1	Initiation and long-term instability of the East Antarctic Ice Sheet
2	
3	Sean P. S. Gulick ¹ , Amelia E. Shevenell ^{2*} , Aleksandr Montelli ^{1†} , Rodrigo Fernandez ¹ ,
4	Catherine Smith ² , Sophie Warny ³ , Steven M. Bohaty ⁴ , Charlotte Sjunneskog ⁵ , Amy
5	Leventer ⁶ , Bruce Frederick ^{1††} , Donald D. Blankenship ¹
6	
7	¹ Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin,
8	Texas 78758, USA.
9	
10	² College of Marine Science, University of South Florida, Saint Petersburg, Florida, 33701, USA.
11	
12	³ Department of Geology and Geophysics and Museum of Natural Science, Louisiana State
13	University, Baton Rouge, Louisiana, 70803, USA.
14	
15	⁴ School of Ocean and Earth Science, University of Southampton, Southampton S0143ZH, UK.
16	
17	⁵ Antarctic Marine Geological Research Facility, Florida State University, Tallahassee, Florida,
18	32306, USA.
19	
20	⁶ Geology Department, Colgate University, Hamilton, New York, 13346, USA.
21	
22	

^{*}Joint first-author.

[†]Present Address: Scott Polar Research Institute, University of Cambridge, Cambridge, CB2 1ER, UK. ††Present Address: Department of Geology, University of Kansas, Lawrence, Kansas, 66045, USA.

Continental-scale Antarctic ice sheets have evolved over the last 50 million years¹⁻⁴. 23 However, sparse ice-proximal records⁵⁻⁸ limit understanding of past East Antarctic 24 25 Ice Sheet (EAIS) behavior and thus, our ability to evaluate its response to ongoing environmental change. The EAIS is marine-based within the Aurora Subglacial Basin 26 (ASB), indicating that this catchment, which drains ice to the Sabrina Coast, may be 27 sensitive to climate perturbations⁹⁻¹¹. Here we show, using marine geological and 28 geophysical data from the continental shelf seaward of the ASB, that marine-29 30 terminating glaciers existed at the Sabrina Coast by the early-to-middle Eocene. This finding implies substantial ice volume in the ASB before continental-scale marine-31 terminating ice sheets were established ~34 million years ago¹⁻⁴. Subsequently, ice 32 advanced and retreated from the ASB and across the continental shelf at least eleven 33 times during the Oligocene and Miocene. Tunnel valleys¹² associated with half of these 34 glaciations indicate a surface meltwater-rich sub-polar glacial system existed under 35 climate conditions similar to those anticipated with continued anthropogenic 36 warming^{10,11}. Cooling since the Late Miocene¹³ resulted in an expanded polar EAIS 37 and a limited ASB catchment response to Pliocene warmth¹⁴⁻¹⁶. Geologic records 38 39 indicate that atmospheric temperature and surface-derived meltwater may play 40 important roles in Antarctic ice mass balance under warmer than present climates, with significant implications for future global sea level projections^{10,11,15,17}. 41

42

43 The East Antarctic Ice Sheet (EAIS) response to anthropogenic warming and contribution

44 to global sea level are the largest uncertainties in climate models because EAIS

45 formation, evolution, and behavior during past warm climates are poorly understood^{10,11}.

46 Deep-sea benthic foraminifer oxygen isotopes (δ^{18} O) indicate that during the early

47 Eocene (53-51 million years ago (Ma)), Earth experienced the warmest conditions of the

48 past 65 million years $(myr)^{1,4,17,18}$. This warmth was followed by ~15 myr of cooling,

49 declining atmospheric CO₂, tectonic reorganizations, and development of continental-

scale Antarctic ice sheets by the earliest Oligocene $(33.6 \text{ Ma})^{1-4,17-19}$. As atmospheric CO₂

51	declined through the Oligocene and Miocene, deep-sea δ^{18} O and far-field sea level
52	records suggest that ice sheets advanced to and retreated from Antarctica's continental
53	shelves in response to astronomically-paced changes in solar insolation ^{3,4,18,20,21} . These
54	records also suggest larger Antarctic ice sheets with less pronounced growth and decay
55	cycles after the middle Miocene (~13.8 Ma) ^{1,4} , when global climate was cool and
56	atmospheric CO_2 concentrations low, relative to the Eocene and Oligocene ^{4,17} . While far-
57	field records provide a general framework for understanding Cenozoic Antarctic
58	cryosphere development, these records provide little direct evidence for ice location,
59	extent, or thermal conditions required to assess climate forcings and feedbacks involved
60	in Antarctic cryosphere and global climate evolution and are complicated by Northern
61	Hemisphere ice volume in the Plio-Pleistocene ^{1,3,4} .

East Antarctic continental margin and the Southern Ocean sediments provide direct 63 64 evidence of EAIS evolution, indicating regional marine-terminating ice in the late Eocene²²⁻²⁴ and astronomically-paced glacial-interglacial cycles through the Pliocene^{5,6,14}. 65 66 However, existing ice-proximal records are geographically limited and temporally discontinuous, making regional comparisons difficult. Recent ice sheet models provide 67 additional insight into EAIS evolution^{10,11,25}. Outputs indicate that EAIS catchments with 68 69 deep landward-dipping subglacial topography and surface meltwater, including the Aurora Subglacial Basin (ASB), may be sensitive to climate perturbations (e.g. 70 atmospheric and/or oceanic temperatures, atmospheric CO₂, sea level)^{9-11,25}. However, 71 outputs depend on poorly constrained initial boundary conditions^{17,24,25}, feedbacks¹⁸, and 72 retreat mechanisms¹¹. Thus, significant uncertainties remain regarding EAIS evolution 73

that can only be resolved with well-dated ice-proximal marine geologic and geophysical
data^{1,19}.

76

77 To improve predictions of future EAIS response to warming and contribution to global sea level rise^{10,11}, knowledge of EAIS evolution in catchments with large potential sea-78 79 level contributions is critical. The low-lying glacially sculpted ASB catchment (~3-5 m sea-level equivalent ice^{9,15,26}; Fig. 1a) drains ice from the Gamburtsev Mountains to the 80 Sabrina Coast via the Totten Glacier, which is experiencing the largest mass loss in East 81 Antarctica²⁷ and is influenced by warm subsurface (deeper than 400 m) ocean waters at 82 its grounding line²⁸. The ASB catchment consists of several over-deepened basins^{15,26} and 83 hosts an active subglacial hydrological system that drains basal meltwater to the ocean²⁹, 84 suggesting that regional outlet glaciers may be susceptible to both progressive retreat¹³ 85 and changing subglacial hydrology²⁹. Thus, regional glacial dynamics and, ultimately, sea 86 87 level contribution during a given warm interval depends on both catchment and glacier boundary conditions (e.g., subglacial topography, substrate, and/or meltwater 88 89 presence/volume) coupled to atmospheric and oceanic forcings.

90

We present the first ice-proximal marine geophysical and geological records of ASB
glacial evolution (Methods; Figs. 1b, 2, 3a). To document regional glacial development,
ice dynamics, and the timing of significant environmental transitions, we integrate
seismic reflection and sedimentary data from the Sabrina Coast continental shelf, at the
outlet of the ASB (Fig. 1b). This margin formed during Late Cretaceous rifting of
Antarctica and Australia, with tectonic subsidence continuing through the Paleogene⁸.

97	The present-day continental shelf is ~200 km wide, ~600 m deep, and slopes landward
98	(Fig. 1b). We imaged ~1300 m of dipping sedimentary strata that overlie acoustic
99	basement on the inner continental shelf (Methods; Fig. 1b). We identified three distinct
100	packages of sedimentary rocks bounded by basement, regionally extensive
101	unconformities, and the seafloor, termed Megasequences I-III (MS-I, -II, -III; Figs. 2a,
102	2c, 3a, Extended Data Fig. 1). Glacial erosion truncated imaged reflectors at the sea floor,
103	allowing us to recover and date strata near the top of MS-I and at the base of MS-III
104	(Methods; Figs. 2a, 2c).
105	
106	The deepest unit, MS-I, overlies basement and consists of a ~620 m thick, seaward
107	dipping sequence of low-amplitude discontinuous reflectors that increase in amplitude
108	and lateral continuity up-section (Methods; Fig. 2a, Extended Data Fig. 1). No evidence
109	of glacial erosion exists within these strata (Figs. 2a, 3a, Extended Data Fig. 1). On the
110	mid-shelf, we imaged two intervals of inclined stratal surfaces (clinoforms), indicating
111	times of high sediment flux to an unglaciated continental margin (Fig. 2a). Piston core
112	NPB14-02 JPC-55 (1.69 m) recovered mica-rich silty sands 15-20 m below the upper
113	clinoform (Methods; Fig. 2a, Extended Data Figs. 1b, 2a, Extended Data Table 1).
114	Terrestrial palynomorphs and benthic foraminifers indicate that these marine sediments
115	are late Paleocene in age (Methods; Fig. 2b, Extended Data Figs. 1, 2, 5, Extended Data
116	Tables 2, 3), confirming the pre-glacial seismic interpretation of MS-I.
117	
118	Above the upper clinoform, within MS-I, are a series of moderate- to high-amplitude,

119 laterally variable reflectors (gray shading; Methods; Fig. 2a, Extended Data Fig. 1).

120 Piston core NBP14-02 JPC-54 (1.2 m; Methods; Fig. 2a, Extended Data Figs. 1b, 3), 121 recovered from this interval, contains centimeter-scale lonestones interpreted as ice-rafted 122 debris (IRD). Terrestrial palynomorphs indicate that these sediments are of early-tomiddle Eocene age (Methods; Fig. 2b, Extended Data Table 2). Laterally variable 123 124 reflectivity without chaotic seismic facies, with IRD, and no evidence for cross-shelf 125 glacial erosion indicate that marine-terminating glaciers were present at the Sabrina Coast 126 by the middle Eocene, but grounded ice had not yet advanced across the shelf (Figs. 2a, 127 3a).

128

129 MS-I strata reveal episodes of enhanced sediment flux from the ASB, followed by the 130 early-to-middle Eocene arrival of marine-terminating glaciers to the Sabrina Coast. Models and observations indicate that Antarctica's ice sheets nucleated in the higher 131 132 elevations of the Gamburtsev Mountains and first reached the ocean near the Sabrina Coast and Prydz Bay¹⁹, increasing sediment flux to the Australo-Antarctic Gulf³⁰. Within 133 the ASB are a series of topographically constrained basins that likely hosted 134 progressively larger ice volumes^{15,26} as ice expanded in the catchment (Fig. 1a). We 135 136 speculate that after the early Eocene climate optimum (53-51 Ma), as regional and global temperatures cooled and atmospheric CO₂ declined^{17,18} (Figs. 3b-c), glacial ice breached 137 the northern ASB highlands²⁶, allowing marine-terminating glaciers to deliver IRD to the 138 139 Sabrina Coast shelf by the early-to-middle Eocene (Figs. 1a, 2a, Extended Data Fig. 2). 140 This finding is significant and indicates 1) substantial East Antarctic ice volume by the 141 early-to-middle Eocene and 2) the relatively early arrival of marine-terminating glaciers 142 to the Sabrina Coast, compared with late Eocene arrivals in Prydz Bay and the Weddell

Sea²²⁻²⁴. Due to the relative paucity of Eocene data from Antarctica's margins, it is not
clear if this early arrival is unique to the Sabrina Coast, or if equivalent data have not yet
been recovered.

146

147 Up-section (~13 m) from core JPC-54, the deepest regionally mappable roughly-eroded 148 surface (dark blue horizon; Figs. 2a, 3a, Extended Data Fig. 1) separates MS-I from MS-149 II strata and provides the first preserved evidence of grounded ice on the Sabrina Coast 150 shelf (Methods). MS-II is up to 675 m thick with ten additional erosive surfaces (gray 151 numbered horizons; Fig. 3a, ED Fig. 1) that truncate reflectors and exhibit rough morphology and/or channels indicative of glacial erosion in a meltwater-rich 152 environment^{7,12,29,30} (Methods). Between erosive surfaces, we observe strata with parallel 153 high-amplitude reflectivity and prograding strata of varying thickness (Methods), which 154 indicate open marine conditions and intervals of high sediment flux^{7,8}, respectively, 155 156 between the 11 glacial advances and retreats from the ASB. 157 Unlike previously imaged East Antarctic shelf sequences^{7,8}, Sabrina Coast MS-II reveals 158 159 multiple erosive surfaces (2-6, 8, 9) with U-shaped channels carved into sedimentary 160 strata (Fig. 3a). Based upon geometry and size (Methods; ≤ 170 m deep; ~ 1150 m wide), 161 these channels are consistent with subglacial tunnel valleys observed in surface meltwater-rich sub-polar glacial systems¹². The most significant channels are associated 162 with surfaces 3-5, 8, and 9 (Fig. 3a, Extended Data Fig. 1e). Overlying erosive surface 11 163 164 (Fig. 3a, Extended Data Fig. 1e) is a ~330 m thick sequence of seaward dipping strata 165 devoid of rough erosional surfaces, indicating prolonged continental shelf progradation

166	and/or high sediment flux in an open marine setting ^{7,8} . A regional landward-dipping
167	angular unconformity truncates seaward-dipping MS-II (and in some places, MS-I) strata
168	(light blue horizon; Figs. 2a, 2c, 3a, Extended Data Fig. 1). Late Miocene-to-earliest
169	Pliocene diatomites were recovered from and immediately above the unconformity (Figs.
170	2c-d, Extended Data Figs. 1, 4, 6). As we may not have recovered sediments below the
171	unconformity, we consider the late Miocene (~7-5.5 Ma) the youngest possible age for
172	the MS-III base (Fig. 2d).
173	
174	Ice advanced across the Sabrina Coast continental shelf at least 11 times from the early-
175	to-middle Eocene to late Miocene (Fig. 3a), when average atmospheric CO_2
176	concentrations (Fig. 3b), global temperatures (Fig. 3c), and global sea levels (Fig. 3d)
177	were similar to or higher than present ^{4,17,18} . Without additional age constraints, the pacing
178	of these glaciations is unknown, but far-field and ice-proximal records indicate
179	cryosphere sensitivity to astronomically-paced insolation changes during the Oligo-
180	Miocene ^{5,20,21} . The scale of Sabrina Coast shelf tunnel valleys and the presence of similar
181	channels within the ASB catchment, ~400 km from the present grounding line, suggest
182	that regional subglacial hydrologic systems were fed by large volumes of surface
183	meltwater during Oligo-Miocene glacial-interglacial cycles (Methods) ^{11,15} . Thus, during
184	climates similar to or warmer than present, surface-derived meltwater may play an
185	important role in EAIS behavior ²⁹ , as indicated by models ¹¹ . The prograding sequence at
186	the top of MS-II is similar to middle to late Miocene sequences in Wilkes Land and Prydz
187	Bay, which reflect the transition from sub-polar to polar glacial regimes ^{7,8} (Fig. 3a,
188	Extended Data Fig. 1e).

190	Above the regional unconformity, MS-III consists of a ≤ 110 veneer of sub-horizontal to
191	landward-dipping strata that thicken landward, indicating substantial glacial erosion of
192	MS-II and/or lower regional sediment flux and onset of ice loading by the late Miocene ⁸
193	(Methods; Figs. 2a, 2c, 3a, Extended Data Fig. 1). MS-III strata contain no visible
194	channels, suggesting reduced regional surface meltwater influence and/or more diffuse
195	basal meltwater flux ^{12,15,26,29} . High-amplitude reflectors (Fig. 3a) within acoustically
196	chaotic MS-III strata indicate erosional surfaces in late Miocene to Pleistocene tills
197	(Methods) and advance/retreat of an expanded EAIS ¹⁵ . Open marine sediments are
198	present, but the lack of significant accumulation and/or preservation suggests limited
199	regional ice retreat and/or shorter interglacials since the late Miocene (Methods; Figs. 2c,
200	3a, Extended Data Fig. 1).
201	
202	An expanded polar EAIS occupied the ASB catchment and Sabrina Coast continental
203	shelf since the late Miocene ¹⁵ , coincident with significant global climate ,carbon and

hydrologic cycle reorganizations 4,13 , continent-wide ice sheet expansion and

stabilization^{7,8,13}, Antarctic Circumpolar Current intensification, Southern Ocean cooling,

and modern meridional thermal gradient development (Fig. 3b)^{1,13}. Atmospheric cooling

207 likely limited the amount of regional surface ablation, resulting in ice expansion and

208 reduced surface-derived meltwater in the ASB catchment. Although open marine

209 conditions intermittently existed on the shelf, the relative MS-III thickness and patterns

of erosion within the ASB catchment suggest maximum grounding line retreat of ~150

211 kilometers¹⁵ from its present location since the late Miocene. Thus, in contrast to the

adjacent Wilkes Subglacial Basin¹⁴, the ASB did not contribute significantly to sea level
rise during Pliocene warmth^{15,16}.

215	Sabrina Coast shelf records reveal the importance of atmospheric temperatures and
216	surface-derived meltwater to Antarctica's ice mass balance. Although deeper, more
217	continuous sampling of these sediments is required to assess the timing, magnitude, and
218	rates of EAIS evolution in the ASB, the ice-proximal Sabrina Coast shelf record confirms
219	model predictions of the region's long-term sensitivity to climate ^{10,11,15,25,26} . Critical for
220	future global sea level rise scenarios is the potential for ASB catchment glaciers to revert
221	from the extensive polar system of the last \sim 7 Ma to the surface meltwater-rich sub-polar
222	system of the Oligo-Miocene (Fig. 3a), when average global temperatures and
223	atmospheric CO ₂ concentrations were similar to those anticipated under current warming
224	projections (Figs. 3b-c) ^{10,11,17} . Presently, the Totten Glacier is thinning faster than any
225	other East Antarctic outlet glacier ^{11,27,28} due to ocean thermal forcing ²⁸ . Our findings
226	suggest that ice in the ASB catchment may respond dramatically to anthropogenic
227	climate forcing if regional atmospheric warming results in surface meltwater production.
228	
229 230	References

- Kennett J.P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic ocean, and their impact on global paleoceanography. *J. Geophys. Res.* 82, 3843-3860 (1977).
- Coxall, H.K. et al. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. *Nature* 433, 53-57 (2005).
- Kominz, M.A., Browning, J.V., Miller, K.G., Sugarman, P.J., Mizintseva, S. & Scotese, C.R. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. *Basin Research*

241 242		20 , 211-226 (2008).
243 244 245 246	4.	Mudelsee, M., Bickert, T., Lear, C.H. & Lohmann, G. Cenozoic climate changes: A review based on time series analysis of marine benthic δ^{18} O records. <i>Rev.</i> <i>Geophys.</i> 52 , 333-374 (2014).
247 248 249	5.	Naish, T.R. <i>et al.</i> Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. <i>Nature</i> 413 , 719-723 (2001).
250 251 252	6.	Naish, T.R. <i>et al.</i> Obliquity-paced Pliocene West Antarctic ice sheet oscillations. <i>Nature</i> 458 , 322-328 (2009).
253 254 255 256 257	7.	Cooper, A.K. <i>et al.</i> Cenozoic climate history from seismic reflection and drilling studies on the Antarctic Continental Margin. <i>In</i> : Florindo, F., Siegert, M. (Eds.), Antarctic Climate Evolution. <i>Developments in Earth and Environmental Sciences</i> . Elsevier, pp. 115-228 (2009).
258 259 260 261	8.	Escutia, C., Brinkhuis, H., Klaus, A. & Expedition 318 Scientists. Proc. Integrated Ocean Drilling Program 318 (Ocean Drilling Program Management International, Tokyo) (2011).
262 263 264	9.	Fretwell, P. <i>et al.</i> Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. <i>Cryosphere</i> 7 , 375-393 (2013).
265 266 267	10.	Golledge, N.R. <i>et al.</i> The multi-millennial Antarctic commitment to future sea- level rise. <i>Nature</i> 526 , 421-425, (2015).
268 269 270	11.	DeConto, R.M. & Pollard, D. Contribution of Antarctica to past and future sea- level rise. <i>Nature</i> 531 , 591-597 (2016).
271 272 272	12.	Kehew, A.E., Piotrowski, J.A. & Jørgensen, F. Tunnel valleys: Concepts and controversies – A review. <i>Earth-Sci. Rev.</i> 113 , 33-58 (2012).
273 274 275 276	13.	Herbert, T.D. <i>et al.</i> Late Miocene global cooling and the rise of modern ecosystems. <i>Nat. Geosci.</i> 9 , 843-847 (2016).
277 278 279	14.	Cook, C.P. <i>et al.</i> Dynamic behavior of the East Antarctic ice sheet during Pliocene warmth. <i>Nat. Geosci.</i> 6 , 765-769 (2013).
280 281 282	15.	Aitken, A.R.A. <i>et al.</i> Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. <i>Nature</i> 533 , 385-389 (2016).
283 284 285	16.	Rovere, A. <i>et al.</i> The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustacy, and dynamic topography. <i>Earth Planet. Sci. Lett.</i> 387 , 27-33 (2014).
286	17.	Masson-Delmotte V. et al. Information from paleoclimate archives. In Climate

287		Change 2013: The Physical Science Basis. Contribution of Working Group I to
288		the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
289		(T.F. Stocker <i>et al.</i> (eds.), pp. 383–464. Cambridge, UK: Cambridge University
290		Press (2013).
291		
292	18.	Anagnostou, E. <i>et al.</i> Changing atmospheric CO ₂ concentration was the primary
293		driver of early Cenozoic climate. Nature 533, 380-384 (2016).
294		
295	19	DeConto, R.M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by
296		declining atmospheric CO ₂ . <i>Nature</i> 421 , 245-249 (2003).
297		
298	20	Pälike H <i>et al</i> The heartbeat of the Oligocene climate system <i>Science</i> 314 1894-
299	_0.	1898 (2006)
300		
301	21	Liebrand D et al Evolution of the early Antarctic ice ages Proc Natl Acad Sci
302	-1.	USA 114 3867-3872 (2017)
303		051111, 5007 5072 (2017).
304	22	Scher H.D. Bohaty S.M. Smith B.W. & Munn G.H. Isotopic interrogation of a
305		suspected late Focene glaciation <i>Paleoceanography</i> 29 628-644 (2014)
305		suspected fate Ebecile glaciation. Talebecanography 29, 020 044 (2014).
300	23	Carter A Riley T.R. Hillenbrand C.D. & Rittner M Widespread Antarctic
200	23.	glagistion during the late Ecoope Earth Planat Sai Latt 459 40 57 (2017)
200		giaciation during the fate bocene. Earth 1 tanet. Sci. Lett. 438 , 49-37 (2017).
210	24	Description S. Ciarlotta D.I. Miringon T.E. Diil D.V. & Dobaty S.M. An
510 211	24.	Anteratio stratigraphic record of stanuiga ica growth through the Ecoopa
212		Altarctic strangraphic record of stepwise ice growth through the Eocene-
312		Oligocene transition. <i>GSA Bull.</i> 129 , 318-330 (2017).
515 214	25	Collador N.B. Lawy B.H. McKay B.M. & Neich T.B. East Anterestic ice sheet
314 215	23.	work uningraphic to Woddell Soo warming Coophing Day Lett 44, 2242, 2251
315		most vulnerable to weddell Sea warming. <i>Geophys. Res. Lett.</i> 44, 2545-2551
310		(2017).
31/	20	Verne DA et al. A demonster contra Automatic Les Chart error este d'havier
318	20.	Young, D.A. <i>et al.</i> A dynamic early East Antarctic Ice Sheet suggested by Ice-
319		covered fjord landscapes. Nature 4/4, 72-75 (2011).
320	07	
321	27.	Li, X., Rignot, E., Mouginot, J., & Scheuchl, B. Ice flow dynamics and mass loss
322		of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43,
323		6366–6373 (2016).
324	• •	
325	28.	Rintoul, S.R. <i>et al.</i> Ocean heat drives rapid basal melt of the Totten Ice Shelf. <i>Sci.</i>
326		<i>Adv.</i> 2 , e1601610 (2016).
327		
328	29.	Wright, A.P. <i>et al.</i> Evidence of a hydrological connection between the ice divide
329		and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J. Geophys.
330		<i>Res.</i> 117 , F01033, doi: 10.1029/2011JF002066 (2012).
331		
332	30.	Close, D.I., Stagg, H.M.J & O'Brien, P.E. Seismic stratigraphy and sediment

333 334 335	distribution on the Wilkes Land and Terre Adélie margins, East Antarctica. <i>Mar. Geol.</i> 239 , 33-57 (2007).
336	Supplementary Information is available in the online version of this paper.
337	
338	Acknowledgements We thank the NBP14-02 science party, ECO captain and crew, and
339	ASC technical staff aboard the RV/IB N.B. Palmer. NBP14-02 was supported by the
340	National Science Foundation (NSF PLR-1143836, -1143837, -1143843, -1430550, and
341	-1048343) and a GSA graduate student research grant to C. Smith. We thank the
342	Antarctic Marine Geology Research Facility staff at Florida State University for sampling
343	assistance and E. Thomas, M. Katz, F. Sangiorni, P. Bijl, and S. Manchester for
344	discussions. This is UTIG Contribution #3137.
345	
346	Author Contributions S.G. and A.S. contributed equally to this work, co-writing the
347	manuscript with input from all authors. D.B., S.G., A.L., and A.S. conceived the study.
348	B.F, R.F., S.G., A.L., A.S., C.S., and the shipboard scientific party collected geophysical
349	data and samples on USAP cruise NBP14-02. All authors contributed to the analyses and
350	interpretation of the results.
351	
352	Author Information Reprints and permissions information is available at
353	www.nature.com/reprints. The authors declare no competing financial interests. Readers
354	are welcome to comment on the online version of the paper. Correspondence and requests
355	for materials should be addressed to S.G. (sean@ig.utexas.edu).
356	

357 Figure Captions

358 Figure 1 Aurora Subglacial Basin elevations and Sabrina Coast bathymetry. a,

359 Aurora Subglacial Basin (ASB) elevations⁹ and Sabrina Coast shelf study location (black

- box; NBP14-02 (yellow) and published (white)³⁰ seismic lines indicated). Inset: ASB
- 361 location (black box), Antarctica. ASB highlands (brown), reduced ice glacial pathways
- 362 (white arrows)²⁶, approximate retreated Oligo-Miocene (solid line) and late Miocene-
- 363 Pleistocene (dashed line) grounding line locations¹⁵. **b**, NBP14-02 seismics, bathymetry,
- and BEDMAP2 bathymetry⁹; interpreted seismic lines (red) and jumbo piston cores (JPC;
- white) indicated. Inset: Regional bathymetry⁹ and seismics. Sabrina Coast coastline,
- 366 Moscow University Ice Shelf (MUIS), and shelf break indicated.

367

Figure 2| Sabrina Coast seismic and piston core biostratigraphy. a, Seismic line 17 368 369 with cores in Megasequence I (MS-I, pre- to pro-glacial (gray shading)). MS-II 370 (meltwater-rich glacial) overlies first expression of grounded ice (dark blue horizon). 371 MS-III (glacial) overlies regional unconformity (light blue horizon). **b**, Biostratigraphy for JPC-55, based on pollen and benthic foraminifers (late Paleocene; brown shading), 372 373 and JPC-54, based on pollen (early-to-middle Eocene; beige shading). c, Seismic line 13 374 with cores relative to regional unconformity (light blue horizon). d, JPC-30 and -31 375 diatom biostratigraphy, with conservative (beige shading, red line) and preferred (brown 376 shading, blue line) ages. 377

378 Figure 3 Composite Sabrina Coast section with glacial surfaces and climate

379 indicators. a, Composite seismic line with pre- to pro-glacial Megasequence I (MS-I;

380	black), glacial MS-II with erosion surfaces (initial: dark blue; subsequent: gray) overlain
381	by a non-glacial interval and regional unconformity (light blue), and polar glacial MS-III
382	b , Cenozoic atmospheric CO_2 reconstructions ^{17,18} with 2 standard deviation error bars
383	(black). c, Composite high-latitude benthic formainifer δ^{18} O record with blue uncertainty
384	band generated/calculated as per [4], reflecting global ice volume and deep ocean
385	temperatures ⁴ ; d , New Jersey margin sea-level lowstands (black) with minimum
386	uncertainty (grey envelope) and best estimates (blue line) ³ .
387	

388 **METHODS**

389 Seismic Data Acquisition, Processing, and Interpretation

390 The 750 km of 3-m resolution multichannel seismic data were acquired using dual 45 in³ generator-injector (GI) guns and a 75-m long, 24-channel streamer in 2014 in 391 392 heavy ice conditions aboard the RV/IB N. B. Palmer. Data processing followed standard 393 steps of filtering, spherical divergence correction, normal moveout correction, and 394 muting, but no deconvolution was required due to the quality of the GI source. All 395 sediment thicknesses are presented in meters and based on a velocity of 2250 m/s; 396 seafloor depths are based on a velocity of 1500 m/s. Acoustic basement is the limit of our 397 reflectivity and interpreted as crystalline rock. 398 Seismic megasequences were identified based upon the presence or absence of 399 erosional surfaces and seismic facies of the mappable units within the sediment packages. 400 Seismic facies observed include: 1) stratified (laminated) or semi-stratified intervals 401 interpreted as open marine, 2) relatively continuous layers with variable reflectivity interpreted as open marine conditions influenced by ice-rafting, and 3) chaotic, 402

403 discontinuous or transparent intervals interpreted as glacial to periglacial conditions. MS-404 I exhibits stratified, semi-stratified, and variably reflective (grey shading) intervals. MS-405 II exhibits chaotic and discontinuous intervals related to erosive surfaces, stratified or semi-stratified intervals, and prograding intervals. Rough, undulatory surfaces are 406 indicators of glacial advance on continental shelves³¹. MS-III consists of chaotic or 407 408 acoustically transparent intervals with thin intervals of stratified facies. The thickness of 409 stratified intervals between erosional surfaces may be a proxy for duration of open water conditions and/or extent of ice retreat (and thus time/distance for readvance)³². Thus, MS-410 411 II includes extensive and/or long-lasting glacial retreats whereas MS-III records localized 412 or relatively short-lived retreats.

413 All identified horizons are regionally mappable within the seismic survey area. Glacial erosion surfaces are interpreted based on roughness, extent of down-cutting, and 414 415 association with overlying chaotic or discontinuous facies. Tunnel valley determinations 416 are based on comparisons with imaged tunnel valleys from the North Sea, Alaska, and Svalbard³²⁻³⁸. Hydrologic modeling suggests tunnel valleys only form when meltwater 417 418 exceeds the capacity of flow through porous glacial substrate and any sheet flow at the base of a glacier³⁹. As tunnel valley size is expected to relate to discharge of subglacial 419 420 meltwater, Sabrina Coast glacial erosion surfaces 3-5 and 8-9 are interpreted as 421 meltwater-rich glaciations that likely required surface-derived meltwater. In the Ross Sea, 422 a widespread regional unconformity that separates prograding shelf strata from glacial 423 tills was interpreted to indicate widespread ice sheet expansion and the onset of ice loading, as suggested for the Sabrina Coast angular unconformity underlying MS-III⁴⁰. 424 425 Uninterpreted versions of the seismic profiles in Figs. 2a, c and 3a, including individual

426 lines from the regionally representative cross-shelf composite line (Fig. 3a), are included427 as Extended Data (Extended Data Fig. 1).

428

429 Marine sediment collection, description, and physical properties analyses

430 Marine sediments were collected in 440 to 550 meters of water 100-150 km 431 offshore, on the Sabrina Coast continental shelf (Extended Data Table 1). Geophysical 432 data guided the recovery of a suite of four <2 m long jumbo piston cores (JPCs) that 433 targeted outcropping reflectors on the continental shelf (Figs. 1b, 2a, 2c, Extended Data 434 Figs. 2-4). Seismic data, lithology, benthic foraminifers, diatoms, and bulk sediment 435 geochemistry confirm that these sequences were deposited in open marine to subglacial 436 settings. Sediment cores were transported (unsplit and at 4°C) to the Antarctic Marine Geological Research Facility at Florida State University, where they were split, 437 438 photographed, visually described, x-rayed, and GEOTEK Multi-sensor Core Logger 439 (MSCL) data were collected following standard protocols. The radiographs were interpreted in Adobe Photoshop with the contrast adjusted for each image. Organic 440 carbon, δ^{13} C, and δ^{15} N analyses of bulk sediments were conducted using a Carlo Erba 441 442 2500 Elemental Analyzer coupled to a continuous flow ThermoFinigan Delta Plus XL 443 IRMS at USF CMS following standard methods. Lithologic, physical properties, and 444 geochemical data are shown in Extended Data Figures 2-4 and provided in 445 Supplementary Information (SI). Core JPC-55 (1.69 m) contains two distinct lithologic units (Extended Data Fig. 446

2b). The upper unit (0-0.4 m; Unit 1) consists of Quaternary-recent diatom-rich sandy silt
with relatively high magnetic susceptibility (SI) overlying a more consolidated lower unit

449	(0.4-1.69 m; Unit 2) of homogenous black micaceous silty fine sands with organic
450	detritus, rare pyrite nodules, macro- and microfossils, and a ~10 cm diameter spherical
451	siderite concretion nucleated around a monocot stem (Extended Data Figs. 2b, d, e; SI).
452	Core JPC-54 (1.21m), collected above the youngest clinoform, contains two
453	distinct lithologic units (Fig. 2a, Extended Data Fig. 3b). The lithology of the upper unit
454	(0-0.2 m; Unit 1) in JPC-54 is similar to that of JPC-55 and overlies a lower unit (0.2-
455	1.21 m; Unit 2) composed of structureless gravel-rich sandy silts to silty coarse sands
456	with centimeter-scale angular lonestones throughout Units 1 and 2 (Extended Data Fig.
457	3b). A conservative approach to ice-rafted debris (IRD) interpretation was undertaken in
458	these sediments and only angular lonestones ≥ 1 cm were interpreted as IRD. Lighter
459	colored sediment with modern diatoms, visible on the right-hand side of JPC-54,
460	indicates flow-in below ~80 cm, likely due to a partial piston stroke; flowage of dark
461	sediment along the right side of the upper core is consistent with this interpretation and/or
462	on-deck or transport disturbance (Extended Data Fig. 3b). However, angular lonestones
463	are observed throughout and a majority are surrounded by the dark colored sediments.
464	Core JPC-30 (0.52 m plus cutter nose) contains diatom-bearing sandy muds, with
465	intervals of well-sorted sands (0-0.25 m). Sub-angular diatomite clasts are present in a
466	mud matrix between 0.25 and 0.52 m. In the core cutter nose, we recovered stratified
467	diatomite and gravelly diatom-bearing sandstone and sandy diatomite above a sharp
468	contact with sandy diamictite below (Extended Data Fig. 4b).
469	Core JPC-31 (0.47 m) contains an upper unit of muddy diamicton (0-0.29 m).
470	Between 0.29 and 0.47 m, angular diatomite clasts are present, which may have been
471	fractured during coring (Extended Data Fig. 4c).

473 Biostratigraphic methods

474 Palvnology: Nine samples from JPC-54 and eight samples from JPC-55 (Extended Data Figs. 2b, 3b, Extended Data Table 2) were processed at Global Geolab 475 476 Limited, Alberta, Canada using palynological techniques suited for Antarctic sediments. 477 Approximately five grams of dried sediment were weighed and spiked with a known quantity of Lycopodium spores to allow computation of palynomorph concentrations. 478 479 Acid soluble minerals (carbonates and silicates) were removed via digestion in HCl and 480 HF acids. Residues were concentrated by filtration through a 10-µm sieve and mounted on microscope slides for analyses. Analysis was conducted under 100x oil immersion 481 objective with a Zeiss Axio microscope. For samples with sufficient palynomorph 482 483 abundance, a minimum of 300 palynomorphs were tabulated per sample. For samples 484 with low abundance, the entire residue was tabulated. A database of all palynomorphs 485 recovered was prepared and key species were photographically documented. The 486 taxonomic evaluation was completed based on the type specimen repository and library at 487 the Louisiana State University Center for Excellence in Palynology (CENEX). 488 Palynological results are presented in Extended Data Table 2. 489 Benthic Foraminifera: Benthic foraminifer counts and biostratigraphic data were 490 generated for 16 depths in JPC-55 and five depths in JPC-54 using standard protocols 491 (Extended Data Figs. 2b, 5, Extended Data Table 3). Sediment samples between 20 and 30cc were washed over a 63-um sieve with deionized water. Sample residues were dried 492 493 at 50°C for 24 hours, transferred to labeled vials, dry sieved into 250- and 150-um 494 fractions, and examined using a Zeiss Stemi 2000-C stereomicroscope with a 1.6X lens

495	and 10X eyepiece (Magnification: 10.4-80X). Genus and species identifications were
496	refined using Scanning Electron Microscopy (SEM) at the University of South Florida
497	College of Marine Science (Extended Data Fig. 5). All benthic foraminifer individuals
498	present in each JPC-55 sample are tabulated in Extended Data Table 3. In JPC-55,
499	preservation of aragonite and calcium carbonate tests, determined both visually and via
500	SEM, ranges from poor to excellent (Extended Data Fig. 5). Five species of well-
501	preserved aragonitic and calcareous benthic foraminifers were observed throughout JPC-
502	55 Unit 2 (ED Table 3). No foraminifers were observed in JPC-54.
503	Diatoms: Diatom biostratigraphy was conducted on two sets of NBP14-02
504	samples: 1) JPC-30 cutter nose diatomites and 2) diatomite clasts from the bottom of
505	JPC-31 (Extended Data Figs. 4b, 4d, 6). Quantitative slides were prepared at Colgate
506	University for diatom assemblage studies and biostratigraphic evaluation using a settling
507	technique that results in a random and even distribution of frustules ⁴¹ ; sub-samples were
508	sieved at 10- and 63-µm to concentrate unbroken frustules for examination. Photographic
509	documentation at 1000x magnification using oil immersion on Olympus BX50 and BX60
510	microscopes was completed at Colgate University (Extended Data Fig. 6). The beige
511	shading in Fig. 2d represents the conservative zonal assignment and age range, whereas
512	the brown shading represents the refined age interpretation. Age constraints for key
513	diatom bioevents are derived from the statistical compilation and analysis of average age
514	ranges for Southern Ocean taxa ^{42.}
515	

516 Chronology

517 Palynological biostratigraphic zonation scheme: Palynological biostratigraphic 518 zonation of cores NBP14-02 JPC-54 and JPC-55 is based on the presence of a few key 519 species and limited data available from Antarctica and surrounding regions (e.g. Australia and New Zealand). Gambierina edwardsii and Gambierina rudata are known as 520 521 Cretaceous to Paleocene species. A recent study published a robust LAD for these species at the Paleocene/Eocene boundary on the East Tasman Rise (ODP Site 1172)⁴³. However, 522 523 in southeastern Australia, the two Gambierina species observed in the Sabrina Coast sequence range into the earliest early Eocene⁴⁴. Extended ranges for the *Gambierina* sp. 524 525 (dashed lines; Fig. 2b) are based on the palynological analysis of ODP Site 1166 in Prydz Bay^{45,46}, where abundant well-preserved *Gambierina* specimens were observed and not 526 527 considered reworked. Consequently, those authors extended the Gambierina sp. range into the early-to-middle Eocene in East Antarctica^{45,46}. 528

Microalatidites paleogenicus has a Paleogene to Neogene range⁴⁶. Although we are adopting their range herein, there is some controversy with this range. The first occurrence of *Microalatidites paleogenicus* is listed as Senonian in Australia and New Zealand⁴⁷, but there is no robust evidence supporting an extended range in Antarctica. In Fossilworks (PaleoDB taxon number: 321781), *Microalatidites paleogenicus* is listed as having a range from 55.8 to 11.608 Ma.

Nothofagidites lachlaniae ranges from Paleogene to modern while Nothofagidites *flemingii-rocaensis* ranges from Paleogene to Neogene⁴⁶. The range for *N. lachlaniae* in
New Zealand is listed as Late Cretaceous to present and is similar to other forms⁴⁸. In the
Paleocene and Eocene, there is climatically-induced variability observed in the *Nothofagidites* ranges. For example, broad regional vegetation changes (e.g. the

abundance of *Nothofagidites lachlaniae* in western Southland (Ohai, Waiau and Balleny
basins) and its scarcity in other Eocene sections (Waikato, the Taranaki basin, and the
west coast of New Zealand's South Island) may be related to paleoenvironmental
factors⁴⁹. The type material is Pliocene⁵⁰, but the distinction of this species from other *Fuscospora* pollen (including *N. brachyspinulosa* and *N. waipawaensis*) is problematic.
If *N. waipawaensis* and *N. senectus* are excluded, then the New Zealand FAD of other *Fuscospora* pollen would be late Paleocene.

547 In Southern Australia, the FAD of *N. flemingii* is in the upper part of the

548 *Lygistepollenites balmei* Zone (late Paleocene)^{51,52}. However, in a detailed study of

549 Paleocene-Eocene transition strata in western Victoria, *N. flemingii* is not reported⁵³. In

550 New Zealand, the *N. flemingii* FAD is reported as middle Eocene^{54,55}. However, in well-

551 dated early Eocene New Zealand localities, occasional small N. flemingii-like specimens

are observed; their identification is under debate. Due to the relative geographic

proximity of East Antarctica and Southern Australia in the Paleogene, we follow [52, 53]

and place the FADs of both species in the late Paleocene.

Proteacidites tenuiexinus has a range from 66.043 to 15.97 Ma (PaleoDB taxon
number: 277519 at fossilworks.org). We adopt the published late Paleocene *Proteacidites tenuiexinus* FAD in Southeastern Australia⁵¹, but acknowledge that the FAD could be as
early as early Paleocene.

559

Two pollen species present in core JPC-54 were not observed in core JPC-55,

560 Nothofagidites cranwelliae and Nothofagidites emarcidus. Most verified references for

561 *Nothofagidites cranwelliae* and *Nothofagidites emarcidus* (e.g. those with specimens

562 properly identified; the *Nothofagidites* group is diverse, complex, and easily

563	misidentified) place the FAD of both of these species in the early Eocene, at the
564	earliest ^{56,57} . The latter species was also found in the Eocene of Western Australia ⁵⁸ .
565	Diatom preservation and biostratigraphy: The diatom assemblages present in
566	cores JPC-30 and JPC-31 are indistinguishable, although preservation is better and
567	abundance higher in the JPC-31 diatomites compared to the sandy diatom muds
568	recovered in JPC-30. Overall, preservation is moderate to good in JPC-31 and poor to
569	moderate in JPC-30 (Extended Data Fig. 6). Diatoms in both cores suffer from a high
570	degree of fragmentation. Large centric taxa, such as Actinocyclus spp. and Thalassiosira
571	spp., are generally broken, whereas the smaller centric and pennate specimens are well
572	preserved (Extended Data Fig. 6). Denticulopsis specimens are generally well preserved,
573	although though the longer specimens of <i>D. delicata</i> are typically broken. <i>Rouxia</i> spp.
574	occur mostly in fragments making identification more problematic. Similarly, specimens
575	of Fragilariopsis spp. are dominantly present as broken specimens, with the exception of
576	a few F. praecurta specimens (Extended Data Fig. 6).
577	Many of the diatom species present in both JPC-30 and JPC-31 have long age
578	ranges and do not provide good biostratigraphic age constraints (e.g., Coscinodiscus
579	marginatus, Trinacria excavata). However, the presence of several common taxa
580	provides robust support for a late Miocene-earliest Pliocene age. These taxa include:
581	Actinocylus ingens var. ovalis, Denticulopsis delicata, Fragilariopsis praecurta,
582	Thalassiosira oliverana var. sparsa, Thalassiosira torokina (large form), and
583	silicoflagellates in the Distephanus speculum speculum 'pseudofibula plexus' group.
584	There is very little evidence of reworking of older material, with only one specimen of
585	Pyxilla sp. and a fragment of Hemiaulus sp. observed; all species within both of these

586 genera are typical of the Eocene and Oligocene.

587 Age determination for JPC-55 sediments: Based on our conservative pollen 588 zonation scheme, we favor a late Paleocene to earliest early Eocene age for the 589 exceptionally diverse JPC-55 in situ fossil pollen assemblage; this assemblage is easily distinguishable from reworked Cretaceous microfossils present in the sediments (Fig. 2b). 590 591 The presence of middle bathyal benthic foraminifer species Gyroidinoides globosus and *Palmula* sp., both of which went extinct at the Paleocene-Eocene boundary⁵⁹, enables us 592 593 to further refine the pollen-based age designation to late Paleocene (Extended Data Fig. 594 5). Although its first occurrence may be diachronous, the presence of aragonitic Cenozoic benthic foraminifer species Hoeglundina elegans⁵⁹⁻⁶³ indicates that these sediments are 595 596 Cenozoic in age, confirming the interpretation that co-occurring Cretaceous microfossils 597 are reworked. *H. elegans* and other aragonitic benthic foraminifers are most common in 598 upper to middle bathyal assemblages along the southern Australian margin and the Australo-Antarctic Gulf during the Paleocene and Eocene^{60,63}. Thus, we conservatively 599 designate an age of late Paleocene to sediments in the lower unit (Unit 2) of JPC-55 (Fig. 600 601 2b, Extended Data Fig. 2b).

Age determination for JPC-54 sediments: Pollen bistratigraphy constrains the
 depositional age of JPC-54 Unit 2 sediments to the early-to-middle Eocene (Fig. 2b,
 Extended Data Fig. 3b). No foraminifers are observed in the lower lithologic unit of JPC 54. Thus, based on the pollen assemblage alone, we favor an early-to-middle Eocene age
 for sediments in the lower unit (Unit 2) of JPC-54.
 Age determination for JPC-30 and JPC-31 sediments: Based on Southern Ocean

608 diatom $ages^{42}$, the FAD of *T. oliverana* var. *sparsa* (8.61 Ma) and the LAD of *T. ingens*

609	var. ovalis (4.78 Ma) provide a conservative age estimate for the diatom assemblages
610	present in JPC-30 and JPC-31 (8.61-4.78 Ma; Fig. 2d). A more restricted age
611	interpretation is possible if the presence of Shionodiscus tetraoestrupii (FAD 6.91 Ma)
612	and the absence of the typical early Pliocene taxon Thalassiosira inura (FAD 5.59 Ma)
613	are considered, indicating an age between 6.91 and 5.59 Ma (Fig 2d). This more
614	restricted age should be considered tentative, since precise calibrations for many
615	Southern Ocean diatom bioevents in the Chron C3–C3A (4.2-7.1 Ma) interval are
616	compromised by multiple short hiatuses at many drill sites and poor magnetostratigraphy.
617	Further age refinement for the JPC-30 and JPC-31 samples is likely possible as diatom
618	biostratigraphic data are published for expanded Late Neogene sections recovered on the
619	Wilkes Land margin ⁶⁴ . However, the more conservative age estimate (8.61-4.78 Ma; Fig.
620	2d) is well supported by the presence of several taxa with well-calibrated ages in the
621	Southern Ocean, including Rouxia naviculoides (FAD 9.84 Ma), Thalassiosira oliverana
622	(FAD 9.73 Ma), and <i>Thalassiosira torokina</i> (FAD 9.36 Ma). The absence of
623	Denticulopsis dimorpha (LAD 9.75 Ma, Denticulopsis ovata (LAD 8.13), Thalassiosira
624	complicata (FAD 5.12 Ma), Fragilariopsis barronii (FAD 4.38 Ma), and Fragilariopsis
625	interfrigidaria (FAD 4.13 Ma) support this age assessment.
626	

- 627 Data availability. The seismic data from the study are available in the Academic Seismic
 628 Datacenter at the University of Texas Institute for Geophysics (http://www-
- 629 udc.ig.utexas.edu/sdc/cruise.php?cruiseIn=nbp1402). Sediment cores are archived in the
- 630 NSF-funded Antarctic Core Repository at Oregon State University. The authors declare
- that all other data that support the findings of this study are available within the paper and

- 632 its supplementary information files; these data may also be downloaded from the US
- 633 Antarctic Program Data Center (USAP-DC; <u>www.usap-dc.org</u>).
- 634

635 636	Metho	ds References
637 638 639 640 641 642	31.	Anderson, J. & Bartek, L.R. Cenozoic glacial history of the Ross Sea revealed by intermediate resolution seismic reflection data combined with drill site information. pp. 213–263 <i>in</i> The Antarctic Paleoenvironment: A Perspective on Global Change. J.P. Kennett and D.A. Warnke, eds., <i>Antarctic Research Series</i> , vol. 56, American Geophysical Union (1992).
643 644	32.	Ó'Cofaigh, C. Tunnel valley genesis. Prog. Phys. Geog. 20, 1-19 (1996).
645 646 647 648	33.	Huuse, M. & Lykke-Andersen, H. Over-deepened Quaternary valleys in the eastern Danish North Sea: morphology and origin. <i>Quat. Sci. Rev.</i> 19 ,1233-1253 (2000).
649 650 651 652	34.	Denton, G.H. & Sugden, D.E. Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. <i>Geogr. Ann. A</i> 87 , 67-85 (2005).
653 654 655 656	35.	Lonergan, L., Maidment, S. & Collier, J. Pleistocene subglacial tunnel valleys in the central North Sea basin: 3-D morphology and evolution. <i>J. Quat. Sci.</i> 21 , 891-903 (2006).
657 658 659 660	36.	Elmore, C.R., Gulick, S.P.S., Willems, B., & Powell, R., Seismic stratigraphic evidence for glacial expanse during glacial maxima in the Yakutat Bay Region, Gulf of Alaska. <i>Geochem. Geophys. Geosys.</i> 14 , p. 1294-1311 (2013).
661 662 663 664	37.	Van der Vegt, P., Janszen, A., & Moscariello, A. Tunnel valleys: current knowledge and future perspectives. <i>Geol. Soc. London Spec. Publ.</i> 368 , 75-97 (2012).
665 666	38.	Bjarnadóttir, L.R., Winsborrow, M.C.M., & Andreassen, K. Large subglacial meltwater features in the central Barents Sea. <i>Geology</i> 45 ,159-162 (2017).
668 669 670	39.	Piotrowski, J.A. Subglacial hydrology in north-western Germany during the last glaciation: Groundwater flow, tunnel valleys and hydrologic cycles. <i>Quat. Sci. Rev</i> 16 , 169-186 (1997).
672 673 674	40.	Bart, P.J. Were West Antarctic Ice Sheet grounding events in the Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene? <i>Earth Planet. Sci. Lett.</i> 216 , 93-107 (2003).

675		
676	41	Scherer, R.P. A new method for the determination of absolute abundance of
677		diatom and other silt-sized sedimentary particles. J. Paleolimnology 12, 171-179
678		(1994).
679		
680	42	Crampton JS <i>et al.</i> Southern Ocean phytoplankton turnover in response to
681		stepwise Antarctic cooling over the past 15 million years <i>Proc Natl Acad Sci</i>
682		USA 113 6868-6873 (2016)
683		
684	43	Contreras L et al Southern high-latitude terrestrial climate change during the
685		Paleocene–Eocene derived from a marine pollen record (ODP Site 1172. East
686		Tasman Plateau) Clim Past Discuss 10 291-340 (2014)
687		Tushinin Thuttun). Comm. Tuso Doscussi. To, 29 T 5 to (2011).
688	44	Partridge A D Late Cretaceous-Cenozoic palynology zonations Gippsland Basin
689		Australian Mesozoic and Cenozoic nalvnology zonations-undate to the 20004
690		Geologic Time Scale Geoscience Australia Record 2006/23 (2006)
691		Scologie Thile Scale, Scoselence Musicana, Record 2000/25 (2000).
692	45	MacPhail M K & Truswell E M Palynology of Site 1166 Prydz Bay East
693	10	Antarctica In Cooper A K O'Brien P F & Richter C (Eds) Proc ODP Sci
694		R_{osults} 188 1-43 (2004)
695		<i>Results</i> 100 , 1 +5 (2004).
696	46	Truswell F M & MacPhail M K Fossil forests on the edge of extinction: What
697	10	does the fossil spore and nollen evidence from Fast Antarctica sav? Austral Syst
698		Bot 22. 57-106 (2009)
699		<i>Dot.</i> 22 , 57 100 (2007).
700	47	Raine II Mildenhall DC & Kennedy FM New Zealand fossil spores and
701	• / ·	nollen: an illustrated catalogue 4th edition GNS Science Miscellaneous Series 4
702		http://data.gns.cri.nz/sporepollen/index.htm (2011)
703		
704	48	Hill, R.S. (Ed.). History of the Australian vegetation: Cretaceous to Recent.
705		Cambridge University Press (Cambridge), p. 233 (1994).
706		
707	49	Truswell, E. M. Recycled Cretaceous and Tertiary pollen and spores in Antarctic
708		marine sediments: a catalogue. <i>Palaeontographica Abt. B</i> 186 , 121-174 (1983).
709		
710	50	Pocknall, D.T. Late Eocene to early Miocene vegetation and climate history of
711		New Zealand, J. R. Soc. N.Z. 19, 1-18 (1989).
712		
713	51	. Dettmann, M.E., Pocknall, D.T., Romero, E.J. & Zamalao, M. del C.
714		Nothofagidites Erdtman ex Potonie, 1960; a catalogue of species with notes on the
715		paleogeographic distribution of <i>Nothofagus</i> BI. (Southern Beech). N.Z. Geol. Sur.
716		Paleo. Bull. 60, 1-79 (1990).
717		
718	52	Stover, L.E. & Partridge, A.D. Tertiary and Late Cretaceous spores and pollen
719		from the Gippsland Basin, southeastern Australia. Proc. Rov. Soc. Victoria 85.
720		237-286 (1973).

721	
722	53. Stover, L.E. & Evans, P.R. Upper Cretaceous-Eocene spore-pollen zonation,
723	offshore Gippsland Basin, Australia. Geol. Soc. Australia Spec. Pub. 4, 55-72
724	(1973).
725	
726	54. Harris, W.K. Basal Tertiary microfloras from the Princetown area, Victoria,
727	Australia. Palaeontographica Abt. B 115, 75-106 (1965).
728	
729	55. Couper, R.A. New Zealand Mesozoic and Cainozoic plant microfossils. N.Z.
730	Geol. Sur. Paleo. Bull. 32 , 87 pages (1960).
731	
732	56. Raine, J.I. Outline of a palynological zonation of Cretaceous to Paleogene
733	terrestrial sediments in west coast region. South Island, New Zealand, N.Z. Geol.
734	Survey Rept. 109, 1-82 (1984).
735	
736	57. Greenwood, D.R., Moss, P.T., Rowett, A.I., Vadala, A.J. & Keefe, R.L. Plant
737	communities and climate change in southeastern Australia during the early
738	Paleogene, <i>Geol. Soc. Spec. Pap.</i> 369 , 365-380 (2003).
739	
740	58 Stover L E & Partridge A D Eccene spore-pollen from the Werillup Formation
741	Western Australia Palvnology 6 69-96 (1982)
742	((cstorii / fusituliu. / <i>utyliotogy</i> 0, 09 90 (1902).
743	59 Thomas F. Late Cretaceous through Neogene deen-sea benthic foraminifers
744	(Maud Rise Weddell Sea Antarctica) <i>Proc ODP Sci Res</i> 113 571-594 (1990)
745	
746	60 McGowran B Two Paleocene for aminiferal faunas from the Wangerrin Group
747	Pebble Point Coastal section Western Victoria <i>Proc. Rov. Victoria</i> 79 9-74
748	(1965)
749	(1)05).
750	61 Brotzen F The Swedish Paleocene and its Foraminiferal Fauna Arshok Sveriges
751	Geologiska Undersokning 42, 1-140 (1948)
752	00010gisha 0ha0150ming, 12, 1 110 (1910).
753	62 Holbourn A. Henderson A & MacLeod N. Atlas of Benthic Foraminifera
754	Wiley-Blackwell London England 634 pp (2013)
755	whey blackwen, Eohaon, England. 05 (pp (2015).
756	63 Li O James N.P. & McGowran B Middle and late Eocene Great Australian
757	Bight lithobiostratigraphy and stepwise evolution of the southern Australian
758	continental margin Aus J Earth Sci 50 113-128 (2003)
759	continental margin. 1165. 0. Dar 11 507. 00, 115 120 (2005).
760	64 Tauxe L et al Chronostratigraphic framework for the IODP Expedition 318
761	cores from the Wilkesland Margin: Constraints for naleoceanographic
762	reconstruction <i>Paleoceanography</i> 27 PA2214 doi:10.1029/2012PA002308
763	(2012)
764	(

765 Extended Data Legends

767 Extended Data Figure 1| Uninterpreted NBP14-02 seismic profiles with line

rossings and coring sites indicated. a, Line 13 with piston core sites JPC-30 and JPC-

769 31 and formation penetration depths indicated by red lines. **b**, Line 17 with core sites

JPC-55 and JPC-54 and formation penetration depths indicated by red lines. c, Line 07

showing intersection with Line 10. d, Line 10 showing intersections with Line 07 andLine 21. e, Line 21 showing intersection with Line 10.

773

Extended Data Figure 2|Site location and sedimentological, geochemical, and

775 paleontological data from piston core NBP14-02 JPC-55 plotted versus depth. a,

CHIRP record of JPC-55 site; location and penetration indicated (red line); site
coordinates and multibeam depth (MB) included. b, Gastropod steinkern (70-72 cm). c,

778 Siderite concretion with monocot stem nucleus (118-125 cm). **d**, Close-up of monocot

sidente concretion with inonocol stem indiceds (118-125 cm). u, Close-up of monocol
 stem. e, JPC-55 lithologic unit, photograph, x-ray radiograph, graphic lithology, coring
 disturbance, sedimentary structures, lithologic accessories, sample locations, age, benthic

for a disturbance, sedimentary structures, mologic accessories, sample locations, age, benune for a for a minifers/30 cc sediment, magnetic susceptibility, GRA bulk density (grams/cc sediment), bulk sediment $\delta^{13}C_{org}$ (per mil; VPDB‰), and Carbon/Nitrogen (C/N) plotted versus depth in in centimeters below sea floor (cmbsf; SI).

784

785 Extended Data Figure 3| Site location and sedimentological and geochemical data 786 from piston core NBP14-02 JPC-54 plotted versus depth. a, JPC-54 lithologic unit, 787 photograph, x-ray radiograph, graphic lithology, coring disturbance, sedimentary structures, lithologic accessories, sample locations, age, magnetic susceptibility (SI), 788 GRA bulk density (grams/cc sediment), and bulk sediment $\delta^{13}C_{org}$ (per mil; VPDB‰) 789 790 plotted versus depth in centimeters below sea floor (cmbsf). b, CHIRP record of JPC-54 791 site; location and penetration indicated (red line); site coordinates and multibeam depth 792 (MB) included.

793

794 Extended Data Figure 4| Site location and sedimentological data from piston cores 795 NBP14-02 JPC-30 and JPC-31 plotted versus depth. a. CHIRP record of JPC-30 site; 796 location and penetration indicated (red line); site coordinates and multibeam depth (MB) 797 included. **b**, JPC-30 lithologic unit, photograph, x-ray radiograph, graphic lithology, 798 coring disturbance, sedimentary structures, lithologic accessories, sample locations, age, 799 magnetic susceptibility (SI), and GRA bulk density (grams/cc sediment) plotted versus 800 depth in centimeters below sea floor (cmbsf). c, CHIRP record of JPC-31 site; location, and penetration indicated (red line). d, JPC-31 lithology, age, and physical properties as 801 802 above.

803

804 Extended Data Figure 5| Benthic foraminifers from piston core NBP14-02 JPC-55.
805 a, *Hoeglundina elegans* (76-78 cmbsf). b, SEM of *Hoeglundina elegans* (76-78 cmbsf).
806 c, *Ceratobulimina* sp. (70-72 cmbsf). d, *Ceratobulimina* sp. (70-72 cmbsf). e, SEM of
807 *Ceratobulimina* sp. (70-72 cmbsf). f, SEM of *Gyroidinoides globosus* (110-113 cmbsf).
808 g, SEM of *Gyroidinoides globosus* (110-113 cmbsf). h, *Gyroidinoides globosus* with
809 pyrite (136-138 cmbsf). i, *Gyroidinoides globosus* with zoom in of umbilicus; pyrite on
810 lower right side of test (136-138 cmbsf). j, *Palmula* sp. (136-138 cmbsf; test >450 µm).

812	Extended Data Figure 6 Siliceous microfossils from piston core NBP14-02 JPC-31
813	diatomite sample. a, Thalassiosira torokina. b, Thalassiosira oliverana var. sparsa. c,
814	Actinocyclus ingens var. ovalis. d, Coscinodiscus marginatus. e, Azpeitia sp. 1. f,
815	Actinocyclus sp. g, Actinocyclus sp. h, Shionodiscus tetraoestrupii. i, Shionodiscus
816	tetraoestrupii. j, Shionodiscus oestrupii. k, Denticulopsis delicate. l, Denticulopsis
817	simonsenii/D. vulgaris. m, Denticulopsis simonsenii/D. vulgaris. n, Denticulopsis
818	delicate. o, Denticulopsis simonsenii/D. vulgaris. p, Rouxia naviculoides. q,
819	Fragilariopsis praecurta. r, Fragilariopsis sp. 1. s, Trinacria excavate. t, Rhizosolenia
820	hebetate. u, Eucampia antarctica var. recta. v, Distephanus speculum speculum f.
821	varians. Sample from 43-45 cmbsf.
822	
823	Extended Data Table 1 NBP14-02 piston core locations, water depths, and
824	recovered core lengths.
825	
826	Extended Data Table 2 Piston core NBP14-02 JPC-55 and JPC-54 raw terrestrial
827	pollen counts.
828	
829	Extended Data Table 3 Piston core NBP14-02 JPC-55 raw benthic foraminifer
830	counts.
831	

Gulick et al_Fig, 3