set of hindcasts and to compute anomalies from this climatology. However, such a 295 

procedure is complicated owing to the inhomogeneous nature of current subseasonal 296 

prediction systems
6
. The climatology for S2I predictions is similarly accomplished by 297 

averaging over all years of the hindcast for a particular start time and lead or target 298 

time
68

, thereby assuming stationarity of biases and drifts in the predictions. 299 

For S2D predictions, model drift is acute and is addressed by multiple approaches for 300 

computing anomalies (Fig. 4). One method is to calculate the model climatology of 301 

drifts from hindcasts over a prediction period of interest (for example, the average of 302 

lead years 3–7) and, then, subtract that climatology from each prediction for years 3–7 303 

(ref.
69

); this approach works well for short timescale predictions where externally 304 

forced trends are less of a factor, but can be problematic for longer timescales. An 305 

alternative method is to compute a mean time-evolving drift from a set of hindcasts, 306 

subtract that mean drift from a prediction and compute anomalies as differences from 307 

the drift-adjusted prediction and time period (such as the previous 15-year average) 308 

immediately prior to the prediction
70

. This alternative approach better reduces the 309 

effects of an externally forced trend, but raises the issue of how great a role the recent 310 

observed period should play in prediction verification. When long-term trends in the 311 

hindcasts differ from observations, a further method is to correct biases in the trends 312 

in addition to those in the mean model climatology over the hindcast period
71

, 313 

although such an approach can yield an overestimation of the skill of the system. 314 



Models can also underestimate the magnitude of predictable signals relative to 315 

unpredictable internal variability, especially at seasonal and longer timescales in the 316 

extratropical North Atlantic sector
33

. This underestimation leads to the counter-317 

intuitive implication that models are better at predicting the real climate variability 318 

than they are at predicting themselves, a phenomenon termed the ‘signal to noise 319 

paradox’, when observed signal to noise ratios are larger than those in models
72

. 320 

Given that such features also occur in uninitialized climate simulations of the 321 

historical period
73,74

, and potentially in modelled responses to volcanoes and solar 322 

variations
72

, they are not believed to arise from initialization itself. As a result of the 323 

signal to noise paradox, it is necessary to take the mean of a very large ensemble to 324 

extract the predictable signal and then adjust its variance
33

. 325 

Although discrepancies between signal to noise measures in models and observations 326 

highlight an important model deficiency, they also imply an optimistic potential to use 327 

adjusted climate model outputs to predict the observed system
33,36

. Additionally, there 328 

has been growing interest in the influence of decadal variability on the predictability 329 

and skill of seasonal forecasts
75

. Sometimes, the impact of this variability can obscure 330 

the gradual skill improvements that are found from advancing the science and 331 

modelling
76

. 332 

Clearly, a major challenge for initialized prediction at any timescale is the mean drift 333 

of the model away from its initialized state to its preferred systematic error state 334 

(Fig. 4). All of the efforts at bias adjustment and drift correction arise from this 335 

fundamental characteristic of model error, but improvements in initialized prediction 336 

require increased understanding of the processes and mechanisms at work in the 337 

climate system in order to reduce model error. 338 

 339 



[H1]  S2S initialized predictions 340 

All initialized predictions start with a particular observed state that could contribute to 341 

some combination of externally forced and internally generated variability. However, 342 

owing to the relatively short timescales, subseasonal (S2S) predictability is largely an 343 

initial value problem in which the atmosphere, ocean, land and sea ice contribute to 344 

prediction skill through their memory of the initial state, and not external forcing 345 

(Fig. 1). Considerable resources are therefore allocated to initialization of atmosphere 346 

and land, including generation of ensemble spread. Ocean initialization and coupling 347 

are additionally important, especially in tropical regions, where sources of 348 

predictability can come from modes of variability such as the MJO
6,77

, as well as the 349 

stratosphere, both of which are now discussed. 350 

 351 

[H2] Modes of variability 352 

The MJO is recognized as one of the leading sources of S2S predictability
78

 owing to 353 

the strong interaction between the tropics and extratropics on subseasonal 354 

timescales
79

. For example, forecast models involved in the SubX and the S2S 355 

Prediction Project can predict the MJO skilfully up to 4 weeks
5,80,81

. Furthermore, 356 

skill has been shown in predicting the MJO in a multi-model framework consisting of 357 

six SubX models for week 3 predictions averaged over days 15–21 (ref.
6
) (Fig. 5), 358 

whereby most reproduce the eastward propagation of outgoing long-wave radiation 359 

anomalies. Some models, however, have difficulty in simulating the propagation of 360 

the MJO across the Maritime Continent (eastward of 120° E), the so-called Maritime 361 

Continent ‘barrier’
78

. MJO-related Rossby wave propagation into the extratropics also 362 

provides predictability for extreme events such as storm tracks
82

, atmospheric 363 

rivers
83

 and tornadoes
84

. 364 



S2S predictability is also influenced by the NAO (itself influenced by ENSO
85

), sea 365 

ice and the stratosphere
86

, which has a bearing on extremes in large regions of Europe 366 

and North America. Using the NCEP Climate Forecast System version 2 (CFSv2) and 367 

the Met Office Global Seasonal forecast System 5 (GloSea5), it has been suggested 368 

that the NAO exhibits predictability to at least several months ahead
35,87,88

. Indeed, all 369 

SubX models demonstrate significant NAO skill at week 3, specifically an ACC of 370 

~0.27–0.5 (ref
.6
). 371 

Similarly, the SAM is a source of predictability and prediction skill of rainfall, 372 

temperature and heat extremes over Australia
89,90

. Although SAM predictability is 373 

typically low beyond ~2 weeks, there is the potential to make seasonal 374 

predictions
91

 because of its association with ENSO
92

 and the influence of the 375 

stratosphere
81,93

. 376 

Consideration of these modes offers ‘windows of opportunity’ in S2S prediction, 377 

where in certain situations there could be better predictability owing to active periods 378 

of the MJO or certain large-scale atmospheric regimes, for example
94

. 379 

 380 

H2] Initial state 381 

Given that the land surface varies more slowly than the atmosphere, it also provides a 382 

source of predictability for temperature and precipitation on S2S timescales, the 383 

greatest contribution coming from soil moisture
95

. This predictability is most 384 

pronounced during boreal spring and summer when synoptic systems have a smaller 385 

influence on soil moisture variability. The contribution of soil moisture anomalies to 386 

subseasonal predictability also varies regionally, with the largest contribution in areas 387 

of strong land–atmosphere interactions
96

. As such, the land surface is initialized in 388 

most current operational subseasonal prediction systems and all research subseasonal 389 



systems (Supplementary Tables 1 and 2). In doing so, improved skill for S2S 390 

predictions of temperature and precipitation have been observed, although model 391 

errors impact the full realization of this skill
95,97,98

. 392 

The coupling of the atmosphere to the ocean and sea ice is further thought to be 393 

important for predictability at lead times longer than 2 weeks, and, accordingly, 394 

ocean–sea ice–atmosphere coupled models are routinely used in operational S2S 395 

initialized predictions. For Arctic sea ice, there is rising demand for reliable 396 

projections up to months ahead owing to increased human activities. Currently, the 397 

best subseasonal models show skilful forecasts of more than 1.5 months ahead
99

. Yet 398 

many current operational forecast models lack skill even on timescales of a week
100

. 399 

Hence, there is more work to be done to improve the S2S forecast skill of Arctic sea 400 

ice variables, although many systems are capable of predicting the sea ice extent at 401 

seasonal timescales, at least in some regions and seasons
101,102,103,104

. 402 

Sea ice conditions (such as the location of the sea ice edge) can have significant 403 

feedback with the atmosphere and, thus, impact the forecast of the coupled system in 404 

initialized predictions
105

. For example, the largest mid-latitude forecast skill 405 

improvements have occurred owing to improved Arctic predictions over eastern 406 

Europe, northern Asia and North America relating to sea ice reductions and 407 

anomalous anticyclonic circulation
106

. 408 

 409 

[H2] The stratosphere 410 

The largest recognized influence of the stratosphere on the troposphere comes from 411 

extreme states of the stratospheric polar vortex, particularly SSWs. SSWs are 412 

followed by tropospheric circulation anomalies that can last up to 60 days and 413 

resemble the negative phase of the NAO
107,108

. S2S forecasts initialized near the onset 414 



of an SSW thus show increased skill for mid-latitude to high-latitude surface 415 

climate
109

, and seasonal predictability of the NAO is dependent on the presence of 416 

SSWs in ensemble predictions
110

. Although SSWs are not as common in the southern 417 

hemisphere, weakening and warming of the stratospheric polar vortex is predictable a 418 

season in advance and, through connections with a negative SAM, can offer some 419 

predictability of hot and dry extremes over Australia
81,93

. 420 

The QBO can further influence the troposphere on S2S timescales. Specifically, phase 421 

changes in the QBO modify the strength of the stratospheric polar vortex
111

, in turn 422 

affecting the subtropical jet and storm tracks and, hence, surface climate
112,113

, and the 423 

strength of the MJO
114,115

. For example, the phase of the QBO in the initial state 424 

influences the prediction skill of the MJO, with higher skill during easterly QBO 425 

boreal winters compared with westerly QBO winters and improved skill for lead 426 

times of 1–10 days
116

. The prediction skill of the QBO itself is very high on the S2S 427 

timescales, with an ACC of 0.85–1.0 at a 1-month timescale
93

. 428 

 429 

[H1]  S2I initialized predictions 430 

S2I initialized predictions are relatively mature compared with S2S and S2D, as 431 

evidenced by the number of national operational meteorological services that 432 

maintain state-of-the-art initialized S2I prediction systems
7,117

. Primary sources and 433 

mechanisms of S2I predictability consist of slowly evolving boundary conditions of 434 

SST, land surface conditions (moisture, snow cover), sea ice variations
118

 and 435 

stratospheric state. Additional predictability might be gained from the atmospheric 436 

composition, not typically represented in S2I models. Each of these factors are now 437 

discussed. 438 

 439 



H2] ENSO 440 

The largest source of S2I predictability is associated with ENSO. ENSO provides skill 441 

in predicting rainfall across the tropics
119

 and surface climate across the globe given 442 

their teleconnections
120

. This predictability skill is primarily derived from subsurface 443 

ocean processes
121

. Specifically, given that winds and SSTs in the deep tropical 444 

Pacific are largely in equilibrium, and the subsurface temperature or thermocline 445 

variations are in disequilibrium, capturing the latter in the initial state of ESMs offers 446 

predictability
121

. 447 

However, ENSO events exhibit a large diversity in spatial patterns, with the location 448 

of maximum SST anomalies ranging from the central Pacific to the far-eastern 449 

Pacific
39,122

. ENSO diversity raises predictability issues in terms of precursor 450 

mechanisms such as Pacific Meridional Modes
123,124,125,126,127

, forecast skill
128,129

, 451 

teleconnections
130

, multi-year events
131

 and interpretation in the palaeo record
132

 — 452 

many of which remain unresolved. 453 

Overall, current state-of-the-art prediction systems are able to predict SSTs in the 454 

eastern Pacific up to 6–9 months in advance with modest skill, especially for forecasts 455 

initialized in June and verified in the following boreal winter. Yet current prediction 456 

systems consistently struggle to predict through the boreal spring season, that is, the 457 

so-called spring prediction barrier. The rapid onset or initiation of canonical, eastern 458 

Pacific ENSO events also remains a challenge to predict, largely because onset often 459 

requires stochastic triggers such as westerly wind bursts
133,134

. Indeed, inclusion of 460 

westerly wind bursts (or other triggers) as stochastic parameterizations has been found 461 

to improve model simulations of ENSO
135

 and forecast skill
136

. Prediction of different 462 

ENSO types appears to be limited to about 1 month
137

 and, owing to the models’ 463 

systematic tendency to produce more warming in the east, strong eastern Pacific 464 



events are generally better predicted (that is, exhibit better forecast skill) than central 465 

Pacific events
7
. 466 

 467 

[H2]  Other modes of variability 468 

Tropical Atlantic SST anomalies are also predictable on S2I timescales. SST anomaly 469 

variability in this region is broadly categorized into two spatial patterns. The first is 470 

often referred to as the ‘Atlantic Niño’ and involves many of the feedback 471 

mechanisms noted for ENSO
138

, but is shorter lived and weaker. In comparison with 472 

ENSO, however, the Atlantic Niño is less studied and also less predictable
139,140

. The 473 

second pattern of variability is referred to as the Atlantic Meridional Mode
87

. It is 474 

estimated that the Atlantic Meridional Mode is predictable one to two seasons in 475 

advance, with the mechanisms for predictability largely stemming from near-surface 476 

air–sea interactions (thermocline variability is of secondary importance). However, 477 

even with some indications of successful predictions in certain circumstances 478 

including interactions with the tropical Pacific
138

, as with all timescales of initialized 479 

predictions, persistent regional systematic errors with current initialized Earth 480 

prediction systems continue to be a factor in limiting the predictive abilities of 481 

tropical Atlantic S2I variability
141,142

. 482 

Much like the Atlantic, Indian Ocean SST anomaly variability is weaker and may be 483 

less predictable than the Pacific, but is important for regional teleconnections and 484 

impacts. Indian Ocean SST variability has three distinct patterns of interest: the IOD, 485 

which can be triggered by ENSO but can also emerge independently
58,143

; a basin-486 

wide pattern that is an ENSO teleconnection
144

; and a meridional mode pattern that 487 

depends on near-surface air–sea interactions similar to that in the Atlantic
145

. Earth 488 

System prediction models typically struggle to predict the connection between ENSO 489 



and the IOD, the northward propagation of the meridional mode and the persistence 490 

of the IOD, except in large-amplitude cases
146

. The IOD also can affect processes on 491 

the S2S timescale
147

, including the MJO, and even the extratropics. There are also 492 

other possible sources of S2I predictive skill involving the NAO
148

 and the Atlantic 493 

Ocean state that appear to drive aspects of summer European rainfall
149

. 494 

 495 

H2] Land Surface Processes 496 

Slowly varying S2I soil moisture anomalies influence the prediction skill for 497 

precipitation and temperature
150

. Currently, the memory resulting from large soil 498 

moisture anomalies in the initial conditions is believed to last ~2–3 months
151

, but 499 

there are case by case examples where predictability can be considerably longer under 500 

conditions where soil moisture anomalies persist for more than one season, 501 

particularly for surface temperature. Indeed, some seasonal temperature predictability 502 

has been confirmed to arise from soil moisture, but the realization of skill is severely 503 

hampered by model biases
152,153

. Thus, reducing model error in the land surface 504 

components could considerably improve forecast skill, as seen in a large sample of 505 

initialized Earth System prediction experiments
17

. 506 

 507 

[H2] Stratosphere 508 

Improved surface prediction resulting from stratosphere-related processes has been 509 

demonstrated on the seasonal timescale: having a higher vertical resolution in the 510 

stratosphere in a GCM captures SSWs earlier compared with the standard model 511 

configuration and has a positive influence on the simulations of European surface 512 

climate
154

. Southern hemisphere SSWs also affect predictions of Australian 513 

extremes
81,93

. The QBO, discussed earlier with respect to S2S predictability, has also 514 



been shown to lead to enhanced predictability on seasonal timescales
155,156

, is 515 

predictable up to several years ahead
157

 and can also involve the MJO
116

. 516 

 517 

[H2]  Other possible sources of predictive skill 518 

There are additional sources and mechanisms for S2I predictability that are not 519 

particularly well modelled in S2I prediction. For example, slowly evolving 520 

greenhouse gases such as carbon dioxide and methane are known to be a source of 521 

forecast skill owing to their role as external forcing agents
158

. However, an 522 

approximate time history of carbon dioxide, methane and chlorofluorocarbons is 523 

typically specified and not predicted, thus limiting the potential to capture S2I 524 

variability or regional effects. Moreover, dust and aerosol concentrations are known 525 

to affect human health, but these changes in atmospheric composition are usually not 526 

included in prediction systems. 527 

 528 

[H1]  S2D initialized predictions  529 

There is a high level of interest in, and expectations of, initialized Earth System 530 

predictions on timescales beyond S2S and S2I. For example, even with their 531 

limitations, there is evidence of skill in predicting surface temperature over and above 532 

that of simple persistence (Fig. 6a,b), and also precipitation and sea level pressure 533 

when using large multi-model ensembles, albeit with less skill
36

. These skilful multi-534 

year predictions of precipitation over land indicate potential benefit to communities, 535 

as demonstrated with summer drought indicators in major European agricultural 536 

regions being predictable on multi-year timescales
159

. Here, we review the evidence 537 



for processes and mechanisms acting on the S2D timescale that could contribute to 538 

the skill of initialized predictions
12,36

. 539 

 540 

[H2] Modes of decadal SST variability 541 

Processes and mechanisms have been identified that could provide skill for 542 

fundamental quantities such as SST in initialized predictions. Attention has been 543 

focused on AMV
160

, but predictions of PDV
160,161

 — which are often described in 544 

terms of the Interdecadal Pacific Oscillation (IPO)
162

 over the Pacific basin and the 545 

Pacific Decadal Oscillation
163,164 

over the north Pacific — are also of interest. Other 546 

modes of variability associated with decadal timescales include the Meridional 547 

Modes
165

 and the North Pacific Gyre Oscillation
166

. 548 

Basin-wide warming and cooling patterns of SSTs and upper ocean heat content 549 

(averaged temperature for 0–400 m) have also been shown to characterize decadal 550 

timescale variability in the Indian Ocean
167,168,169

, as have decadal variations of the 551 

IOD
56,170

. Decadal variability in the Indian Ocean could influence warming events 552 

near the Australian west coast
171,172

. Furthermore, a rapid rise in Indian Ocean 553 

subsurface heat content in the 2000s in observations and model simulations is 554 

associated with a redistribution of heat from the Pacific to the Indian Ocean and has 555 

been suggested to account for a large portion of the global ocean heat gain during that 556 

period
173,174

. IPO variability could thus be affecting Indian Ocean variability, 557 

transmitted through both the atmospheric and oceanic bridges
175

. These low-558 

frequency connections have been implicated in modulating interannual variability 559 

associated with the IOD on decadal timescales
172,176

. 560 

One issue that remains to be resolved for S2D related to prediction skill is whether 561 

there are well-defined timescales of variability that are distinct from the background 562 



of climatic noise; that is, whether there are modes of large-scale variability that might 563 

display a statistically significant spectral peak in the decadal to multi-decadal range 564 

and that could be predicted. Such signals could offer the best prospect for long-term 565 

predictability, but on this timescale there is more of a broadband spectral peak. For 566 

example, CMIP5 control simulations showed patterns and multi-decadal timescales of 567 

variability in the Pacific associated with the IPO that resemble observations but with 568 

lower amplitude
177

. Moreover, analysis of three generations of climate models 569 

(CMIP3, CMIP5 and CMIP6) shows progressive improvement of climate models’ 570 

simulations of PDV
178

. However, there was no convincing evidence across these 571 

state-of-the-art coupled models for distinct oscillatory signals, other than on the 572 

interannual (years 3–7) ENSO timescales
179

. These observations suggest, as noted 573 

previously, that low frequency variability on interdecadal timescales is characterized 574 

by broadband rather than oscillatory behaviour. 575 

 576 

[H2]  Global temperatures 577 

The idealized ‘rising staircase’ (Fig. 6c) of global mean surface temperature (GMST) 578 

trends represents actual epochs of larger or smaller amplitude-positive GMST trends 579 

(Fig. 6d) in a world with steadily increasing positive radiative forcing from increasing 580 

greenhouse gases
180

. This increase in radiative forcing means that the entire Earth 581 

System warms continuously, but the manifestation of that warming at the Earth’s 582 

surface on decadal timescales depends on how heat is redistributed in the climate 583 

system: if more heat remains near the ocean surface, the GMST rate of warming will 584 

be larger, but if more heat is distributed into the deeper ocean, then the GMST trend 585 

will be reduced
44,181

. 586 



It is recognized that the slowdown in the rate of GMST warming in the early 2000s 587 

was likely a combination of internal variability from the negative phase of the 588 

IPO
182,183,184,185,186

 and/or variations in the strength of the Atlantic meridional 589 

overturning circulation
187

, both of which acted to redistribute heat into the subsurface 590 

ocean. However, there is disagreement on whether the heat is primarily stored in the 591 

tropics
174

 or at high latitudes
181

. External forcing from a collection of moderate-sized 592 

volcanic eruptions
188

 and from anthropogenic aerosols
189

 might have also played a 593 

role in the slowdown, although their contribution is not entirely settled
190

. 594 

Initialized predictions have been shown to successfully predict the onset of the GMST 595 

warming slowdown, linked to increased ocean heat uptake in the tropical Pacific and 596 

Atlantic Oceans
183,191

. Spatial patterns of predicted 20-year surface air temperature 597 

trends have been shown to depend on the initial state of the Pacific Ocean
192

, with 598 

initialized model predictions exhibiting a large spread in projected multi-decadal 599 

global warming unless the initial state of the Pacific Ocean is known and well 600 

represented in the model. Apart from its connection to the recent global warming 601 

slowdown, the negative phase of the IPO has also been linked to regional climate 602 

changes at higher latitudes, including the rate of Arctic sea ice decrease in the early 603 

2000s (ref.
193

) and Antarctic sea ice expansion during that same period
194,195

. 604 

Statistical methods
47

 and initialized predictions
70,196

 foretold a transition of the IPO in 605 

the tropical Pacific from negative to positive in the 2014–2015 time frame, with a 606 

resumption of more rapid rates of global warming thereafter. There is observational 607 

evidence that this IPO transition also contributed to initiating rapid Antarctic sea ice 608 

retreat
197

. 609 

There is a chronic shortage of observed data in the ocean to document heat 610 

redistribution. In models, this redistribution has been shown to involve the subtropical 611 



cells in the Pacific, Antarctic Bottom Water formation and the AMOC in the 612 

Atlantic
2,44

, as well as changes in the zonal slope of the equatorial 613 

thermocline
182,198

 associated with changes in tropical winds. However, deciphering 614 

decadal timescale variability in the observed climate system, and interpreting such 615 

variability in the context of initialized predictions, is complicated by the presence of 616 

external forcings (such as anthropogenic and volcanic aerosols and solar forcing) that 617 

can produce decadal variability in the Pacific
189

 or Atlantic
199,200

 with similar patterns 618 

to presumptive internally generated decadal climate variability
180,201,202

. 619 

 620 

[H2]  Interactions between ocean basins 621 

Interactions between various ocean basins are one of the most compelling science 622 

questions that have arisen regarding the origins and nature of decadal climate 623 

variability, with implications for initialized prediction skill
160,203,204

. For instance, if a 624 

skilful prediction of climate in one basin is achieved, then skilful simulations in the 625 

other basins could follow (if the models capture these connections realistically), thus 626 

improving the skill of initialized S2D predictions. 627 

SST variability in one ocean basin can affect the others through the tropical large-628 

scale east–west atmospheric Walker Circulation, although the direction of those 629 

influences differs
204,205

. For example, model simulations have indicated that decadal 630 

timescale variability in the Atlantic could produce decadal timescale variability in the 631 

Pacific
61,206,207,208

. PDV can also affect the Atlantic
194,209,210

 and control a large 632 

fraction of decadal variability in the Indian Ocean
58,172,211,212,213

. Similarly, the Indian 633 

Ocean could influence decadal variability in the Pacific
168,203,214

. There also could be 634 

staggered responses based on decadal timescales, with the tropical Pacific driving the 635 

tropical Atlantic on interannual timescales, with the Atlantic then affecting the Indian 636 



Ocean and, subsequently, the Pacific on decadal timescales
215,216

. It has further been 637 

postulated that the tropical Atlantic and Pacific Oceans are mutually interactive on 638 

decadal timescales, with each alternately affecting the other
205

, and that the tropical 639 

Pacific could be driving the extratropical Pacific
217

. 640 

External forcing, particularly from time-evolving anthropogenic aerosols, is another 641 

factor that could produce decadal climate variability and inter-basin 642 

connections
189,199,218

. Such fundamental interactions all currently fall under the 643 

heading of a compelling research frontier that, with increased understanding, will 644 

certainly advance the science of initialized prediction. 645 

 646 

[H1]  Summary and future perspectives 647 

Numerical models initialized with observations for specific time periods and 648 

integrated forward in time provide a continuum of predictions on different timescales 649 

from S2S to S2I and S2D. Results so far demonstrate initialized prediction skill for 650 

variables such as surface temperature and key modes of atmospheric and ocean 651 

variability. Such skill has been demonstrated, for example, for the MJO on S2S 652 

timescales, for ENSO on S2I timescales and for surface temperatures in most ocean 653 

regions on S2D timescales. Yet, despite progress in predictions and processes, there 654 

are still many challenges and priorities for future research. 655 

 656 

[H2] Model error 657 

Almost every science-related aspect of subseasonal to decadal climate variability has 658 

considerable uncertainty associated with it. Therefore, apart from fundamental 659 

scientific understanding, perhaps the key obstacle to progress is model error, 660 

particularly with regards to biases and drifts. Progress thus requires model 661 



improvement, developments of which are difficult but not impossible. In recent years, 662 

for instance, model development work has been undertaken in the coupled space, 663 

improving simulation of atmosphere–ocean phenomena that give rise to predictability 664 

(such as the MJO and ENSO), and therefore minimizing the exacerbation of drift 665 

when developed in isolation. Model improvements depend critically on our 666 

understanding of processes and mechanisms and how they work in the climate 667 

system, as it is difficult to model what is not understood. Therefore, enhanced 668 

observational and analysis projects must continue to provide the knowledge base from 669 

which to make improvements to the model simulations. 670 

Model error remains a significant obstacle against which future progress will be 671 

measured, with profound implications for possible applications to stakeholder 672 

communities. Such applications could include energy supply (wind, solar) and 673 

demand
219

, agriculture (drought, freezing), transport
220

 and numerous others spanning 674 

a range of timescales. Notably, S2S prediction could inform preparedness for specific 675 

large-scale extreme events weeks ahead
5
, and S2I and S2D initialized predictions are 676 

beginning to inform planning at ranges between the seasonal and multi-decadal 677 

climate change timescales
221

. 678 

In addition to coupled model development, increased model resolution has also shown 679 

the ability to improve model bias and the signal to noise ratio. Consequently, the 680 

benefit of increased model resolution is one of the research frontiers of initialized 681 

prediction. However, such increased resolution must also be accompanied by 682 

comparable increases in the quality of the physical parameterizations such as cloud 683 

feedback and cloud–aerosol interactions. Although we are still very likely decades 684 

away from having global coupled models (and suitable machines) capable of 685 

explicitly resolving processes that would improve model bias (such as atmospheric 686 



convection and ocean eddies), approaches have been developed to reduce 687 

computational cost and bias. These approaches include flux correction techniques
222

, 688 

parameter estimation
223

, reducing the precision of some variables
224

 and stochastic 689 

modelling
225

. Additionally, machine learning techniques are providing indications of 690 

improving predictive skill. For example, a deep-learning approach using a statistical 691 

forecast model has been shown to produce skilful ENSO forecasts for lead times of up 692 

to 1.5 years
226

. Utilization of GPU-based computer architectures could become useful 693 

and open the way to better parametrizations that depend on intensive calculations that 694 

can be addressed with GPU architectures. 695 

 696 

[H2] Initialization  697 

Integrating the vast amount of observed information into an ESM is central to the 698 

S2D prediction. Traditionally, the most advanced data assimilation techniques were 699 

implemented in the atmospheric component. In the last decade, however, there has 700 

been growing interest in how to fully utilize relevant satellite and in situ observations 701 

to improve S2S and S2I predictions. Coupled ocean–atmosphere data 702 

assimilation
28,227,228 

shows promising evidence that coupling can reduce ‘initialization 703 

shock’ and improve forecast performance on timescales of weeks to decades
229

. The 704 

advancement has led to coupled reanalysis products for both the ocean and the 705 

atmosphere (CFSR by NCEP
230

 and CERA by ECMWF
231

) and is expected to 706 

substantially improve S2S and S2I predictions. 707 

Compared with S2S and S2I predictions, there remain critical obstacles to how to 708 

initialize decadal predictions. First, there is a lack of observations. S2D models need 709 

to be initialized in the 1960s and 1970s in order to calibrate the decadal prediction 710 

systems and achieve the potential to capture the evolution of low-frequency modes of 711 



variability (such as PDV and AMV). Reconstruction of the global ocean subsurface 712 

temperature and salinity prior to the advent of Argo floats remains a large problem. 713 

Currently, most modelling centres performing decadal predictions do not carry out 714 

their own assimilation exercise; rather, they simply nudge some reanalysis products in 715 

the ocean and atmosphere (Supplementary Table 3). How to best initialize the ocean 716 

without reliable subsurface observations, and how the inhomogeneity of the 717 

observations can impact model performance, have not been carefully investigated. 718 

Building ensembles is another key obstacle to decadal prediction, as common practice 719 

in the community is to use an ensemble of ten members following the CMIP5 and 720 

CMIP6 experimental designs. A large ensemble consisting of 40 members can 721 

provide better opportunities for skilful predictions of low-frequency climate 722 

variability over land in selected regions
20

. However, compared with the atmosphere, 723 

there is very limited understanding of the mechanisms and uncertainty associated with 724 

the low-frequency internal variability in the ocean owing to the lack of long-term 725 

observations of the subsurface ocean, and thus lack of guidance as to how to build the 726 

ensemble. Machine learning methods could help address this problem, although the 727 

lack of long-term subsurface ocean observations will always be a factor for the S2D 728 

timescale. Finally, a major constraint is computational capability, both for 729 

initialization and for running adequate numbers of ensembles to improve skill
33

. The 730 

future of initialized prediction will depend on computational resources balanced with 731 

factors involving increased resolution, machine learning, use of new high-732 

performance computing architectures and developments in exascale computing. 733 

 734 

[H2] Predictability of internal variability 735 



There are considerable future challenges for understanding internal variability in the 736 

context of initialized prediction. These include the need to have a better understanding 737 

and better estimates of predictability. Additionally, research is needed regarding why 738 

models appear to underestimate the magnitude of predictable signals compared with 739 

unpredictable variability, and this involves the response to external forcing as well
232

. 740 

One issue that remains to be resolved for S2D initialized predictions is whether there 741 

are well-defined processes and mechanisms that, if initialized properly, could provide 742 

predictable signals distinct from the background of climatic noise. Signals from PDV 743 

and AMV offer the best prospect for long-term predictability. Strong low-frequency 744 

variability in palaeoclimate ‘proxy’ records, which is not captured by most climate 745 

models, suggests either that models do indeed underestimate low-frequency modes of 746 

variability or that proxy observations contain significant residual non-climatic sources 747 

of variation, or some combination thereof
233,234,235,236

. Even if there is no distinct low-748 

frequency (oscillating) phenomenon, predictability on decadal timescales could also 749 

come from memory and slowly varying components of the Earth System, such as the 750 

slow propagation of oceanic planetary waves
237,238 

or natural volcanic forcing
47

, and 751 

initialization could be expected to contribute to skill in such cases. 752 

 753 

[H2] Expanding predicted variables 754 

There is interest in, and corresponding applications for, expanding beyond the 755 

prediction of surface temperature, precipitation and SST. Predictions of the frequency 756 

of extreme events such as tropical storms and hurricanes have great potential as 757 

climate services. There have been efforts at predicting soil moisture with implications 758 

for drought prediction
239

 and ecosystem respiration
240

, as well as snowpack with 759 



ramifications for water resources
241,242

 and marine heatwaves
243

. There is also a great 760 

societal need for prediction of sea ice on S2I and S2D timescales. Some S2I models 761 

show some skill in predicting the sea ice edge in the Arctic
244

, whereas S2S models 762 

show a very wide range of skill in predicting the sea ice edge in the Arctic, with the 763 

most skilful models producing useful forecasts up to 45 days
99

. Although the potential 764 

for skilful initialized predictions of Arctic sea ice on S2S timescales has improved in 765 

the last decade, there is still a lot more to be explored and improved
101

. We still need 766 

to understand what are the key processes driving subseasonal variations of sea ice and 767 

to improve the representation of these processes in the S2S models. Improved coupled 768 

data assimilation of the ocean, sea ice and atmospheric coupled system can help 769 

improve initial conditions for coupled forecasts and, concomitantly, the forecast skill 770 

of features that are sensitive to the initial state
14,245,246

. 771 

Other important aspects of the cryosphere relevant to initialized prediction on S2D 772 

timescales are ice sheets. As new interactive ice sheet simulations and spin-up 773 

procedures come increasingly online
247

, this will provide an additional opportunity for 774 

initialized S2D predictions. 775 

Air pollution and air quality are other very society-relevant applications that have 776 

been largely unexplored owing to the lack of inclusion of interactive tropospheric 777 

chemistry in most S2S, S2I and S2D models. However, new comprehensive ESMs, 778 

such as the Community Earth System Model with the Whole Atmosphere Community 779 

Climate Model as its atmospheric component (CESM2-WACCM
248

), will be able to 780 

explore this research area. 781 

In the broader Earth System, there is growing interest in predicting the biosphere and 782 

biogeochemical state variables and fluxes that could inform management decisions. 783 

Skilful initialized predictions of SST on S2S timescales can engender predictability of 784 



fish yields in the California Current System
249

 and other large marine ecosystems
250

. 785 

S2S initialized predictions of heat stress and coral bleaching risk have also 786 

demonstrated considerable skill and have provided critical advanced warning for coral 787 

reef scientists, managers and stakeholders
251

. SST anomalies in the western tropical 788 

Pacific and northern subtropics, often associated with ENSO events, appear to be 789 

skilful precursors for variations in temperature and related biological productivity 790 

along the US West Coast on S2I timescales
252

. 791 

Emerging literature on S2D predictions of biogeochemistry in the terrestrial biosphere 792 

and ocean suggests that slowly evolving state variables could enable prediction of 793 

biogeochemically relevant quantities with greater skill than physical state variables 794 

such as temperature and precipitation. For example, predictions of marine net primary 795 

production by photosynthesizing phytoplankton (including algae, eukaryotes and 796 

cyanobacteria) might foretell future potential fisheries catches, predict harmful algal 797 

blooms
253

 and aid with fisheries management strategies
253,254,255,256

, as would skilful 798 

predictions of ocean oxygen content or acidity
257,258

. Reliable forecasts of the 799 

changing global carbon budget, including the rate of ocean carbon 800 

absorption
216,259,260,261

 or the rate of terrestrial biosphere–atmosphere net ecosystem 801 

exchange
240,259

, could help to generate forecasts of atmospheric CO2 growth rate and 802 

contribute to CO2 emission management strategies. Additionally, there has been 803 

demonstrated S2I skill at predicting net primary production related to fire risk
262

. 804 

Recently reported skilful predictions of chlorophyll concentrations over the global 805 

oceans at seasonal to multi-annual timescales have been related to the successful 806 

simulation of the chlorophyll response to ENSO, and to the winter re-emergence of 807 

subsurface nutrient anomalies in the extratropics
255

. Chlorophyll not only responds to 808 

ENSO, but can also constitute a potentially useful ENSO precursor
263

. 809 



In the ocean biogeochemical system, variables of interest for prediction are rarely 810 

directly observed at the spatial and temporal scales needed for forecast verification, 811 

regardless of the timescale of the prediction
264,265

. Thus, most of the literature is 812 

focused on the potential to make predictions of these quantities, rather than on skill as 813 

measured by historical observations
254,256,259,260

, with exceptions
216,257,258

. On the 814 

global scale, verification is limited to variables measured or derived from satellite 815 

observations, such as ocean chlorophyll
255

, marine primary productivity
20

 or 816 

interpolated estimates of the surface ocean partial pressure of CO2 (ref.
261

). 817 

Nevertheless, there is promising potential to make ocean biogeochemical initialized 818 

predictions across multiple timescales. 819 

For S2S, S2I and S2D initialized predictions to be useful, they must be shown to be 820 

not only skilful but reliable
266

, and this is a considerable challenge that the community 821 

is only starting to attempt to address
5,21

. The ultimate challenge in this emerging area 822 

of research, and one that is igniting excitement and interest in the scientific 823 

community, is to provide predictions with maximum skill that take into account all 824 

relevant processes across subseasonal to decadal timescales
267,268,269

. Towards that 825 

end, initialized prediction is already put to task and being applied in various sectors 826 

even as improvements in understanding and prediction capability are being improved, 827 

thus driving rapid advances in this burgeoning field. 828 

 829 

 830 

References 831 

1. Meehl, G. A. et al. Decadal prediction. Bull. Am. Meteorol. Soc. 90, 1467–832 

1486 (2009).  833 



2. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. 834 

& Trenberth, K. E. Externally forced and internally generated decadal climate 835 

variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 836 

7298–7310 (2013).  837 

3. Hawkins, E. & Sutton, R. (2009). The potential 838 

to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 839 

90, 1095–1108 (2009).  840 

4. Lehner, F. et al. Partitioning climate projection uncertainty with multiple large 841 

ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).  842 

5. Vitart, F. & Robertson, A. W. The Sub-Seasonal to Seasonal Prediction 843 

Project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 844 

(2018).  845 

6. Pegion, K. et al. The Subseasonal Experiment (SubX). Bull. Amer. Meteorol. 846 

Soc. 100, 2043–2060 (2019).  847 

7. Kirtman, B. P. et al. The North American multimodel ensemble: phase-1 848 

seasonal to interannual prediction; phase-2 toward developing intraseasonal 849 

prediction. Bull. Amer. Meteorol. Soc. https://doi.org/10.1175/BAMS-D- 12-850 

00050.1 (2014).  851 

8. Boer, G. J. et al. The Decadal Climate Prediction Project (DCPP) contribution 852 

to CMIP6. Geosci. Model Dev. 9, 3751–3777 (2016).  853 

9. Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A. & Rodwell, J. J. Toward 854 

seamless prediction: calibration of climate change projections using seasonal 855 

forecasts. Bull. Amer. Meteorol. Soc. 89, 459–470 (2008).  856 



10. Branstator, G. & Teng, H. Potential impact of initialization on decadal 857 

predictions as assessed for CMIP5 models. Geophy. Res. Lett. https://doi.org/ 858 

10.1029/2012GL051974 (2012).  859 

11. Barnett, T. et al. On the prediction of the El Niño of 1986–1987. Science 241, 860 

192–196 (1988).  861 

12. Kushnir, Y. et al. Towards operational predictions of the near-term climate. 862 

Nat. Clim. Chang. https:// doi.org/10.1038/s41558-018-0359-7 (2019).  863 

13. Lean, P. et al. Continuous data assimilation for global numerical weather 864 

prediction. Q J R Meteorol. Soc. https://doi.org/10.1002/qj.3917 (2020).  865 

14. Sandery, P. A., O’Kane, T. J., Kitsios, V. & Sakov, P. Climate model state 866 

estimation using variants of EnKF coupled data assimilation. Mon. Weather 867 

Rev. 148, 2411–2431 (2020).  868 

15. Johnson, C., Hoskins, B. J. & Nichols, N. K. 869 

A singular vector perspective of 4D-Var: filtering and interpolation. Q J R 870 

Meteorol. Soc. 131, 1–19 (2005).  871 

16. Magnusson, L., Nycander, J. & Kallen, E. Flow-dependent versus flow-872 

independent initial perturbations for ensemble prediction. Tellus A 61, 194–873 

209 (2009).  874 

17. Infanti, J. M. & Kirtman, B. P. Prediction and predictability of land and 875 

atmosphere initialized CCSM4 climate forecasts over North America. J. 876 

Geophys. Res. Atmos. 121, 12,690–12,701 (2016b).  877 

18. Trenary, L., DelSole, T., Tippett, M. K. & Pegion, K. A new method for 878 

determining the optimal lagged ensemble. J. Adv. Model Earth Syst. 9, 291–879 

306 (2017).  880 



19. Kirtman, B. P. & Min, D. Multi-model ensemble ENSO prediction with 881 

CCSM and CFS. Mon. Weather Rev. 882 

https://doi.org/10.1175/2009MWR2672.1 (2009).  883 

20. Yeager, S. G. et al. Predicting near-term changes in the earth system: a large 884 

ensemble of initialized decadal prediction simulations using the community 885 

earth system model. Bull. Am. Meteorol. Soc. 99, 1867–1886 (2018).  886 

21. Smith, D. M. et al. Real-time multi-model decadal climate predictions. Clim. 887 

Dyn. 41, 2875–2888 (2013a).  888 

22. MacLachlan, C. et al. Global Seasonal Forecast System version 5 (GloSea5): a 889 

high resolution seasonal forecast system. Q J R Meteorol Soc. 890 

https://doi.org/10.1002/qj.2396 (2014).  891 

23. Muñoz-Sabater et al. Assimilation of SMOS brightness temperatures in the 892 

ECMWF integrated forecasting system. Q J R Meteorol Soc. https:// 893 

doi.org/10.1002/qj.3577 (2019).  894 

24. Drewitt, G., Berg, A. A., Merryfield, W. J. & Lee, W.-S. Effect of realistic soil 895 

moisture initialization on the Canadian CanCM3 seasonal forecast model. 896 

Atmos. Ocean 50, 466–474 (2012).  897 

25. Polkova, I., Köhl, A. & Stammer Climate-mode initialization for decadal 898 

climate predictions. Clim. Dyn. 53, 7097–7111 (2019).  899 

26. Smith, D. M., Eade, R. & Pohlmann, H. A comparison of full-field and 900 

anomaly initialization for seasonal to decadal climate prediction. Clim. Dyn. 901 

41, 3325–3338 (2013).  902 

27. Volpi, D., Guemas, V. & Doblas-Reyes, F. J. Comparison of full field and 903 

anomaly initialisation for decadal climate prediction: towards an optimal 904 



consistency between the ocean and sea-ice anomaly initialisation state. Clim. 905 

Dyn. 49, 1181–1195 (2017).  906 

28. Penny, S. G., et al. Coupled data assimilation for integrated earth system 907 

analysis and prediction: goals, challenges and recommendations. Technical 908 

report (World Meteorological Organisation, 2017).  909 

29. Williams, K. D. et al. The Met Office Global Coupled Model 2.0 (GC2) 910 

configuration. Geosci. Model Dev. 8, 1509–1524 (2015).  911 

30. Becker, E. & Van Den Dool, H. Probabilistic seasonal forecasts in the North 912 

American multimodel ensemble: a baseline skill assessment. J. Clim. 29, 913 

3015–3026 (2016).  914 

31. Kadow, C. et al. Decadal climate predictions improved by ocean ensemble 915 

dispersion filtering. J. Adv. Model. Earth Syst. 9.2, 1138–1149 (2017).  916 

32. Dobrynin, M. et al. Improved teleconnection-based dynamical seasonal 917 

predictions of boreal winter. Geophys. Res. Lett. 45, 3605–3614 (2018). 918 

33. Smith, D. M. et al. North Atlantic climate far more predictable than models 919 

imply. Nature 583, 796–800 (2020).  920 

34. Richter, J. H. et al. Subseasonal prediction with and without a well-921 

represented stratosphere in CESM1. Weather and Forecasting, 922 

https://journals.ametsoc. org/view/journals/wefo/aop/WAF-D-20-0029.1/ 923 

WAF-D-20-0029.1.xml (2020).  924 

35. Scaife, A. A. et al. Skillful long-range prediction of European and North 925 

American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).  926 

36. Smith, D. M. et al. Robust skill of decadal climate predictions. npj Clim. 927 

Atmos. Sci. 2, 13 (2019).  928 



37. Athanasiadis, P. J. et al. Decadal predictability of North Atlantic blocking and 929 

the NAO. NPJ Clim. Atmos. Sci. 3, 20 (2020). 930 

38. Nie, Y. et al. Stratospheric initial conditions provide seasonal predictability of 931 

the North Atlantic and Arctic oscillations. Env. Res. Lett. 14, 3 (2019) 932 

39. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 933 

96, 921–938 (2015). 934 

40. Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout 935 

the Holocene. Science 339, 67–70 (2013). 936 

41. Capotondi, A. & Sardeshmukh, P. D. Is El Niño really changing? Geophys. 937 

Res. Lett. https://doi.org/ 10.1002/2017GL074515 (2017). 938 

42. Grothe, P. R. et al. Enhanced El Niño–Southern Oscillation variability in 939 

recent decades. Geophys. Res. Lett. https://doi.org/10.1029/2019GL083906 940 

(2019).  941 

43. Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea 942 

surface temperature trends revisited. Geophys. Res. Lett. 37, L10701 (2010). 943 

44. Meehl, G. A., Arblaster, J. M., Fasullo, J., Hu, A. & Trenberth, K. E. Model-944 

based evidence of deep ocean heat uptake during surface temperature hiatus 945 

periods. Nat. Clim. Change 1, 360–364 (2011).  946 

45. Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate 947 

change. Eos 87, 233–241 (2006).  948 

46. Mann, M. E., Steinman, B. A. & Miller, S. K. On forced temperature changes, 949 

internal variability and the AMO. (“Frontier” article). Geophys. Res. Lett. 41, 950 

3211–3219 (2014).  951 



47. Mann, M. E. et al. Predictability of the recent slowdown and subsequent 952 

recovery of large-scale surface warming using statistical methods. Geophys. 953 

Res. Lett. 43, 3459–3467 (2016).  954 

48. Steinman, B. A., Frankcombe, L. M., Mann, M. E., Miller, S. K. & England, 955 

M. H. Response to comment on “Atlantic and Pacific multidecadal oscillations 956 

and Northern Hemisphere temperatures”. Science 350, 1326 (2015). 957 

49. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of 958 

temperature, salinity, and steric height in the global ocean from the Argo 959 

Program. Prog. Oceanogr. 82, 81–100 (2009).  960 

50. Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-961 

disciplinary array. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00439 962 

(2019).  963 

51. Thompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W. & Meehl, G. A. 964 

Early twentieth-century warming linked to tropical Pacific wind strength. Nat. 965 

Geosci. 8, 117–121 (2015).  966 

52. Cook, E. R. et al. Megadroughts in North America: placing IPCC projections 967 

of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 968 

48–61 (2010).  969 

53. Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating 970 

central equatorial Pacific SST variability over the past millennium. Part II: 971 

reconstructions and implications. J. Clim. 26, 2329–2352 (2013).  972 

54. Linsley, B. K., Wu, H. C., Dassié, E. P. & Schrag, D. P. Decadal changes in 973 

South Pacific sea surface temperatures and the relationship to the Pacific 974 

decadal oscillation and upper ocean heat content. Geophys. Res. Lett. 42, 975 

2358–2366 (2015).  976 



55. Buckley, B. M. et al. Interdecadal Pacific Oscillation reconstructed from trans-977 

Pacific tree rings: 1350–2004 CE. Clim. Dyn. 53, 3181–3196 (2019).  978 

56. Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean dipole. 979 

Quat. Sci. Rev. https://doi.org/ 10.1016/j.quascirev.2020.106302 (2020).  980 

57. Sanchez, S. C., Charles, C. D., Carriquiry, J. D. & Villaescusa, J. A. Two 981 

centuries of coherent decadal climate variability across the Pacific North American 982 

region. Geophys. Res. Lett. 43, 9208–9216 (2016).  983 

58. Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last 984 

millennium. Nature 579, 385–392 (2020).  985 

59. Konecky, B., Dee, S. G. & Noone, D. WaxPSM: a forward model of leaf wax 986 

hydrogen isotope ratios to bridge proxy and model estimates of past climate. J. 987 

Geophys. Res. Biogeosci. https://doi.org/10.1029/ 2018JG004708 (2019).  988 

60. Neukom, R. et al. Consistent multi-decadal variability in global temperature 989 

reconstructions and simulations over the common era. Nat. Geosci. 12, 643 (2019).  990 

61. McGregor, H. V. et al. Robust global ocean cooling trend for the pre-industrial 991 

common era. Nat. Geosci. 8, 671–677 (2015).  992 

62. Tierney, J. E. et al. Tropical sea surface temperatures for the past four centuries 993 

reconstructed from coral archives. Paleoceanography 30, 226–252 (2015).  994 

63. Goosse, H. et al. Reconstructing surface temperature changes over the past 600 995 

years using climate model simulations with data assimilation. J. Geophys. Res. 115, 996 

D09108 (2010).  997 

64. Hakim, G. J. et al. The last millennium climate reanalysis project: framework and 998 

first results. J. Geophys. Res. Atmos. 121, 6745–6764 (2016).  999 



65. Steiger, N. J., Jason, E. S., Cook, E. R. & Cook, B. I. A reconstruction of global 1000 

hydroclimate and dynamical variables over the common era. Sci. Data 5, 180086 1001 

(2018).  1002 

66. Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. J. 1003 

Applications of proxy system modeling in high resolution paleoclimatology. 1004 

Quat. Sci. Rev. 76, 16–28 (2013).  1005 

67. Dee, S. et al. PRYSM: an open-source framework for PRoxY system modeling, 1006 

with applications to oxygen-isotope systems. J. Adv. Model. Earth Syst. 7, 1220–1247 1007 

(2015).  1008 

68. Becker, E., Dool, den, H. V. & Zhang, Q. Predictability and forecast skill in 1009 

NMME. J. Clim. 27, 5891–5906 (2014).  1010 

69. Doblas-Reyes, F. J. et al. Initialized near-term regional climate change prediction. 1011 

Nat. Commun. 4, 1715 (2013).  1012 

70. Meehl, G. A., Hu, A. & Teng, H. Initialized decadal prediction for transition to 1013 

positive phase of the Interdecadal Pacific Oscillation. Nat. Commun. 1014 

https://doi.org/10.1038/NCOMMS11718 (2016).  1015 

71. Kharin, V. V., Boer, G. J., Merryfield, W. J., Scinocca, J. F. & Lee, W.-S. 1016 

Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. 1017 

Lett. 39, L19705 (2012).  1018 

72. Scaife, A. A. & Smith, D. A signal-to-noise paradox 1019 

in climate science. npj Clim. Atmos. Sci. 1, 28 (2018).  1020 

73. Sévellec, F. & Drijfhout, S. S. The signal-to-noise paradox for interannual surface 1021 

atmospheric temperature predictions. Geophys. Res. Lett. 46, 9031–9041 (2019).  1022 

74. Zhang, W. & Kirtman,, B. Estimates of decadal climate predictability from an 1023 

interactive ensemble model. Geophys. Res. Letts. 46, 3387–3397 (2019).  1024 



75. Weisheimer, A. et al. How confident are predictability estimates of the winter 1025 

North Atlantic oscillation? Quart. J. R. Meteorol. Soc. https://doi.org/10.1002/ 1026 

qj.3446 (2019).  1027 

76. Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of 1028 

real-time seasonal ENSO model predictions during 2002–11: is our capability 1029 

increasing? Bull. Am. Meteorol. Soc. 93, 631–651 (2012).  1030 

77. Robertson, A. W. & Vitart, F. (eds) Sub-seasonal to Seasonal Prediction 1031 

(Elsevier, 2018).  1032 

78. Kim, H., Vitart, F. & Waliser, D. E. Prediction of the Madden–Julian Oscillation: 1033 

a review. J. Clim. 31, 9425–9443 (2018).  1034 

79. Stan, C. et al. Review of tropical–extratropical teleconnections on intraseasonal 1035 

time scales. Rev. Geophys. 55, 902–937 (2017).  1036 

80. Kim, H., Richter, J. H. & Martin, Z. Insignificant QBO–MJO prediction skill 1037 

relationship in the SubX and S2S subseasonal reforecasts. J. Geophys. Res. Atmos. 1038 

https://doi.org/10.1029/2019JD031416 (2019).  1039 

81. Lim, E.-P., Hendon, H. H. & Thompson, D. W. J. Seasonal evolution of 1040 

stratosphere–troposphere coupling in the southern hemisphere and implications for 1041 

the predictability of surface climate. J. Geophys. Res. Atmos. 123, 1–15 (2018).  1042 

82. Zheng, C., Chang, E. K. M., Kim, H., Zhang, M. & Wang, W. Subseasonal to 1043 

seasonal prediction of wintertime northern hemisphere extratropical cyclone activity 1044 

by S2S and NMME models. J. Geophys. Res. Atmos. 1045 

https://doi.org/10.1029/2019JD031252 (2019).  1046 

83. DeFlorio, M. J. et al. Global evaluation of atmospheric river subseasonal 1047 

prediction skill. Clim. Dyn. 52, 3039–3060 (2019).  1048 



84. Baggett, C. et al. Skillful subseasonal forecasts 1049 

of weekly tornado and hail activity using the Madden–Julian Oscillation. J. 1050 

Geophys. Res. Atmos. 123, 12,661–12,675 (2018).  1051 

85. Broennimann, S. Impact of El Niño–Southern Oscillation on European 1052 

climate. Rev. Geophys. 45, RG3003 (2007).  1053 

86. Ambaum, P. & Hoskins, B. J. The NAO troposphere– stratosphere connection. 1054 

J. Clim. 15, 1969–1978 (2002).  1055 

87. Kushnir, Y., Robinson, W. A., Chang, P. & Robertson, A. W. The physical 1056 

basis for predicting Atlantic sector seasonal-to-interannual climate variability. 1057 

J. Clim. 19, 5949–5970 (2006).  1058 

88. Riddle, E. E., Butler, A. H., Furtado, J. C., Cohen, J. L. & Kumar, A. CFSv2 1059 

ensemble prediction of the wintertime Arctic oscillation. Clim. Dyn. 41, 1099–1060 

1116 (2013).  1061 

89. Hendon, H. H., Thompson, D. W. J. & Wheeler, M. C. Australian rainfall and 1062 

surface temperature variations associated with the southern hemisphere 1063 

annular mode. J. Clim. 20, 2452–2467 (2007).  1064 

90. Marshall, A. G. et al. Intra-seasonal drivers of extreme heat over Australia in 1065 

observations and POAMA-2. Clim. Dyn. 43, 1915–1937 (2014).  1066 

91. Seviour, W. J. M. et al. Skillful seasonal prediction of the southern annular 1067 

mode and Antarctic ozone. J. Clim. 27, 7462–7474 (2014).  1068 

92. Lim, E.-P., Hendon, H. H. & Rashid, H. A. Seasonal predictability of the 1069 

southern annular mode due to its association with ENSO. J. Clim. 26, 8037–1070 

8054 (2013).  1071 



93. Lim, E. et al. Australian hot and dry extremes induced by weakenings of the 1072 

stratospheric polar vortex. 1073 

Nat. Geosci. 12, 896–901 (2019).  1074 

94. Mariotti, A. et al. Windows of opportunity for skillful forecasts subseasonal to 1075 

seasonal and beyond. 1076 

Bull. Am. Meteorol. Soc. https://doi.org/10.1175/ BAMS-D-18-0326.1 (2020).  1077 

95. Dirmeyer, P. A., Halder, S. & Bombardi, R. On the harvest of predictability 1078 

from land states in a global forecast model. J. Geophys. Res. Atmos. 123, 1079 

13111–13127 (2018).  1080 

96. Koster, R. D. et al. Regions of strong coupling between soil moisture and 1081 

precipitation. Science 305, 1138–1140 (2004).  1082 

97. Koster, R. D. et al. The second phase of the global land–atmosphere coupling 1083 

experiment: soil moisture contributions to subseasonal forecast skill. J. 1084 

Hydrometeor. 12, 805–822 (2011).  1085 

98. Seo, E. et al. Impact of soil moisture initialization on boreal summer 1086 

subseasonal forecasts: mid-latitude surface air temperature and heat wave 1087 

events. Clim. Dyn. https://doi.org/10.1007/s00382-018-4221-4 (2018).  1088 

99. Zampieri, L., Goessling, H. F. & Jung, T. Bright prospects for Arctic sea ice 1089 

prediction on subseasonal time scales. Geophys. Res. Lett. 45, 9731–9738 1090 

(2018).  1091 

100. Zampieri, L., Goessling, H. F. & Jung, T. Predictability of Antarctic 1092 

sea ice edge on subseasonal time scales. Geophys. Res. Lett. 46, 9719–9727 1093 

(2019).  1094 



101. Bushuk, M. et al. A mechanism for the Arctic sea ice spring 1095 

predictability barrier. Geophys. Res. Lett. 1096 

https://doi.org/10.1029/2020GL088335 (2020).  1097 

102. Kimmritz, M. et al. Impact of ocean and sea ice initialisation on 1098 

seasonal prediction skill in the Arctic. JAMES 1099 

https://doi.org/10.1029/2019MS001825 (2019).  1100 

103. Ono, J., Komuro, Y. & Tatebe, H. Impact of sea-ice thickness 1101 

initialized in April on Arctic sea-ice extent predictability with the MIROC 1102 

climate model. Ann. Glaciol. 61, 97–105 (2020).  1103 

104. Liu, J. et al. Towards reliable Arctic sea ice prediction using 1104 

multivariate data assimilation. Sci. Bull. 64, 63–72 (2019).  1105 

105. Jung, T. et al. Advancing polar prediction capabilities on daily to 1106 

seasonal time scales. Bull. Am. Meteorol. Soc. 97, 1631–1647 (2016).  1107 

106. Jung, T., Kasper, M. A., Semmler, T. & Serrar, S. 1108 

Arctic influence on subseasonal midlatitude prediction. Geophys. Res. Lett. 1109 

41, 3676–3680 (2014).  1110 

107. Baldwin, M. P. et al. Stratospheric memory and skill of extended-range 1111 

weather forecasts. Science 301, 636–640 (2003).  1112 

108. Butler, A. H., Polvani, L. M. & Deser, C. Separating the stratospheric 1113 

and tropospheric pathways of El Nino– Southern Oscillation teleconnections. 1114 

Environ. Res. Lett https://doi.org/10.1088/1748-9326/9/2/024014 (2014).  1115 

109. Sigmond, M. et al. Enhanced seasonal forecast skill following 1116 

stratospheric sudden warmings. Nat. Geosci. 6, 98–102 (2013).  1117 

110. Scaife, A. A. et al. Seasonal winter forecasts and the stratosphere. Atmos. Sci. 1118 

Lett https://doi.org/10.1002/ asl.598 (2016).  1119 



111. Anstey, J. A. & Shepherd, T. G. High-latitude influence of the quasi-biennial 1120 

oscillation (Review article). Quart. J. Roy. Meteorol. Soc. 140, 1–21 (2014).  1121 

112. Garfinkel, C. I. & Hartmann, D. L. Influence of the quasi-biennial oscillation on 1122 

the North Pacific and El Niño teleconnections. J. Geophys. Res. 115, D20116 (2010).  1123 

113. Wang, J., Kim, H. -M. & Chang, E. K. M. 1124 

Interannual modulation of northern hemisphere winter storm tracks by the QBO. 1125 

Geophys. Res. Lett. 45, 2786–2794 (2018).  1126 

114. Yoo, C. & Son, S.-W. Modulation of the boreal wintertime Madden–Julian 1127 

Oscillation by the stratospheric quasi-biennial oscillation. Geophys. Res. Lett. 43, 1128 

1392–1398 (2016).  1129 

115. Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H. & Kim, J. Stratospheric control of 1130 

Madden–Julian Oscillation. J. Clim. 30, 1909–1922 (2017).  1131 

116. Lim, Y. et al. Influence of the QBO on MJO prediction skill in the subseasonal-1132 

to-seasonal prediction models. Clim. Dyn. https://doi.org/10.1007/s00382-019- 1133 

04719-y (2019).  1134 

117. Tompkins, A. M. et al. The climate-system historical forecast project: providing 1135 

open access to seasonal forecast ensembles from centers around the globe. Bull. Am. 1136 

Meteorol. Soc. 98(11), 2293–2301 (2017).  1137 

118. Acosta Navarro, J. C. et al. Link between autumnal Arctic sea ice and northern 1138 

hemisphere winter forecast skill. Geophys. Res. Lett. 47, e2019GL086753 (2020).  1139 

119. Scaife, A. A. et al. Skill of tropical rainfall predictions in multiple seasonal 1140 

forecast systems. Int. J. Climatol. https://doi.org/10.1002/joc.5855 (2018).  1141 

120. Hu, Z. et al. How much of monthly mean precipitation variability over global 1142 

land is associated with SST anomalies? Clim. Dyn. 54, 701–712 (2020).  1143 



121. Kirtman, B. P. et al, in Climate Science for Serving Society: Research, Modelling 1144 

and Prediction Priorities (eds Asrar, G. R. & Hurrell, J. W.) 205–235 1145 

(Springer, 2013).  1146 

122. Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J., 1147 

in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M., Santoso, 1148 

A. & Cai, W.) 65–86 (AGU, 2020).  1149 

123. Vimont, D. J., Alexander, M. A. & Newman, M. Optimal growth of central and 1150 

east Pacific ENSO events. Geophys. Res. Lett. 41, 4027–4034 (2014).  1151 

124. Zhang, H., Clement, A. & DiNezio The south Pacific meridional mode: a 1152 

mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).  1153 

125. Larson, S. & Kirtman, B. P. The Pacific meridional mode as a trigger for ENSO 1154 

in a high-resolution coupled model. Geophys. Res. Lett. https://doi.org/ 1155 

10.1002/grl.50571 (2013).  1156 

126. Capotondi, A. & Sardeshmukh, P. D. Optimal precursors of different types of 1157 

ENSO events. Geophys. Res. Lett. 42, 9952–9960 (2015).  1158 

127. Amaya, D. The Pacific meridional mode and ENSO: a review. Curr. Clim. 1159 

Change Rep. https://doi.org/ 10.1007/s40641-019-00142-x (2019).  1160 

128. Larson, S. M. & Kirtman, B. P. Assessing Pacific Meridional Mode forecasts 1161 

and its role as an ENSO precursor and predictor in the North American multi-model 1162 

ensemble. J. Clim. 27, 7018–7032 (2014).  1163 

129. Ren, H. F.-F., Jin, B. & & Tian, A. A. Scaife distinct persistence barriers in two 1164 

types of ENSO. Geophys. Res. Lett. 43, 10,973–10,979 (2016).  1165 

130. Infanti, J. M. & Kirtman, B. P. North American rainfall and temperature 1166 

prediction response to the diversity of ENSO. Clim. Dyn. https://doi.org/10.1007/ 1167 

s00382-015-2749-0 (2016).  1168 



131. DiNezio, P. et al. A two-year forecast for a 60-80% chance of La Nina in 2017–1169 

2018. Geophys. Res. Lett. https://doi.org/10.1002/2017GL074904 (2017).  1170 

132. Freund, M. B. et al. Higher frequency of central Pacific El Niño events in recent 1171 

decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).  1172 

133. McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 1173 

950–954 (1999). 134. Capotondi, A., Sardeshmukh, P. D. & Ricciardulli, L.  1174 

The nature of the stochastic wind forcing of ENSO.  1175 

J. Clim. 31, 8081–8099 (2018). 1176 

135. Tan, X. et al. A study of the effects of westerly wind  1177 

bursts on ENSO based on CESM. Clim. Dyn. 54,  1178 

885–899 (2020). 1179 

136. Lopez, H. & WWBs, B. P. K. ENSO predictability, the spring barrier and 1180 

extreme events. J. Geophys. Res. Atmos. 119, 10,114–10,138 (2014).  1181 

137. Ren, H. L. et al. Seasonal predictability of winter ENSO types in operational 1182 

dynamical model predictions. Clim. Dyn. 52, 3869–3890 (2019).  1183 

138. Chang, P. et al. Climate fluctuations of tropical coupled systems: the role of 1184 

ocean dynamics. J. Clim. 19, 5122–5174 (2006).  1185 

139. Lübbecke, J. F. & McPhaden, M. J. Symmetry of the Atlantic Niño mode. 1186 

Geophys. Res. Lett. 44, 965–973 (2017).  1187 

140. Richter, I. et al. On the link between mean state biases and prediction skill in the 1188 

tropics: an atmospheric perspective. Clim. Dyn. 50, 3355–3374 (2018).  1189 

141. Stockdale, T. N., Balmaseda, M. A. & Vidard, A. Tropical Atlantic SST 1190 

prediction with coupled ocean–atmosphere GCMs. J. Clim. 19, 6047–6061 (2006).  1191 

142. Ding, H. et al. The impact of mean state errors on equatorial Atlantic interannual 1192 

variability in a climate model. J. Geophys. Res. Oceans 120, 1133–1151 (2015).  1193 



143. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole 1194 

mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).  1195 

144. Krishnamurthy, V. & Kirtman, B. P. Variability of the Indian Ocean: relation to 1196 

monsoon and ENSO. Q. J. R. Meteorol. Soc. 129, 1623–1646 (2003).  1197 

145. Wu, R., Kirtman, B. P. & Krishnamurthy, V. An asymmetric mode of tropical 1198 

Indian Ocean rainfall variability in boreal spring. J. Geophys. Res. Atmos. 1199 

https://doi.org/10.1029/2007JD009316 (2008).  1200 

146. Lu, B. et al. An extreme negative Indian Ocean dipole event in 2016: dynamics 1201 

and predictability. Clim. Dyn. https://doi.org/10.1007/s00382-017-3908-2 (2017).  1202 

147. Shinoda, T. & Han, W. Influence of Indian Ocean dipole on atmospheric 1203 

subseasonal variability. J. Clim. 18, 3891–3909 (2005).  1204 

148. Dunstone, N. et al. Skilful predictions of the winter North Atlantic Oscillation 1205 

one year ahead. Nat. Geosci. 9, 809–814 (2016).  1206 

149. Dunstone, N. et al. Skilful seasonal predictions of summer European rainfall. 1207 

Geophys. Res. Lett. 45, 3246–3254 (2018).  1208 

150. Paolino, D. A., Kinter, J. L., Kirtman, B. P., Min, D. & Straus, D. M. The impact 1209 

of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. 1210 

Clim. 25, 1007–1021 (2011).  1211 

151. Dirmeyer, P. A. The role of the land surface background state in climate 1212 

predictability. J. Hydrometeorol. 4, 599–610 (2003).  1213 

152. Prodhomme, C., Doblas-Reyes, F., Bellprat, O. & Dutra, E. Impact of land-1214 

surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim. Dyn. 1215 

47, 919–935 (2016).  1216 

153. Ardilouze, C., Batté, L., Decharme, B. & Déqué, M. 1217 

On the link between summer dry bias over the US Great Plains and seasonal 1218 



temperature prediction skill in a dynamical forecast system. Weather Forecast. 34, 1219 

1161–1172 (2019).  1220 

154. Marshall, A. G. & Scaife, A. A. Improved predictability of stratospheric sudden 1221 

warming events in an atmospheric general circulation model with enhanced 1222 

stratospheric resolution. J. Geophys. Res. 115, D16114 (2010).  1223 

155. Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. 1224 

Clim. Dyn. 31, 987–1000 (2008).  1225 

156. Marshall, A. G. & Scaife, A. A. Impact of the QBO on surface winter climate. J. 1226 

Geophys. Res. 114, D18110 (2009).  1227 

157. Scaife, A. A. et al. Predictability of the Quasi-Biennial Oscillation and its 1228 

northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Letts. 1229 

41, 1752–1758 (2014).  1230 

158. Doblas-Reyes, F. J., Hagedorn, R., Palmer, T. N. & Morcrette, J.-J. Impact of 1231 

increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys. 1232 

Res. Lett. 33, L07708 (2006).  1233 

159. Solaraju-Murali, B., Caron, L.-P., González-Reviriego, N. & Doblas-Reyes, F. J. 1234 

Multi-year prediction of European summer drought conditions for the agricultural 1235 

sector. Environ. Res. Lett. https:// doi.org/10.1088/1748-9326/ab5043 (2019).  1236 

160. Cassou, C. et al. Decadal climate variability and predictability: challenges and 1237 

opportunities. Bull. Am. Meteorol. Soc. 99, 479–490 (2018).  1238 

161. Liu, Z. & Di Lorenzo, E. Mechanisms and predictability of Pacific decadal 1239 

variability. Curr. Clim. Chang. Rep. 4, 128–144 (2018).  1240 

162. Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal 1241 

modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).  1242 



163. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. 1243 

A Pacific interdecadal climate oscillation with impacts on salmon production. 1244 

Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).  1245 

164. Newman, M. et al. The Pacific Decadal Oscillation, revisited. J. Clim. 1246 

29, 4399–4427 (2016).  1247 

165. Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic 1248 

Meridional Modes of tropical atmosphere– ocean variability. J. Clim. 17, 1249 

4143–4158 (2004).  1250 

166. Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean 1251 

climate and ecosystem change. GRL 35, L08607 (2008).  1252 

167. Han, W. et al. Indian Ocean decadal variability: 1253 

a review. Bull. Am. Meteor. Soc. 95, 1679–1703 (2014).  1254 

168. Han, W. et al. Intensification of decadal and multi- decadal sea level 1255 

variability in the western tropical Pacific during recent decades. Clim. Dyn. 1256 

43, 1357–1379 (2014).  1257 

169. Li, Y., Han, W., Wang, F., Zhang, L. & Duan, J. Vertical structure of 1258 

the upper-Indian Ocean thermal variability. J. Clim. 33, 7233–7253 (2020).  1259 

170. Tozuka, T., Luo, J., Masson, S. & Yamagata, T. Decadal modulations 1260 

of the Indian Ocean dipole in the SINTEX- F1 coupled GCM. J. Clim. 20, 1261 

2881–2894 (2007).  1262 

171. Feng, M. H. H. et al. Decadal increase in Ningaloo Niño since the late 1263 

1990s. Geophys. Res. Lett. 42, 104–112 (2015).  1264 

172. Ummenhofer, C. C., Biastoch, A. & Böning, C. W. Multi-decadal 1265 

Indian Ocean variability linked to the Pacific and implications for 1266 

preconditioning Indian Ocean Dipole events. J. Clim. 30, 1739–1751 (2017).  1267 



173. Lee, S.-K. et al. Pacific origin of the abrupt increase in Indian Ocean 1268 

heat content during the warming hiatus. Nat. Geosci 8, 445–450 (2015).  1269 

174. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by 1270 

decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).  1271 

175. Jin, X. et al. Distinct mechanisms of decadal subsurface heat content 1272 

variations in the eastern and western Indian Ocean modulated by tropical 1273 

Pacific SST. J. Clim. 31, 7751–7769 (2018).  1274 

176. Annamalai, H., Potemra, J., Murtugudde, R. & McCreary, J. P. Effect 1275 

of preconditioning on the extreme climate events in the tropical Indian Ocean. 1276 

J. Clim. 18, 3450–3469 (2005).  1277 

177. Henley, B. J. et al. Spatial and temporal agreement in climate model 1278 

simulations of the Interdecadal Pacific Oscillation. Environ. Res. Lett. 12, 1279 

044011 (2017).  1280 

178. Fasullo, J. T., Phillips, A. S. & Deser, C. Evaluation 1281 

of leading modes of climate variability in the CMIP archives. J. Clim. 1282 

https://doi.org/10.1175/JCLI-D-19- 1024.1 (2020).  1283 

179. Mann, M. E., Steinman, B. A. & Miller, S. K. Absence of internal 1284 

multidecadal and interdecadal oscillations in climate model simulations. Nat. 1285 

Commun. https:// doi.org/10.1038/s41467-019-13823-w (2020).  1286 

180. Kosaka, Y. & Xie, S.-P. The tropical Pacific as a key pacemaker of the 1287 

variable rates of global warming. Nat. Geosci. 1288 

https://doi.org/10.1038/NGEO2770 (2016).  1289 

181. Tung, K.-K. & Chen,, X. Understanding the recent global surface 1290 

warming slowdown: a review. Climate 6, 82 (2018).  1291 



182. England, M. H. et al. Recent intensification of wind- driven circulation 1292 

in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 1293 

(2014).  1294 

183. Meehl, G. A., Teng, H. & Arblaster, J. M. Climate model simulations 1295 

of the observed early-2000s hiatus of global warming. Nat. Clim. Change 4, 1296 

898–902 (2014).  1297 

184. Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. 1298 

Nat. Clim. Change 6, 224–228 (2016).  1299 

185. Xie, S.-P. & Kosaka,, Y. What caused the global surface warming 1300 

hiatus of 1998–2013? Curr. Clim. Change Rep. 3, 128–140 (2017).  1301 

186. Seager, R. et al. Strengthening tropical Pacific zonal sea surface 1302 

temperature gradient consistent with rising greenhouse gases. Nat. Clim. 1303 

Change. 9, 517–522 (2019).  1304 

187. Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-1305 

warming slowdown and acceleration. Science 345, 897–903 (2014).  1306 

188. Santer, B. D. et al. Observed multivariable signals of late 20th and 1307 

early 21st century volcanic activity. Geophys. Res. Lett. 42, 500–509 (2015).  1308 

189. Smith, D. M. et al. Role of volcanic and anthropogenic aerosols in the 1309 

recent global surface warming slowdown. Nat. Clim. Chang. 6, 936 (2016).  1310 

190. Oudar, T., Kushner, P. J., Fyfe, J. & Sigmond, M. No impact of 1311 

anthropogenic aerosols on early 21st century global temperature trends in a 1312 

large initial-condition ensemble. Geophys. Res. Lett. 45, 9245–9252 (2018). 1313 

191. Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. 1314 

Retrospective prediction of the global warming slowdown in the past decade. 1315 

Nat. Clim. Change 3, 649–653 (2013).  1316 



192. Bordbar, M. H. et al. Uncertainty in near-term global surface warming linked to 1317 

tropical Pacific climate variability. Nat. Commun. 10, 1990 (2019).  1318 

193. Meehl, G. A., Chung, C. T. Y., Arblaster, J. M., Holland, M. M. & Bitz, C. M. 1319 

Tropical decadal variability and the rate of Arctic sea ice retreat. Geophys. Res. Lett. 1320 

https://doi.org/10.1029/ 2018GL079989 (2018).  1321 

194. Meehl, G. A., Arblaster, J. M., Bitz, C., Chung, C. T. Y. & Teng, H. Antarctic 1322 

sea ice expansion between 2000–2014 driven by tropical Pacific decadal climate 1323 

variability. Nat. Geosci https://doi.org/10.1038/ NGEO2751 (2016).  1324 

195. Purich, A. et al. Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. 1325 

Clim. 29, 8931–8948 (2016).  1326 

196. Thoma, M., Greatbatch, R. J., Kadow, C. & Gerdes, R. Decadal hindcasts 1327 

initialized using observed surface wind stress: evaluation and prediction out to 2024. 1328 

Geophys. Res. Lett. 42, 6454–6461 (2015).  1329 

197. Meehl, G. A. et al. Recent sudden Antarctic sea ice retreat caused by connections 1330 

to the tropics and sustained ocean changes around Antarctica. 1331 

Nat. Commun. 10, 14 (2019).  1332 

198. Yin, J., Overpeck, J., Peyser, C. & Stouffer, R. Big jump of record warm global 1333 

mean surface temperature in 2014–2016 related to unusually large oceanic heat 1334 

releases. Geophys. Res. Lett. 45, 1069–1078 (2018).  1335 

199. Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. 1336 

Aerosols implicated as a prime driver of twentieth-century North Atlantic climate 1337 

variability. Nature 484, 228 (2012).  1338 

200. Watanabe, M. & Tatebe, H. Reconciling roles of sulphate aerosol forcing and 1339 

internal variability in Atlantic multidecadal climate changes. Clim. Dyn. 53, 4651–1340 

4665 (2019).  1341 



201. Hermanson, L. et al. Robust multiyear climate impacts of volcanic eruptions in 1342 

decadal prediction systems. J. Geophys. Res. Atmos. 1343 

https://doi.org/10.1029/2019JD031739 (2020).  1344 

202. Menary, M. B. & Scaife, A. A. Naturally forced multidecadal variability of the 1345 

Atlantic meridional overturning circulation. Clim. Dyn. 42, 1347–1362 (2014).  1346 

203. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).  1347 

204. Mechoso, R. (ed.) Interacting Climates of Ocean Basins: Observations, 1348 

Mechanisms, Predictability, and Impacts (Cambridge Univ. Press, 2020).  1349 

205. Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive 1350 

decadal-timescale processes. Nat. Geosci. https://doi.org/10.1038/ s41561-020-00669-1351 

x (2020).  1352 

206. Chikamoto, Y. et al. Skillful multi-year predictions of tropical trans-basin 1353 

climate variability. Nat. Commun. 6, 6869 (2015).  1354 

207. Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic 1355 

multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled 1356 

models. J. Clim. 30, 2785–2810 (2017).  1357 

208. Levine, A. F. Z., McPhaden, M. J. & Frierson, D. M. W. The impact of the AMV 1358 

on multidecadal ENSO variability. Geophys. Res. Lett. 44, 3877–3886 (2017).  1359 

209. Kumar, A., Bhaskar, J. & Wang, H. Attribution of SST variability in global 1360 

oceans and the role of ENSO. Clim. Dyn. 43, 209–220 (2014).  1361 

210. Taschetto, A. S., Rodrigues, R. R., Meehl, G. A., McGregor, S. & England, M. 1362 

H. How sensitive are the Pacific-North Atlantic teleconnections to the position and 1363 

intensity of El Niño-related warming. Clim. Dyn. https://doi.org/10.1007/s00382-015-1364 

2679-x (2015).  1365 



211. Han, W. et al. Decadal variability of Indian and Pacific Walker Cells: do they co-1366 

vary on decadal timescales? J. Clim. 30, 8447–8468 (2017).  1367 

212. Han, W. et al. Multi-decadal trend and decadal variability of the regional sea 1368 

level over the Indian Ocean since the 1960s: roles of climate modes and external 1369 

forcing. Climate 6, 51 (2018).  1370 

213. Deepa, J. S. et al. The tropical Indian Ocean decadal sea level response to the 1371 

Pacific decadal oscillation forcing. Clim. Dyn. 52, 5045 (2019).  1372 

214. Zhang, R. et al. A review of the role of the Atlantic meridional overturning 1373 

circulation in Atlantic multidecadal variability and associated climate impacts. Rev. 1374 

Geophys. 57, 316–375 (2019).  1375 

215. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate 1376 

change over the past three decades. Nat. Clim. Change https://doi.org/10.1038/ 1377 

NCLIMATE2840 (2015).  1378 

216. Li, H., Ilyina, T., Müller, W. A. & Seinz, F. Decadal prediction of the North 1379 

Atlantic CO2 uptake. Nat. Commun. 7, 11076 (2016).  1380 

217. Jin, D. & Kirtman, B. P. How the annual cycle affects the extratropical response 1381 

to ENSO. J. Geophys. Res. 115, D06102 (2010).  1382 

218. Zhang, L., Han, W. & Sienz, F. Unraveling causes for the changing behavior of 1383 

tropical Indian Ocean in the past few decades. J. Clim. 31, 2377–2388 (2018).  1384 

219. Thornton, H. et al. Skillful seasonal prediction of winter gas demand. Env. Res. 1385 

Lett. 14, 024009 (2019).  1386 

220. Palin, E. J. et al. Skillful seasonal forecasts of winter disruption to the U.K. 1387 

transport system. J. Appl. Meteor. Climatol. 55, 325–344 (2016).  1388 

221. Towler, E., Paimazumder, D. & Done, J. Toward application of decadal climate 1389 

predictions. J. Appl. Meteorol. Climatol. 57, 555–568 (2018).  1390 



222. Vecchi, G. A. et al. On the seasonal forecasting of regional tropical cyclone 1391 

activity. J. Clim. 27, 7994–8016 (2014).  1392 

223. Annan, J. D. et al. Parameter estimation in an atmospheric GCM using the 1393 

ensemble Kalman filter. Nonlinear Processes Geophys. https://doi.org/ 10.5194/npg-1394 

12-363-2005 (2005).  1395 

224. Düben, P. D., Hugh McNamara, H. & Palmer, T. N. The use of imprecise 1396 

processing to improve accuracy in weather & climate prediction. J. Comput. Phys. 1397 

271, 2–18 (2014).  1398 

225. Palmer, T. N., Peter Düben, P. & McNamara, H. Stochastic modelling and 1399 

energy-efficient computing for weather and climate prediction. Phil. Trans. Roy. Soc. 1400 

A https://doi.org/10.1098/rsta.2014.0118 (2014).  1401 

226. Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO 1402 

forecasts. Nature https://doi.org/ 10.1038/s41586-019-1559-7 (2019).  1403 

227. Zhang, S. et al. Coupled data assimilation and parameter estimation in coupled 1404 

ocean–atmosphere models: a review. Clim. Dyn. 54, 5127–5144 (2020).  1405 

228. Karspeck, A. R. et al. A global coupled ensemble data assimilation system using 1406 

the community earth system model and the data assimilation research testbed. 1407 

Q. J. R. Meteorol. Soc. 144, 2404–2430 (2018).  1408 

229. Mulholland, D., Laloyaux, P., Haines, K. & Balmaseda, M. Origin and impact of 1409 

initialization shocks in coupled atmosphere–ocean forecasts. Monthly Weather. Rev. 1410 

143, 4631–4644 (2015).  1411 

230. Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. 1412 

Soc. 91, 1015–1057 (2010).  1413 

231. Laloyaux, P. et al. A coupled data assimilation system for climate reanalysis. Q. 1414 

J. R. Meteorol. Soc. 142, 65–78 (2016).  1415 



232. Herman, R. J. et al. The effects of anthropogenic and volcanic aerosols and 1416 

greenhouse gases on twentieth century Sahel precipitation. Sci. Rep. 10, 12203 1417 

(2020).  1418 

233. Schurer, A., Hegerl, G., Mann, M. E. & Tett, S. F. B. Separating forced from 1419 

chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013).  1420 

234. Ault, T. R. et al. The continuum of hydroclimate variability in western North 1421 

America during the last millennium. J. Clim. 26, 5863–5878 (2013).  1422 

235. Laepple, T. & Huybers, P. Global and regional variability in marine surface 1423 

temperatures. Geophys. Res. Lett. 41, 2528–2534 (2014).  1424 

236. Loope, G., Thompson, D. M., Cole, J. E. & Overpeck, J. Is there a low-1425 

frequency bias in multiproxy reconstructions of Pacific SST variability? Quat. Sci. 1426 

Rev. 246, 106530 (2020).  1427 

237. Frankignoul, C., Muller, P. & Zorita, E. A simple model of the decadal response 1428 

of the ocean to stochastic wind forcing. J. Phys. Oceanogr. 27, 1533–1546 (1997).  1429 

238. Capotondi, A., Alexander, M. A. & Deser, C. Why are there Rossby wave 1430 

maxima in the Pacific at 10S and 13N? J. Phys. Oceanogr. 33, 1549–1563 (2003).  1431 

239. Chikamoto, Y., Timmermann, A., Widlansky, M. J., M. A., & L. Multi-year 1432 

predictability of climate, drought, and wildfire in southwestern North America. Sci. 1433 

Rep. https://www.ncbi.nlm.nih.gov/pubmed/28747719 (2017).  1434 

240. Lovenduski, N. S., Bonan, G. B., Yeager, S. G., Lindsay, K. & Lombardozzi, D. 1435 

L. High predictability of terrestrial carbon fluxes from an initialized decadal 1436 

prediction system. Environ. Res. Lett. 14, 124074 (2019).  1437 

241. Sospedra-Alfonso, R., Merryfield, W. J. & Kharin, V. V. Representation of snow 1438 

in the Canadian seasonal to interannual prediction system: part II. Potential 1439 

predictability and hindcast skill. J. Hydrometeorol. 17, 2511–2535 (2016).  1440 



242. Kapnick, S. B. et al. Potential for western US seasonal snowpack 1441 

prediction. Proc. Natl Acad. Sci. USA 115, 1180–1185 (2018).  1442 

243. Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. 1443 

Earth Environ. 1, 482–493 (2020).  1444 

244. Batté, L. et al. Summer predictions of Arctic sea ice edge in multi-1445 

model seasonal re-forecasts. Clim. Dyn. 54, 5013–5029 (2020).  1446 

245. Subramanian, A., Juricke, S., Dueben, P. & Palmer, T. A stochastic 1447 

representation of subgrid uncertainty for dynamical core development. Bull. 1448 

Am. Meteorol. Soc. 100, 1091–1101 (2019).  1449 

246. Penny, S. G. et al. Observational needs for improving ocean and 1450 

coupled reanalysis, S2S prediction, and decadal prediction. Front. Mar. Sci 1451 

https://doi.org/ 10.3389/fmars.2019.00391 (2019).  1452 

247. Lofverstrom et al. An efficient ice-sheet/Earth System model spin-up 1453 

procedure for CESM2.1 and CISM2.1: description, evaluation, and broader 1454 

applicability. JAMES https://doi.org/10.1029/2019MS001984 (2020).  1455 

248. Gettelman, A. et al. The Whole Atmosphere Community Climate 1456 

Model version 6 (WACCM6). J. Geophys. 1457 

Res. Atmos. https://doi.org/10.1029/2019JD030943 (2019).  1458 

249. Tommasi, D. C. et al. Managing living marine resources in a dynamic 1459 

environment: the role of seasonal to decadal climate forecasts. Prog. 1460 

Oceanogr. 152, 15–49 (2017).  1461 

250. Stock, C. A. et al. Seasonal sea surface temperature anomaly 1462 

prediction for coastal ecosystems. Prog. Oceanogr. 137, 219–236 (2015).  1463 



251. Liu, G. et al. Predicting heat stress to inform reef management: NOAA 1464 

Coral Reef Watch’s 4-month coral bleaching outlook. Front. Mar. Sci. 1465 

https://doi.org/ 10.3389/fmars.2018.00057 (2018).  1466 

252. Capotondi, A., Sardeshmukh, P. D., Di Lorenzo, E., Subramanian, A. 1467 

& Miller, A. J. Predictability of US West Coast ocean temperatures is not 1468 

solely due to ENSO. Sci. Rep. 9, 10993 (2019).  1469 

253. Wells, M. L. et al. Harmful algal blooms and climate change: learning 1470 

from the past and present to forecast the future. Harmful Algae 49, 68–93 1471 

(2015).  1472 

254. Séférian, R. et al. Multiyear predictability of tropical marine 1473 

productivity. Proc. Natl Acad. Sci. USA 111, 11646–11651 (2014).  1474 

255. Park, J.-Y., Stock, C. A., Dunne, J. P., Yang, X. & Rosati, A. Seasonal 1475 

to multiannual marine ecosystem prediction with a global Earth System 1476 

model. Science 365, 284–288 (2019).  1477 

256. Krumhardt, K. M. et al. Potential predictability of net primary 1478 

production in the ocean. Glob. Biogeochem. Cycles 34, e2020GB006531 1479 

(2020).  1480 

257. Siedlecki, S. A. et al. Experiments with seasonal forecasts of ocean 1481 

conditions for the northern region of the California Current upwelling system. 1482 

Sci. Rep. 6, 1–18 (2016).  1483 

258. Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C. & Lindsay, K. 1484 

Skillful multiyear predictions of ocean acidification in the California Current System. 1485 

Nat. Commun. 11, 2166 (2020).  1486 

259. Séférian, R., Berthet, S. & Chevallier, M. Assessing the decadal predictability of 1487 

land and ocean carbon uptake. Geophys. Res. Lett. 45, 2455–2466 (2018).  1488 



260. Lovenduski, N. S., Yeager, S. G., Lindsay, K. & Long, M. C. Predicting near-1489 

term variability in ocean carbon uptake. Earth Syst. Dyn. 10, 45–57 (2019).  1490 

261. Li, H., Ilyina, T., Müller, W. A. & Landschützer, P. Predicting the variable ocean 1491 

carbon sink. Sci. Adv. https://doi.org/10.1126/sciadv.aav6471 (2019).  1492 

262. Bett, P. E. et al. Skillful seasonal prediction of key carbon cycle components: 1493 

NPP and fire risk. Environ. Res. Commun. 2, 055002 (2020).  1494 

263. Park, J.-Y., Dunne, J. P. & Stock, C. A. Ocean chlorophyll as a precursor of 1495 

ENSO: an earth system modeling study. Geophys. Res. Lett. https://doi.org/ 1496 

10.1002/2017GL076077 (2018).  1497 

264. Capotondi, A. et al. Observational needs supporting marine ecosystem modeling 1498 

and forecasting: from the global ocean to regional and coastal systems. Front. Mar. 1499 

Sci. 6, 623 (2019).  1500 

265. Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses 1501 

and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. 1502 

Sci. 6, 89 (2019).  1503 

266. Weisheimer, A. & Palmer, T. N. On the reliability of seasonal climate forecasts. 1504 

J. R. Soc. Interface https://doi.org/10.1098/rsif.2013.1162 (2014).  1505 

267. National Academies of Sciences, Engineering and Medicine. Next Generation 1506 

Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts 1–351 1507 

(National Academies Press, 2017).  1508 

268. National Research Council. Assessment of Intraseasonal to Interannual Climate 1509 

Prediction and Predictability 1–193 (National Academies Press, 2010).  1510 

269. Mehta, V. Natural Decadal Climate Variability: Phenomena, Mechanisms, and 1511 

Predictability 1-374 (CRC Press, 2020).  1512 



270. GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), 1513 

version 4. NASA Goddard Institute for Space Studies Dataset accessed 2021-02-25 at 1514 

https://data.giss.nasa.gov/gistemp/ (2020).  1515 

271. Lenssen, N. J. L. et al. Improvements in the GISTEMP Uncertainty Model. J. 1516 

Geophys. Res. Atmos. 124, 6307–6326 (2019).  1517 

 1518 

 1519 

Acknowledgements 1520 

The foundations of this paper emerged from a workshop held by National Academies 1521 

of Sciences, Engineering and Medicine in 2015 at Woods Hole, MA, and the authors 1522 

gratefully acknowledge support from Amanda Purcell and Nancy Huddleston t. 1523 

Portions of this study were supported by the Regional and Global Model Analysis 1524 

(RGMA) component of the Earth and Environmental System Modeling Program of 1525 

the U.S. Department of Energy's Office of Biological & Environmental Research 1526 

(BER) via National Science Foundation IA 1844590. This work also was supported 1527 

by the National Center for Atmospheric Research, which is a major facility sponsored 1528 

by the National Science Foundation under Cooperative Agreement No. 1852977. 1529 

M.E.M. was supported by a grant from the NSF Paleoclimate Program #1748097. 1530 

F.J.D.R. and M.G.D. were supported by the H2020 EUCP project under Grant 1531 

agreement no. 776613, M.G.D also by the Ramón y Cajal 2017 grant reference RYC-1532 

2017-22964. A.C. acknowledges support from the NOAA Climate Program Office’s 1533 

Modeling Analysis, Prediction and Projection Program (grant # NA17OAR4310106) 1534 

and from the NOAA Climate Program Office’s Climate Variability and Predictability 1535 

Program. A.C.S. acknowledges support from the NOAA Climate Variability and 1536 



Predictability Program (Award NA18OAR4310405) and the National Oceanic and 1537 

Atmospheric Administration (NOAA‐MAPP; NA17OAR4310106) for support. 1538 

N.S.L. is grateful for support from the NSF (OCE-1752724). D.M.T. acknowledges 1539 

support from NCAR Advanced Study Program and NSF (OCE-1931242). S.C.S was 1540 

supported by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) 1541 

Postdoctoral Fellowship. 1542 

 1543 

  1544 

Author contributions 1545 

H.T. suggested the original concept. G.A.M. led the overall conceptual design, and 1546 

coordinated the writing. J.H.R. and H.T. made major contributions to the conceptual 1547 

design and organization. J.H.R. generated Fig. 1a. H.T. generated Fig. 4. All authors 1548 

discussed the concepts presented and contributed to the writing. 1549 

Competing Interests 1550 

The authors declare no competing interests. 1551 

 1552 

 1553 

 1554 

 1555 

 1556 

 1557 



Table 1. General characteristics of models used for S2S, S2I and S2D initialized 1558 

predictions*. 1559 

 Timescale Number 

of 

models 

Atmospheric 

resolution & 

levels 

Ocean 

resolutionlevels 

Components 

initialized 

Initiali- 

zation 

Number 

of 

ensembles 

Prediction 

length 

S2S 18 25—200 km 

17—91 levels 

8—200 km 

25—75 levels 

Most 

initialize 

atmosphere, 

ocean, land 

and sea ice 

Full 

field 

4—51 31—62 

days 

S2I 13 36—200 km 

24—95 levels 

25—200 km 

24—74 levels 

All initialize 

atmosphere, 

ocean, land 

and sea ice 

Full 

field 

10—51 6—12 

months 

S2D 14 50—20 0km 

26—95 levels 

25—100 km 

30—75 levels 

Models 

range from 

initializing 

only ocean, 

to 

initializing 

atmosphere, 

ocean, land 

and sea ice 

Full 

field, 

anomaly 

10—40 5—10 

years 

*A full and more complete accounting of model features is given in Supplementary 1560 

Table 1, 2 and 3 for S2S, S2I and S2D models. 1561 



 1562 

Figure 1. Timescales and processes involved with initialized predictions. a| 1563 

Timescales and sources of predictability for S2S, S2I, and S2D. Lighter green shading 1564 

indicates larger uncertainty.  MJO: Madden-Julian Oscillation; NAO: North Atlantic 1565 

Oscillation; QBO: Quasi-Biennial Oscillation; SSWs: Sudden Stratospheric 1566 

Warmings; ENSO: El Nino-Southern Oscillation; PDW: Pacific Decadal Variability; 1567 

AMV: Atlantic Multi-decadal variability; GMST: Global Mean Surface Temperature; 1568 

GHG: Greenhouse Gas. b| skill in predicting the upper 300m of the Atlantic Ocean 1569 

temperature, as measured by relative entropy, in initialized models (blue) and those 1570 

forced by RCP4.5 (red). Skill is high for initialized predictions at S2S and S2I 1571 



timescales (<2 years), but decreases toward S2D (year 3-9), after which time skill 1572 

from external forcing increases.    Panel b adapted, with permission, from ref x 1573 

(Branstator and Teng, 2012). 1574 

 1575 

 1576 

Figure 2. Influence of ensemble size and lead year ranges on predictive skill. a| 1577 

Skill (as measured by anomaly correlation coefficient) in predicting S2S globally 1578 



averaged NDJFM surface air temperature (excluding the Antarctic) from CESM 1579 

initialized hindcasts of various ensemble size (grey line). Shading denotes the 5% and 1580 

95% significance levels. Blue and red whiskers illustrate predictive skill for NCEP 1581 

CFSv2 and ECMWF subseasonal hindcasts, respectively (Kim et al., 2019b).ADD 1582 

TAKE HOME MESSAGE. b| Skill (as measured by the anomaly correlation 1583 

coefficient) in predicting S2D wintertime NAO using ensembles of different sizes 1584 

from the Decadal Prediction Large Ensemble (DPLE). Each line depicts a different 1585 

lead year range, with those that are colored corresponding to statistically significant 1586 

correlations; the darker the shading, the greater the statistical signifance. The dashed-1587 

dotted line shows the skill of the sub-ensemble mean against a single member of the 1588 

ensemble (averaged for all possible combinations). The more ensemble members, the 1589 

higher the skill for longer lead year ranges. Panel b adapted, with permission, from ref 1590 

(Athanasiadis et al., 2020).  1591 



 1592 

Figure 3. Extending proxy observations of S2D variability back in time. a | 1593 

Global mean surface temperature anomalies , b | 30 year running means of the coral-1594 

based Indian Ocean Dipole (IOD) (blue) and El Nino-Southern Oscillation (ENSO) 1595 

(red); c | scatter plot of coral-based IOD and ENSO; d | equatorial Pacific west-east 1596 

SST gradient ; e | central and eastern Pacific El Niño derived from teleconnected 1597 

climate patterns. f | xxxxx. Collective, the figures illustrate a strengthening of IOD-1598 

ENSO decadal variability after ~ 1590. Figure adapted, with permission, from ref x 1599 

(Abram et al., 2020). 1600 

  1601 



 1602 

Figure 4. Impact of model drift on initialized predictions. Globally averaged 1603 

surface temperature predictions from the Decadal Prediction Large Ensemble (Yeager 1604 

et al., 2018) as a function of simulation year. Initial state predictions (blue dots) 1605 

compare well to observations (black line), but drift (progression of blue dots to red 1606 

dots) toward the model’s systematic error state represented by the uninitialized state 1607 

(dark gray line; gray shading is range of uninitialized projections).   1608 

 1609 



 1610 

Figure 5. Initialized S2S predictions of the MJO. a | observed outgoing longwave 1611 

radiation (OLR) anomalies averaged over 5°S to 5°N as a function of the stage of the 1612 

Madden-Julian Oscillation (MJO). b-g | as in a, but for various initialized predictions, 1613 

with OLR anomalies taken as the average of simulations days 15-21. MJO events are 1614 

identified based on RMM index amplitude ≥1. The eastward propagation of MJO-1615 

related OLR anomalies is well captured by all six models. Figure adapted, with 1616 

permission, from ref x (Pegion et al., 2019). 1617 

 1618 



 1619 

Figure 6. Skill of S2D predictions involves credible simulation of aspects of time-1620 

evolving globally averaged temperature. a| Prediction skill, measured as the 1621 

anomaly correlation coefficient, of sea surface temperature (SST) averaged over years 1622 

5-9 from a decadal prediction large ensemble;  darker red indicates higher skill.  b| 1623 

improvement in prediction skill associated with xxxx; darker red indicates better skill 1624 

in the initialized predictions. ADD TAKE HOME MESSAGE. c) Schematic of the 1625 

“rising staircase”, illustrating how natural decadal-scale temperature fluctuations 1626 

(blue) are tilted upwards owing to anthropogenic greenhouse gas emissions (red), 1627 

producing accelerated warming in some decades, and reduced warming in others. d) 1628 

time series of observed global mean surface temperature anomalies showing 1629 

characteristics of the rising staircase: accelerated warming over 1980-2000 and 2014-1630 

present, and a slow-down in the rate of warming over 2000-2014. Panels a and b 1631 

adapted, with permission, from ref x (Yeager et al., 2018). Panel c adapted, with 1632 

permission, from ref x (Kosaka and Xie, 2016). Panel d adapted, with permission, 1633 

from NASA 1634 
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Supplementary Information 1636 

 1637 

Supplementary Table 1. Main characteristics of 18 currently used S2S initialized 1638 

prediction models. The table provides a general survey of S2S, and is not intended to 1639 

provide detailed documental of each model. Modeling center acronyms are described 1640 

in the Appendix; origin refers to model originating either in the climate community 1641 

(C) or from Numerical Weather Prediction (NWP) community; Operational or 1642 

Research model is depicted by O and R respectively; Approximate atmospheric and 1643 

ocean model horizontal resolution (current) is provided either in degrees, kilometers, 1644 

or begins with ‘T’ for spectral models, number of vertical levels begins with ‘L’; The 1645 

existence of ocean and sea-ice coupling is indicated by ‘Y’ (yes) or ‘N’ (no); Model 1646 

components initialized with a state representative of observations are indicated by ‘A’ 1647 

for the atmosphere, ‘L’ for land, ‘O’ for ocean, and ‘I’ for sea-ice; Initialization type 1648 

refers to either ‘Full-field (FF)’ or ‘Anomaly(A).’ Initialization frequency for real 1649 

time forecasts and reforecasts is indicated separately and often in different time units. 1650 

‘# Ens’ indicates the number of ensemble members for real time forecasts and 1651 

reforecasts (Rfc); Forecast length is specified in number of days. Superscripts in the 1652 

modeling center column depict the following:  1 indicates models included in the 1653 

international S2S database, 2 indicates models included in the SubX project. 
*
 1654 

indicates that the full CFSv2 data (6 hourly initializations) are provided to the S2S 1655 

database. The SubX version is a subset based on the SubX protocol (weekly 1656 

initialization). For models that have used multiple versions and/or configurations, 1657 

most recent configuration is described. 1658 
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  1660 

Model- 

ing 

Center 

Model 

Name 

Orig

in 

(Cli- 

mate 

or 

NW

P) 

Ops. 

or 

Re- 

searc

h 

Atmos. 

Resolut

ion 

/Vertic

al 

Levels 

Ocean 

Res./ 

Levels 

Ocean/ 

Sea Ice 

Coupli

ng 

Compo- 

nents 

Initial- 

ized 

Init Data 

Assimilation 

Init. Frequency 

(Real time/Rfc) 

# Ens 

Real 

time/ 

Rfc 

Models Providing Real Time Forecasts and Reforecasts 

BoM
1 

ACCESS-

S1 

C O N216, 

L85 

0.25o / 

L75 

Y/Y A, L, O, I FF Nudging 

from 4dVar 

Daily, 4 per month 33/11 



CMA
1 

BCC-

CSM2-HR 

C O T266, 

L56 

0.25
o
 / 

L50 

Y/Y A, O, I FF Coupled DA 

(ocean: 

EnOI; sea 

ice: OI; 

atmos: 

nudging) 

Daily/Daily 4 

/4 

CNR-

ISAC
1 

GLOBO C O 0.8
o
 x 

0.56
o
, 

L54 

N/A N/N A, L FF N/A weekly/every 5 days 41/1 

ECCC
1,2 

GEPS, 

GEM 

  

NW

P 

O 0.45
o
x0

.45
o
 / 

L40 

N/A N/N A, L FF EnKF weekly/weekly 21/4 

ECMWF
1 

ECMWF NW

P 

O 0.25
o
x0

.25
o
 

(days 0-

10), 

0.5
o
x0.

5
o
 (after 

day10) 

/ L91 

0.25
o
 / 

L75 

Y/N A, L, O FF 4D Var 

(atmosphere; 

3D VAR 

(ocean/sea-

ice) 

 

2 per week/2 per 

week 

51/11 

HMCR
1 

SLAV NW

P 

O 1.1
o
x1.

4
o
 / L28 

N/A N/N A FF 3D Var 

 

Weekly/weekly 20/10 

JMA
1 

JMA 

GEPS, 

GSM 

NW

P 

O 0.5
o
x0.

5
o
 / L60 

N/A N/N A, L FF hybrid 

4DVar-

LETKF 

 

4 per week/3 per 

month 

25/5 

KMA
1 

GloSea5-

GC2 

C O 0.5
o
x0.

5
o
 / L85 

0.25
o
 / 

L75 

Y/Y A, O, I FF 4D Var 

 

daily/4 per month 4/3 

Meteo 

France
1 

CNRM-CM C O 0.7
o
x0.

7
o
 / L91 

1
o
 / L42 Y/Y A, L, O, I FF 4D Var 

 

weekly/2 per month 51/15 



NASA 

GMAO
2 

GEOS C R 0.5
o
x0.

5
o
 / L72 

0.5
o
 / 

L40 

Y/Y A , L, O, I FF EnOI Every 5 days 4/4 

NAVY
2 

  

ESPC C R T359 / 

L50 

0.08
o
 / 

41L 

Y/Y A,L,O,I FF  4DVAR  

 

4 per week/4 per 

week 

4/4 

NOAA 

EMC
2 

GEFS NW

P 

O T574 

(days 0-

8), 

T382 

(days 8-

35) / 

L64 

N/A N/N A,L FF EnKF weekly/weekly 21/11 

NOAA 

ESRL
2 

FIM NW

P 

R ~ 60 

km / 

L64 

~ 60 km 

/L32 

Y/Y A,L,O,I FF N/A weekly/weekly 4/4 

NOAA 

NCEP
1,2 

CFSv2   

C 

O T126 / 

L64 

0.25
o
 Eq, 

0.5
o
 

global / 

L40 

Y/Y A, L, O, I FF 3Dvar  6 hourly
*
/6 hourly

* 
16/1 

RSMAS
2 

  

CCSM4 C R 0.9
o
x1.

25
o
 / 

L26 

0.25
o
 

Tropics 

/1
o
 

global/ 

L60 

Y/Y A, L, O, I FF N/A weekly/weekly 9/4 

UKMO
1 

GloSea5 C O 0.5
o
x0.

8
o
 / L85 

0.25
o
 / 

L75 

Y/Y A, L, O, I FF 4D Var 

 

Daily/4 per month 4/7 

Models Providing Reforecasts Only 

  



NCAR 30LCESM1 C R 0.9
o
x1.

25
o
 / 

L30 

0.25
o
 

Tropics 

/1
o
 

global/ 

L60 

Y/Y A, L, O, I FF N/A weekly NA/10

NCAR 46LCESM1 C R 0.9
o
x1.

25
o
 / 

L30 

0.25
o
 

Tropics 

/1
o
 

global/ 

L60 

Y/Y A, L, O, I FF N/A weekly NA/10

  1661 

 ersemble	optimum	interpolation	(EnOI)	scheme	for	oceanic	analysis,	optimum	interpolation	(OI) 1662 

Ensemble	Kalman	Filter	(EnKF) 1663 

 1664 

 1665 

Supplementary Table 2. Main characteristics of 14 S2I initialized prediction 1666 

models. The table provides a general survey of S2I, and is not intended to provide 1667 

detailed documental of each model Column labels are the same as in Table S1, except 1668 

forecast length is in months. 
3
 indicates models participating in the NMME. 

4 
depicts 1669 

models contributing to the Copernicus Climate Change Service (C3S). 1670 
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Model- 

ing 

Center 

Model 

Name 

Origi

n 

(Clim

- 

ate or 

NWP) 

Ops. 

vs Re- 

earch 

  

Atmos. 

Resolutio

n /Levels 

Ocean 

Res./ 

Levels 

Ocean/ 

Sea Ice 

Coup- 

ling 

Co

m-

po

n- 

Ent

s; 

Init

ial-

ize

Init. 

Typ

e 

Data 

Assimilation 

Initial- 

ization 

fre- 

quency 

(Real 

time/ 

# 

Ens 

(Rea

l 

time/ 

Rfc) 

Forcast 

Length, months 



d Rfc) 

BOM ACCE

SS-S1 

C O N216/L85 0.25o 

/L75 

Y/Y A,

L,

O,I 

FF  Daily/4 

per 

month 

11/1

1 

7 

CMCC CMCC

-SPS3
4 

C O 1
o
 / L46 0.25

o
 

/L50 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

50/4

0 

6 

DWD MPI-

ESP
4 

  

C O T127 / 

L95 

0.4
o
 Eq 

/ L40 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

50/3

0 

12 

ECCC CanC

M4i
3 

C O T63 / L35 .94
o
Eq / 

L40 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

10/1

0 

12 

ECCC GEM-

NEMO
3 

NWP O 1.4
o
 / L79 0.33

o
Eq 

/1
o
glob

al/ L50 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

10/1

0 

12 

ECMW

F 

SEAS5

4 

  

NWP O TCo319 

(36km)/L9

1 

0.25
o
 

/L75 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

51/2

5 

7(13 from 

Feb/May/Aug/No

v) 



GFDL CM2.1
3 

C R 2x2.5
o
 / 

L24 

2x2.5
o
 / 

L24 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

10/1

0 

12 

GFDL CM2.5
3 

C R C18 (50 

km) / L32 

0.3
o
Eq/ 

1
o
 

Polar/ 

L50 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

10/1

0 

12 

JMA/ 

MRI 

CPS24 

  

C O T159/L60 0.3
o
Eq/

L52 

Y/Y A, 

L, 

O, I 

FF  12-13 

mem 

every 5 

days/5 

mem 

every 

15 days 

51/1

0 

12 

Météo- 

France 

System 

7 4 

  

C O TL359/L9

1 

0.25
o
 

/L75 

Y/Y A, 

L, 

O, I 

FF  1 st of 

the 

month 

51/2

5 

7 

NASA GEOS

S2S
3 

C R 0.5
o
/ L72 0.5

o
Eq/ 

L40 

Y/Y A, 

L, 

O, I 

FF  1 mem 

ev 5 

days; 6 

member

s on last 

day of 

month 

10/1

0 

10 

NCAR RSMA

S-

CCSM

4
3 

C R 0.9x1.25
o
 / 

L26 

0.25
o
 

Eq/L60 

Y/Y A, 

L, 

O, I 

FF N/A 1 st of 

the 

month 

10/1

0 

12 

NCEP CFSv2
3,4 

C O T126 / 

L64 

.25
o
 

Eq/L40 

Y/Y A, 

L, 

O, I 

FF  4 

member

s every 

5 days 

24/2

4 

10 



UKMO GloSea

5
4 

  

C O 0.5
o
x0.8

o
/

L85 

  

0.25
o
 

/L75 

Y/Y A, 

L, 

O, I 

FF  2 per 

day/7 4 

times 

per 

month 

62/2

8 

7 

  1672 

Supplementary Table 3. Main characteristics of 14 S2D initialized prediction 1673 

models. The table provides a general survey of S2D, and is not intended to provide 1674 

detailed documental of each model. Same as Table S1 but initialization frequency and 1675 

ensemble size are used for research except as “operations” denoted via the WMO 1676 

Lead Centres, and forecast length is in years. 1677 

Modeling 

Center 

Model Name Origin 

(Clim

ate or 

NWP) 

Ops vs 

Resear

ch 

(Ops 

identifi

ed as 

WMO 

Lead 

Center

s) 

Atmos. 

Res. 

/Levels 

Ocean 

Res. 

/Levels 

Ocean/

Sea Ice 

Couplin

g 

Comp- 

onents 

initiali

zed 

Initiali- 

zation 

Type 

Initiali- 

zation 

Freque

ncy 

# 

E

ns 

For

e- 

cast 

Dur

- 

atio

n, 

yea

r) 

CCCma CanESM5 C R,O 2.8
o
 / L49 1

o
, L45 Y/Y A, L, 

O, I 

FF End of 

each 

year 

40 10 

CCSR/UT

/ 

JAMSTE

C/ 

NIES 

MIROC6 C R 1.4
o 
/ L81 1

o
, L62 Y/Y A, O, I A for 

Ocean; 

FF for Ice 

Nov of 

each 

year 

10 10 



CMCC CMCC-CM2-SR5 C R 1
o
 / L30 1

o
 / L 50 Y/Y A, L, 

O, I 

FF Nov of 

each 

year 

 

10 

10 

CMA BCC_CSM_MR C R 1
o
 /L 46 1

o
 / L40 Y/Y O A Nov of 

each 

year 

 

10 

10 

CSIRO CAFE C R 2o /L 24 1o 

/L506 

Y/Y A,O FF Each 

month 

11 2 

European 

EC-earth 

consortiu

m 

EC-Earth3 (BSC) NWP R 1
o
/ L91 1

o
 / L75 Y/Y A, L, 

O, I 

FF Nov of 

each 

year 

10 10 

European 

EC-earth 

consortiu

m 

EC-

Earth3(BSC/SMHI/

DMI) 

C R, O 1
o
/ L91 1

o
 / L75 Y/Y A, L, 

O, I 

Two 

versions: 

FF (BSC) 

and AI 

(SMHI/D

MI) with 

A for 

Ocean/Ice

; FF for 

Atm/Land 

Nov of 

each 

year 

10 10 

INM INM-CM5 C R 2
o
 / L73 0.5

o
 / 

L40 

Y/Y A, O A Nov of 

each 

year 

10 10 

LASG/IA

P 

FGOALS-g3 C R 

  

2
o
 / L26 1

o
, L30 Y/Y O FF Nov of 

each 

year 

 

10 

10 

LASG/IA

P 

FGOALS-f3 C R 1
o
 / L32 1

o
, L30 Y/Y O A Nov of 

each 

year 

 

10 

10 

MPI MPI-ESM-HR C R, O 

(via 

1
o
 / L95 0.4

o
 

/L40 

Y/Y A, L, 

O, I 

A for 

Ocean/Ice

; FF for 

Nov of 

each 

10 10 



DWD) atm year 

MRI MRI-ESM2 C R 1
o
 / L80 1x0.5

o
/L

60 

Y/Y O A Nov of 

each 

year 

 

10 

10 

NCAR CESM1 C R 0.9
o
x1.25

o
 

/ L30 

0.25
o
 

Tropics 

/1o 

global/ 

L60 

Y/Y O FF Nov of 

each 

year 

40 10 

NCC NorCPM1 C R 2
o
 /L26L 1

o
 / L53 Y/Y O A Nov of 

each 

year 

10 10 

UKMO DePreSys4 

  

C R,O 0.5
o
x0.8

o
/

L85 

  

0.25
o
 

/L75 

Y/Y A, O, I FF Nov of 

each 

year 

 

10 

10 

 1678 

 1679 


