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Initialized near-term regional climate change
prediction
F.J. Doblas-Reyes1,2, I. Andreu-Burillo2, Y. Chikamoto3, J. Garcı́a-Serrano2,4, V. Guemas2,5, M. Kimoto4,

T. Mochizuki6, L.R.L. Rodrigues2 & G.J. van Oldenborgh7

Climate models are seen by many to be unverifiable. However, near-term climate predictions

up to 10 years into the future carried out recently with these models can be rigorously verified

against observations. Near-term climate prediction is a new information tool for the climate

adaptation and service communities, which often make decisions on near-term time scales,

and for which the most basic information is unfortunately very scarce. The Fifth Coupled

Model Intercomparison Project set of co-ordinated climate-model experiments includes a set

of near-term predictions in which several modelling groups participated and whose forecast

quality we illustrate here. We show that climate forecast systems have skill in predicting the

Earth’s temperature at regional scales over the past 50 years and illustrate the trust-

worthiness of their predictions. Most of the skill can be attributed to changes in atmospheric

composition, but also partly to the initialization of the predictions.
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N
ear-term climate, understood as the future climate for
periods ranging between 2 and 30 years, is the combined
result of a forced component due to changes in

atmospheric composition, such as greenhouse gases, aerosols
and other species of anthropogenic and natural origin, and an
internally generated component1. Climate projections, which
attempt to estimate the future evolution of the forced component
of the climate system based on forcing scenarios, have been until
recently the only source of near-term information available to the
climate adaptation and mitigation communities. As an
alternative, climate prediction aims at issuing statements about
the future evolution of some aspect of the climate system,
encompassing both forced and internally generated variations.
Near-term climate prediction originated from attempts to satisfy
a growing demand for climate information for the near future2–4.

Slow components of the natural climate variability, associated
mainly but not solely with the ocean state, can be predictable.
Many of the changes in the atmospheric composition tend to
have a slow pace and have delayed effects, which also induce
predictability5. Different approaches to perform near-term
climate predictions and that exploit the different sources of
predictability are available. In all cases, an assessment of the
forecast quality has to be made. This is achieved by performing as
many predictions for the past as the available observations and
computing resources permit. These predictions are expected to
use only contemporaneous information available at the time of
making the simulation (that is, no future information relative to
the start date is used) and are known in the prediction literature
as ‘hindcasts’.

There have been attempts to predict near-term climate
variations by exploiting empirical relationships based on past
observations as well as expected physical relationships. This
includes empirical models that could take into account changes in
atmospheric and solar irradiance, as well as the state of the
internal variability6–8. Climate projections, which are simulations
with no information about the contemporaneous state of the
climate system at the time of releasing the information,
performed as part of the Third Coupled Model
Intercomparison Project (CMIP3 (ref. 9)) have also been used
to issue climate predictions10–12. This approach did not take into
account internal variability as a source of predictability.

As a more ambitious approach, dynamical climate prediction
explores the ability of climate models to predict regional climate
changes in the near future by exploiting both initial-condition
information and changes in atmospheric composition. The
purpose of the initialization is to use the predictability of the
internal climate variability to reduce the prediction error relative
to that of the projections, whose simulations do not consider the
possibility of phasing the internal variability with the observa-
tions. The extent to which this goal is achievable depends on the
quality of the initial conditions, particularly of the ocean state, the
quality of the climate forecast system and the initialization
procedure. For the time scales ranging between a few seasons to
one decade, it has been shown2–4,13–17 that there is skill in near-
term predictions and that the initial state can improve climate
forecasts a few years ahead. However, skill improvements with the
initialization appeared in disparate regions depending on the
forecast system considered, the North Atlantic being a common
denominator. Besides, the skill estimates were highly uncertain
because of the low number of start dates considered to estimate
the forecast quality.

Climate predictions suffer from errors due to unavoidable
uncertainties, which prevent forecast systems from taking full
advantage of the large range of predictability sources. There are
three main sources of uncertainty in climate prediction18,19.
The first source arises from natural internal variability, intrinsic

to the climate system. Internal variability could be initialized in a
prediction, but the uncertainty in the initial conditions due to our
inability to perfectly know the state of the climate system is non-
linearly amplified. The second source is the uncertainty in the
past, present and future changes in the forcing of the climate
system (anthropogenic emissions, land use and natural forcings
such as volcanic eruptions and solar activity) arising from a lack
of observations and the limitations to know their future evolution.
The third source is the uncertainty in the response of the climate
system to the different external forcings. Because of the chaotic
nature of the climate system and the inadequacy of current
forecast systems, quantifying uncertainty has an important role
in climate forecasting20. Dealing with uncertainty helps decision
makers reach better decisions on whether or not to take any
action, given the probability forecast of an event. Climate
forecasting uses the ensemble method, where a set of
independent forecasts with slightly different initial conditions is
generated using either one or several (in the multi-model
approach) dynamical forecast systems. The spread of the set of
predictions represents the divergence of the solutions offered by
the different forecast systems and in perfect systems is a measure
of the precision of the predictions. It is expected to serve as a
measure of the prediction error resulting from the three types of
uncertainties, although this measure does not take account of
forecast system mutual dependencies21,22. The uncertainty in
near-term predictions appears to be dominated, especially on
regional scales, by internal variability and model uncertainty18.

The co-ordinated nature of the Fifth CMIP (CMIP5 (ref. 23))
near-term ensemble prediction experiments allows, for the first
time, obtaining robust estimates of the level of skill of state-of-
the-art near-term climate prediction, while taking advantage of
the increase in prediction reliability issued by multiple forecast
systems in what is known as the multi-model approach4,24.
Moreover, it offers a unique opportunity to determine to what
extent the initialization improves the climate information beyond
what is already provided by the traditional climate projections.
This paper shows that the most comprehensive set of predictions
available to date has significant skill in predicting multi-annual
near-surface air-temperature averages, suggesting that climate
forecast systems could have provided regional skilful information
about the Earth’s climate over the past 50 years.

Results
Prediction of global and large-scale temperature indices. Glo-
bal-mean near-surface air temperature and the Atlantic multi-
decadal variability (AMV) and the interdecadal Pacific oscillation
(IPO) indices are used as benchmarks to assess the ability to
predict multi-annual variability4,25 (Fig. 1). The AMV and IPO
are the dominant decadal ocean surface temperature variations
over the North Atlantic26 and Pacific Oceans27, respectively, and
have well-defined spatial characteristics4. Both indices have been
estimated after removing the global-mean sea surface temperature
(SST) to retain the differential cooling or warming of the
corresponding basin with respect to the global behaviour. Apart
from the multi-annual variability, these indices display either a
long-term trend or low-frequency variability, which should be
correctly predicted too.

Non-initialized (NoInit henceforth) predictions of the global-
mean near-surface air temperature are statistically significantly
skilful for most of the forecast ranges as the dashed line
corresponding to the ensemble-mean correlation with the
observations is above the grey area in Fig. 1. The skill in this
figure is obtained as follows. For a given 4-year average forecast
period, like the average of the first 4 years (years 1–4), both the
multi-model ensemble mean and the observational average for
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the corresponding calendar dates (the years 1961 to 1964 for the
1961 start date) are collected in a time series that contains one
value for each start date from 1961 to 2006. It is between these
time series that the skill measure is computed. The same
operation is carried out for the next 4-year average forecast

period, which in the case of the 2–5-year average involves
averaged values for the years 1962 to 1965 for the 1961 start date
(2007 to 2010 for the 2006 start date), until the last 4-year forecast
period that can be constructed with the CMIP5 10-year hindcasts,
the 6–9 forecast time average. The high skill is due to the almost
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Figure 1 | Forecast quality of several climate indices. (a–c) Time series of the ensemble-mean forecast anomalies averaged over the forecast years 2–5

(solid, Init) and the accompanying non-initialized (dashed, NoInit) experiments of the global-mean near-surface air temperature (SAT) (a), the AMV

(b) and IPO (c) indices. The observational time series, GISS49 global-mean near-surface air temperature and ERSST48 for the AMV and IPO, are

represented with dark (positive anomalies) and light (negative anomalies) grey vertical bars, where a 4-year running mean has been applied for consistency

with the time averaging of the predictions. The box-and-whisker represents the multi-model ensemble range (anomalies with respect to the multi-model

ensemble mean) of Init (solid) and NoInit (dashed), where the whiskers correspond to the maximum and minimum, the box to the interquartile range and

the horizontal bar to the median. The predictions have been initialized once every year over the period 1961–2006. (d–f): Correlation of the ensemble mean

with the observational reference along the forecast time for 4-year averages. The one-sided 95% confidence level with a t-distribution is represented in

grey, where the number of degrees of freedom has been computed taking into account the autocorrelation of the observational time series, which are

different for each forecast time. A two-sided t-test (with the number of degrees of freedom computed taking into account the autocorrelation of the

observational time series) for the differences between the Init and NoInit correlation found no significant results with confidence Z90%. (g–i): RMSE of

the ensemble mean along the forecast time for 4-year forecast averages. Squares are used where the Init skill is significantly better than the NoInit skill with

95% confidence using a two-sided F-test where the number of degrees of freedom takes into account the autocorrelation of the observation minus

prediction time series. (j–l) Ensemble spread estimated as the s.d. of the anomalies around the multi-model ensemble mean.
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monotonic increase in near-surface air temperature correctly
reproduced by the multi-model ensemble mean (in spite of an
overestimation of the positive trend), pointing at the large role
played by the time-varying radiative forcing4,28. The high
correlation, although not statistically significant, of the NoInit
AMV predictions all along the forecast time is also consistent
with the role attributed to the external forcings in determining its
recent variability29, although some predictability sources missing
in many of the individual forecast systems considered here
might also contribute to the skill in future systems30. Prescribed
changes in the atmospheric composition, either of natural or
anthropogenic origin, are the only explanation for the positive
skill of the NoInit global-mean near-surface air temperature and
AMV predictions, and imply that atmospheric composition
changes alone would have provided skilful global-mean and non-
trivial North Atlantic temperature information up to 10 years into
the future over the past 50 years.

The skill of these two time series improves substantially with
initialization for all forecast ranges (Fig. 1). The positive impact of
the initialization is more obvious in terms of the ensemble-mean
root mean square error (RMSE) than with the correlation when
comparing the initialized (Init henceforth) with the NoInit
forecast quality. The reason is that the correlation is a measure of
skill that is not sensitive to errors in the linear trend31. The
initialization can, in addition to providing information about
the phase of the internal variability, correct systematic errors in
the model response to external forcings29,32. An example of this
correction can be seen in the time series of the global-mean near-
surface air temperature, where both multi-model ensembles, Init
and NoInit, reproduce the observed long-term upward trend and
the largest excursions from this trend, while NoInit overestimates
the trend. In contrast to the correlation, the RMSE integrates the
errors linked to both the long-term trend and the internal
variability, reflecting the better representation of the trend in Init.
This result supports the conclusion from pioneering near-term
prediction exercises2. In addition to a mean improvement, Fig. 1
also shows that the initialization provides more realistic
predictions of the recent global-mean temperature hiatus of the
early XXI Century33, as already suggested in Smith34 and Meehl
and Teng35.

The IPO predictions have a positive correlation but, in sharp
contrast to the global-mean near-surface air temperature and the
AMV, they do not show statistically significant correlations along
the forecast range, even when initialized. The Pacific, and in
particular the northern part of the basin, is one of the regions
with the lowest temperature skill36. However, the analysis of some
case studies shows improved predictions for large climate
fluctuations of the IPO compared with the NoInit simulations35.

Reliability of the predicted indices. Apart from the different
aspects associated with forecast accuracy, users need also esti-
mates of how reliable (i.e., whether the forecast uncertainty
estimate is accurate) the predictions are19. Reliable (i.e.,
trustworthy) predictions in a perfect system typically
correspond to those where the time-mean ensemble spread
about the ensemble-mean prediction equals the time-mean RMSE
of the ensemble-mean forecast37. In ensemble forecasting, the
ensemble spread is used as an estimate of the prediction
uncertainty. Spread estimates give more precision when using
multiple forecast systems24,38. Figure 1 shows that the spread of
the three indices considered does not change substantially with
forecast time, in spite of increasing slowly in two of the cases.
This early saturation of the spread suggests that the perturbations
used to generate the ensemble only excite relatively short-term
processes, which produce a mean spread that does not grow with

forecast time as the mean error does39, and leads to the spread
not being an adequate measure of the prediction precision and an
inappropriate estimator of the forecast uncertainty31. The
initialization affects the mean spread of the predictions. The
spread tends to be larger for Init than for NoInit, a consequence
of several individual forecast systems showing an increased
spread in Init with respect to NoInit.

Figure 1 shows that the Init experiment overestimates the
spread for the global-mean near-surface air temperature and
AMV indices, as it is larger than the RMSE, whereas NoInit
underestimates the spread slightly. The spread seems to be
adequate for the IPO. The Init overestimation is a particularly
relevant aspect for the users of the climate information based on
decadal predictions that should be carefully considered in the
next generation of climate forecast systems.

Regional predictions. Although simple indices help to char-
acterize the behaviour of a system, the users of climate infor-
mation also require spatial information. Near-term climate
forecast systems have positive near-surface temperature skill, as
measured with the root mean square skill score (RMSSS) (see
Methods), over large regions, which is often statistically sig-
nificantly different from zero as reflected in the large stippled
areas found in Fig. 2 both over the ocean and the land3,4,17,24. The
regions with high skill agree in many cases with those where
the relative importance of the linear trend with respect to the
interannual variability is at its highest (Fig. 3), which again points
at the important role of the specified variations in atmospheric
composition that are responsible of the upward trend in the last
50 years.

The skill improvement due to the initialization has been
assessed by computing the ratio of the RMSE of Init and NoInit.
The areas in yellow and orange in Fig. 2 correspond to those
points where the Init RMSE is lower, i.e., the information is more
skilful, than the NoInit RMSE. The robust skill increase due to the
initialization (Fig. 2, lower panels) is limited to areas of the North
Atlantic, in agreement with previous results3,13,16, the southeast
Pacific and the Indian Ocean. Some areas of the Southern Ocean
and Antarctica also show a skill improvement with the
initialization, but long-term observations are not trustworthy
there and the skill, even after initialization, is still low. Robustness
of the skill increase has been assessed either as the agreement in
skill improvement between the individual systems or after
applying a statistical inference test (see Methods). No
improvements are found over land, although a different skill
measure (ensemble-mean correlation) offered a positive impact of
the initialization on the Mediterranean and northern Eurasia. In
fact, the skill varies slightly depending on the forecast quality
measure used. The improvements discussed in certain areas, like
over the northern Indian Ocean, are not found when using
correlation. This is because the positive impact of the
initialization might be, as already mentioned for the global-
mean near-surface air temperature, due to the correction of the
modelled climate response induced by the initialization.

Although there seems to be a predominance of areas in Fig. 2
where the Init skill is better than the NoInit skill (especially
for the 2–5-year forecast time) in some regions of the subtropical
Pacific, the North Atlantic and the tropical Indian Ocean, the
impact of the initialization on the skill is small. The linear trend
is prominent compared with the interannual variability in some
of these regions (Fig. 3), which reduces the effective sample size.
The effect of the small sample size and the low amplitude of
the differences are at the origin of the lack of statistically signi-
ficant differences between Init and NoInit with 90% confidence.
Although some individual forecast systems show (as documented
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in several publications) skill improvements with the initialization
larger than the improvements reported in this article the locations
where the skill differences between the Init and NoInit experi-
ments of the individual systems are found differ widely among
those systems. This is reflected in Fig. 2 in the small fraction
of areas where the skill improvement with initialization of more
than 75% of the systems agrees with the multi-model result.
This additional measure of robustness limits the confidence on
the positive impact of the initialization obtained from individual
systems although still justifies the use in climate services40 and
adaptation41 studies of the multi-model climate information
described here.

The Pacific Ocean is the basin with the lowest skill overall
(Fig. 2), with no consistent impact of the initialization. The complex
basin-wide structure of the forecast quality explains the low IPO
ensemble-mean skill (Fig. 1). The central North Pacific has zero
or negative skill, which is linked to the relatively low importance of
the predictable linear trend (Fig. 3), the failure in predicting the
largest warming events36 and the different behaviour of surface
temperature and upper ocean heat-content predictions for the
Pacific Decadal Oscillation15,16,42. The west subtropical Pacific,
instead, has positive skill in agreement with previous results43.

The skill for land precipitation (Fig. 4) is much lower than the
skill for near-surface temperature, with several regions, especially in

−0.35 −0.15 0 0.15 0.35 −0.15 −0.075 0 0.075 0.15

Figure 3 | Near-surface temperature and precipitation relative linear trends. Ratio between the slope of the linear trend and the residual variability

(1 per year) over 1961–2010 for (a) near-surface temperature and (b) GPCC50 precipitation. A combination of temperatures from GHCN/CAMS air

temperature over land47, ERSST48 and GISTEMP 1200 over the polar areas49 is used as a reference. Monthly values have been smoothed with a 4-year

running average before estimating the trend and the residual variance. Poorly observationally sampled areas are masked in grey.
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Figure 2 | Near-surface air-temperature forecast quality. (a,b) RMSSS (multiplied by 100) of the ensemble mean of the Init multi-model for predictions

averaged over the forecast years 2–5 (a) and 6–9 (b). A combination of temperatures from GHCN/CAMS47 air temperature over land, ERSST48 and

GISTEMP 1200 (ref. 49) over the polar areas is used as a reference. Black dots correspond to the points where the skill score is statistically significant with

95% confidence using a one-sided F-test taking into account the autocorrelation of the observation minus prediction time series. (c,d) Ratio of RMSEs

between the Init and NoInit multi-model experiments for predictions averaged over the forecast years 2–5 (c) and 6–9 (d). Contours are used for areas

where the ratio of at least 75% of the individual forecast systems has a value above or below 1 in agreement with the multi-model ensemble-mean result.

Dots are used for the points where the ratio is statistically significantly above or below 1 with 90% confidence using a two-sided F-test that takes into

account the autocorrelation of the observation minus prediction time series. Poorly observationally sampled areas are masked in grey.
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the Northern Hemisphere, displaying positive values. However, the
existence of almost as many areas around the planet with negative
as regions with positive skill suggests that near-term precipitation
information should be used with great caution. The most that can
be done at this early stage is to try to understand the sources of the
positive precipitation skill. The skill in areas like Europe and
Sahelian Africa might be linked to the positive AMV skill, the AMV
being a good descriptor of the multi-annual precipitation variability
over those regions4. In other areas, like the Asian continent and the
Arctic, positive skill coincides with the regions where the relative
importance of the linear trend to the interannual variability is the
highest (Fig. 3). The positive precipitation skill can be attributed
mostly to the specification of the atmospheric concentration
variations as the initialization does not substantially improve the
skill (Fig. 4, lower panels).

More than six individual forecast systems have provided near-
term hindcasts to the CMIP5 experiment, but the hindcasts were
produced using the core experimental set up where only one
prediction was started every 5 years, resulting in 10 predictions over
the period 1961–2006 instead of 46 as used in the results shown here.
As it is difficult to obtain robust forecast quality estimates with such
limited samples25,44, this paper only discusses results from those
systems with a higher frequency of start dates. However, a systematic
comparison of the results with both samples suggests that a 5-year
interval sampling allows estimating the level of skill, although the
estimates contain spurious maxima along the forecast time due to
the poor sampling of the start dates25. Users are encouraged to
access predictions from multi-model forecast systems that make
simulations with a 5-year interval sampling between start dates,
although they should bear in mind the importance of measuring the
robustness of the corresponding forecast quality estimates.

Reliability of the regional predictions. The spatial distribution
of the spread shows that the CMIP5 multi-model overestimates

the temperature spread (Fig. 5) over the North Atlantic and the
Arctic, and underestimates it over the North Pacific and most
continental areas, both for Init and NoInit. The spread over-
estimation agrees with the results found for the indices in Fig. 1
and has not been thoroughly documented to date. Sufficiently
reliable predictions, which require a calibrated ensemble spread,
can be made taking into account the systematic errors in the
model variability in a sort of calibration a posteriori45. However,
the calibration a priori of the ensemble is more desirable
than a post-processing of the predictions. This is an aspect that
requires careful attention in the implementation of multi-model
operational systems such as the ones that are currently planned34

to satisfy the reliability requirements of the climate services and
climate adaptation communities.

Discussion
These results confirm that there is substantial skill in predictions
of multi-annual averages of near-surface temperature when using
the most comprehensive set of near-term climate predictions
available to date. They suggest that climate forecast systems could
have provided regional skilful information about the Earth’s
climate over the past 50 years and encourages users of near-term
climate information to explore the usefulness of this very
innovative tool. Most of the skill is due to the slowly varying
changes in atmospheric composition, both natural and anthro-
pogenic, while the initialization of the forecast systems robustly
improves several aspects of the forecast quality of global-mean
near-surface air temperature and temperature over the North
Atlantic and a handful of other regions. Current forecast systems
also show an important overestimation of the ensemble spread,
especially in skilful areas, and an underestimation for near-
surface temperature in other regions. The spread overestimation
points to the urgent need of a careful development of improved
forecast systems that produce ensemble predictions leading to
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Figure 4 | Precipitation forecast quality. (a,b) RMSSS (multiplied by 100) of the ensemble mean of the Init multi-model for predictions averaged

over forecast years 2–5 (a) and 6–9 (b). GPCC50 precipitation is used as a reference. Black dots correspond to the points where the skill score is

statistically significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the observation minus prediction time

series. (c,d) Ratio of RMSEs between the Init and NoInit multi-model experiments for predictions averaged over forecast years 2–5 (c) and 6–9 (d).

Contours are used for areas where the ratio of at least 75% of the individual forecast systems has a value above or below 1 in agreement with the

multi-model ensemble-mean result. An inference tests at the grid point level was applied to assess if the ratio is statistically significantly above or

below 1 with 90% confidence using a two-sided F-test that takes into account the autocorrelation of the observation minus prediction time series, but no

point was found significant. Both predictions and the observational reference were smoothed to a 5� grid to reduce the spatial variability of the results.
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reliable, while skilful, near-term climate information for climate
adaptation and services. This is already being considered in the
development of near-term climate predictions in real time34,
which would benefit from the feedback of an increasing number
of users of this rapidly evolving source of climate information.

Methods
Near-term prediction experiments. The recognition that near-term climate
prediction is important motivated the research community to design co-ordinated
experiments. The ENSEMBLES project4,25 conducted a multi-forecast system
decadal hindcast experiment that served as inspiration to the CMIP5 near-term co-
ordinated experiment23. To address the key uncertainties at the source of near-
term forecast error, such as uncertainties in the initial conditions and associated
with the model inadequacy46, ensemble methods have been proposed. They involve
not only using a single system several times with slightly different initial conditions
but also employing multi-model or perturbed-parameter approaches. In the
CMIP5 near-term prediction experiments, a set of individual forecast systems
performed a series of 10-year hindcasts initialized from observations every 5 years
starting near the end of 1960 until the last start date at the end of 2005. To obtain
robust estimates of the forecast quality, some institutions performed simulations
starting once per year instead of once every 5 years. Only a subset of the
institutions contributing to CMIP5 followed this practice as the computational
requirements for such an experiment are prohibitive. As each individual forecast
system starts at a different time near the end of the previous year, all predictions
are considered to start at the beginning of each calendar year over the period
1961–2006. Because the practice of near-term prediction is in its infancy, details
of how to initialize the models were left to the discretion of the modelling groups.
The sample is limited by the length of the period over which reasonably accurate
estimates of the ocean initial state can be made, which starts shortly before 1960.
The impact of the initialization has been assessed by comparing the forecast quality
of the initialized predictions with estimates of the forecast quality of a multi-model
ensemble that has no information about the contemporaneous state of the climate
system, which are the simulations referred to as non-initialized. The non-initialized
ensemble consists in the historical, up to 2005, and the representative
concentration pathways 4.5 (RCP4.5) simulations23, after 2006, which are sliced in
10-year chunks over the same calendar dates as the initialized hindcasts. The
initialized and non-initialized ensembles are referred to as Init and NoInit,

respectively, and were performed using exactly the same climate models and
natural and anthropogenic forcings. Atmospheric composition, including volcanic
aerosol, and solar irradiance variability were prescribed along the integration using
actual values up to 2005. After that date, the RCP4.5 scenario was assumed, as well
as a background solar irradiance level and a constant volcanic aerosol load. The
specification of the volcanic aerosol load and the solar irradiance in the hindcasts
gives an optimistic estimate of the forecast quality with respect to an operational
forecast system that would use projections for these forcings. The individual
forecast systems contributing to the CMIP5 multi-model are described in Table 1.
Six individual systems, which are the ones used in this paper, performed
predictions started once per year instead of every 5 years.

Computation of the anomalies. When initialized with states close to the obser-
vations in what is known as full-field initialization, models drift towards their
preferred imperfect climatology, reflecting systematic errors (i.e., the difference in
the climate estimates of the predictions and the observational reference) in the
predictions. This drift depends on the forecast time. Forecast quality estimates have
been computed using forecast and observational anomalies that take into account
the systematic error of the forecast systems. Forecast anomalies have been
estimated by removing the mean model climate for the specific forecast period
using only the predictions for which there are observational reference data avail-
able25. For instance, to obtain the anomalies of the average 6–9-year forecast period
from the simulations initialized in November 1970, the model climate is estimated
by averaging the data for the 6–9-year forecast period from all the simulations for
which there is reference data. This implies that, when using predictions started
every year, data from those starting between 1961 and 2003 (44 start dates) are
used, because no full reference data for the period 2012–2015 (i.e., the verifying
dates of the predictions started in 2004, 2005 and 2006) are available yet. The
anomalies for the reference data set are estimated for the same calendar period, but
using the observational climatology. This linear method assumes that there is no
relationship between the model drift and the anomalies. The same method has
been used for the hindcasts produced with systems based on the anomaly-
initialization method because there is no guarantee that such method completely
prevents model drift.

Climate indices. The global-mean near-surface air temperature has been
computed using an area-weighted average of the data on a regular grid. The AMV
index was estimated as the SST anomalies averaged over the region Equator
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Figure 5 | Multi-model ensemble spread for the near-surface temperature. Ratio between the spread and the RMSE of the ensemble mean for Init

(a) and NoInit (b) for the predictions averaged over forecast years 2–5. A combination of temperatures from GHCN/CAMS47 air temperature over land,

ERSST48 and GISTEMP 1200 (ref. 49) over the polar areas is used as a reference.

Table 1 | Forecast systems contributing to the CMIP5 multi-model.

Init NoInit

System Initialization Members Members

HadCM353,54 Coupled anomaly assimilation with ERA-40 and ERA interim atmospheric reanalyses, ocean

observations

10 10

MIROC555 Assimilation in the coupled model of ocean anomalies of gridded subsurface observations of T and S 6 1

CanCM456 Coupled assimilation of the ERA-40 and ERA interim atmospheric reanalyses, observed SSTs, and

SODA and GODAS subsurface ocean T and S, beforehand adjusted to preserve T–S relationship

10 10

EC-Earth v2.3 (ref. 39) Full-field initialization with ERA-40 and ERA interim atmosphere/land reanalyses and NEMOVAR-S4

ocean reanalysis

5 11

GFDL-CM2 (ref. 57) Coupled assimilation of atmospheric reanalysis and ocean observations of three-dimensional T and S

and SST

10 10

MPI-OM58 Nudging in the coupled model of T and S anomalies obtained from an ocean-only run forced with

NCEP atmospheric reanalyses

3 3

Abbreviations: GODAS, Global Ocean Data Assimilation System; NCEP, National Centers for Environmental Prediction; SODA, Simple Ocean Data Assimilation.
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� 60 �N and 80 �–0 �Wminus the SST anomalies averaged over 60 �S–60 �N26. The
IPO index is the principal component of the leading empirical orthogonal function
(EOF) of the covariance matrix27 (the use of the correlation matrix gave similar
results) using 4-year averaged data. The EOFs were estimated for each individual
forecast system using SST in the region 50 �S–50 �N/100–290 �E, where the mean SST
over 60 �S–60 �N have been previously removed4. As the predicted EOFs might have
different features to those found in the observational IPO, the spatial patterns have
been visually inspected for each individual forecast system to avoid using an index that
could be identified as a different mode of variability. Both the AMV and the IPO have
very well-defined spatial characteristics that reflect their large-scale nature.

Reference data and forecast quality assessment. Different data sets have
been used as reference to estimate the forecast quality. To verify near-surface
temperature, a merged data set using land air temperatures from the GHCN/
CAMS data set47 and SST from the NCDC ERSST V3b data set48, while outside the
band between 60 �N and 60 �S, the GISSTEMP data set with 1,200 km decorrelation
scale was used49. The Global Precipitation Climatology Centre (GPCC) v5 (ref. 50)
data set was used for precipitation.

Various measures of forecast quality have been used to assess the experiments as
different measures give different information about the multi-faceted forecast
quality51. The measures include the correlation coefficient, the RMSE and the
RMSSS of the ensemble mean. The RMSSS is estimated as one minus the ratio of
the RMSE of the ensemble-mean prediction over the RMSE of the mean climate.
The multi-model ensemble mean has been built as the average of the ensemble
means of the individual forecast systems to give them the same weight in the multi-
model regardless of their ensemble size. Figure 1 illustrates that skill measures can
give slightly different messages, such as the large improvement in global-mean
near-surface air temperature due to the initialization in terms of RMSE in contrast
with the almost-negligible improvement in terms of correlation. The main reason
for this is that the correlation coefficient is not sensitive to a scaling factor, so that a
system that reproduces the observation but with a reduced amplitude gives a high
correlation coefficient but might not give good results using other scores like the
RMSE.

The statistical significance for the correlation is assessed with a one-tailed t-test.
The test for statistically significant differences in correlation between the initialized
and non-initialized experiments is performed by employing a two-tailed t-test after
a Fisher’s Z transformation. The RMSSS is tested for statistical significance (with an
alternative hypothesis of RMSSS 40) using a one-tailed F-test, whereas the ratio in
RMSE between the initialized and non-initialized experiments has been tested with
a two-tailed F-test. An effective sample size is used in all the inference tests to avoid
obtaining too liberal confidence levels. This is tackled by estimating the effective
sample size as described in von Storch and Zwiers52. This approach takes into
account the autocorrelation of the corresponding observational time series in the
case of the correlation and of the differences between observations and predictions
for the RMSE. As the autocorrelation function and the availability of data depends
on the forecast period considered, different effective sample sizes and, hence,
different confidence intervals are obtained for each forecast period, which prevents
the grey shading in Fig. 1 from following a straight line along the forecast time.
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