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Abstract

Recent studies on localized bulging in inflated membrane tubes have shown that the initi-

ation pressure for the onset of localization is determined through a bifurcation condition.

This kind of localization has also been shown to be much more sensitive to geometrical

and material imperfections than classical sub-critical bifurcation into periodic patterns.

We use these results to show that the initial formation of aneurysms in human arteries

may also be modeled as a bifurcation phenomenon. This bifurcation interpretation could

provide a theoretical framework under which different mechanisms leading to, or reducing

the risk of, aneurysm formation can be assessed in a systematic manner. In particular,

this could potentially help in assessing the integrity of aneurysm repairs.
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1 Introduction

An aneurysm is a localized, blood-filled balloon-like bulge of a blood vessel. As the

size of an aneurysm increases, there is an increasing risk of rupture, resulting in severe

hemorrhage, other complications or even death. Aneurysm formation has broadly been

associated with hereditary predisposition, old age and hypertension, and more specifically

with defects in extracellular matrix maturation, increased degradation of elastin and col-

lagen, aberrant cholesterol homeostasis, or enhanced production of angiotension peptides.

However, how such factors manifest themselves in changing the mechanical behaviour of

arteries before aneurysm formation is still not fully understood. Existing studies in the

bio-mechanical community have largely focussed on modeling the material properties of

mature aneurysm tissues and the growth of aneurysms when they have already formed;
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see, e.g., Humphrey and Rajagopal [1], Venkatasubramaniam et al. [2], Watton et al.

[3], Baek et al. [4, 5], Vande Geest et al. [6], Vorp [7], Watton and Hill [8], and the

references therein. Such studies are obviously important in guiding a clinician when to

intervene when an aneurysm has been diagnosed. Our current study, however, is focussed

on understanding the process leading to the initial formation of an aneurysm.

The geometrical similarity between a localized bulge in an inflated hyperelastic mem-

brane tube and an arterial aneurysm is obvious, but the former problem is much better

understood thanks to a large number of experimental, numerical and analytical studies,

and the absence of uncertainty in the material modelling. When a hyperelastic membrane

tube is inflated by pumping in air or water, a localized bulge will form when the internal

pressure reaches a certain critical value. Once a bulge has been initiated, its early stage

of growth is highly unstable, which takes place at decreasing pressure (and associated

reduction of radius away from the center of the bulge). For almost all rubber-like mate-

rials, growth will stop when the bulge reaches a so-called Maxwell state which is stable.

Further inflation will force the bulge to spread in both directions and will take place at

a constant Maxwell pressure and constant maximum radius. The earliest documented

observation of localized bulging in inflated membrane tubes seems to have been by Mal-

lock [9]. For a selection of experimental, numerical and analytical studies, we refer to Yin

[10], Chater and Hutchinson [11], Kyriakides and Chang [12, 13], and Shi and Moita [14].

Although this problem has been loosely referred to as a stability/bifurcation problem, its

precise stability/bifurcation nature was not fully understood until very recently; see Fu

et al. [15]. In this paper, the localized bulging was recognized as a nonlinear bifurcation

problem (the corresponding linear bifurcation analysis incorrectly predicts the bifurcation

mode as a uniform radial expansion), and it was shown that the initiation pressure may or

may not equal the limiting pressure associated with uniform inflation depending on end

conditions. Equality holds if, for instance, the ends are closed and any external axial force

is fixed, but in the case of open ends localized bulging would occur before the limiting

pressure is reached. Characterization of the entire inflation process and its stability was

carried out in two subsequent papers [16, 17]. In a more recent paper [18] it was further

shown that the initiation of localized bulging in inflated membrane tubes is more sensi-

tive to material and geometrical imperfections than classical subcritical bifurcations into

sinusoidal patterns. The latter obeys Koiter’s two-thirds power rule [19, 20] whereas the

former obeys a square root rule. For instance, a localized wall thinning that corresponds

to a 10% maximum wall thickness reduction can easily induce a 19% reduction in the

critical circumferential stretch. Since for arteries the pressure is an exponential function

of circumferential stretch, such a 19% reduction in stretch can reduce the critical pressure

by many orders of magnitude. Such severe imperfection insensitivity has the potential

to bring the critical pressure down to physiologically possible values and is crucial to our

argument in the present paper.
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It is well known that arteries are inelastic: they show hysteresis when subjected to

cyclic loading and unloading, and also exhibit typical viscoelastic behaviour (i.e. stress

relaxation at a constant strain and strain creep at a constant stress), but for many practical

purposes, including ours in the current paper, it suffices to model them as nonlinearly

elastic and anisotropic. There is, however, a major difference between the behaviour of

rubber-like materials and that of arteries, namely that for the former the strain energy

function can be accurately described by an algebraic function (see, e.g., Ogden [21]),

whereas for the latter the behaviour is typically exponential (see, e.g., Fung et al. [22]).

Furthermore, arteries have a layered structure and behave anisotropically, and as a result

there is much uncertainty in their mathematical modelling. Because of these differences,

when aneurysm formation is interpreted as a bifurcation phenomenon it is not immediately

clear whether the bifurcation condition has any solutions at all. Then to demonstrate that

aneurysm formation can indeed be modeled as a bifurcation phenomenon, we need to first

choose an appropriate material model, and then to verify that bifurcation can not only

take place but also can be achieved at physiologically possible pressure values. A number

of material models for arteries have been proposed in recent years; we refer to Humphrey

[23] and Holzapfel and Ogden [24] for comprehensive reviews. In this paper, we select two

representative material models. The first is the multi-layer structural model of Holzapfel

et al. [25] which also gives material parameter data for carotid arteries of a young rabbit.

The second is the single-layer arterial model proposed by Choi and Vito [26] with data

provided by Vande Geest et al. [6] for a group of healthy but elderly human aortic arteries.

It is known that aneurysms are rare in animals and more so among young animals, and

that aneurysms can be induced by pathological changes in elderly humans. Our challenge

is to show that the bifurcation interpretation can indeed capture, at least qualitatively,

these basic facts.

The rest of this paper is organized as follows. In the next section, we summarize

Holzapfel et al.’s [25] multi-layer structural model and show that for axi-symmetric defor-

mations, provided each layer in an artery is hyperelastic, the composite artery is neces-

sarily hyperelastic and we give the effective strain-energy function. This result paves the

way for the application of Fu et al.’s [15] bifurcation condition which we briefly derive in

Section 3 for completeness. We show that the bifurcation condition reduces to a determi-

nation of the zeros of the expression (3.11) by virtue of a local analysis of the ordinary

differential equation (3.10). This bifurcation condition is then applied in Section 4 to the

two material models mentioned in the previous paragraph. The paper is concluded with

a summary and some additional remarks.
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2 Governing equations

Healthy arteries are composed of three clearly defined layers: the intima (the innermost

layer), the media (the middle layer) and the adventitia (the outer layer). Each layer of

the arterial wall may be considered as a composite reinforced by two families of fibres

arranged in symmetrical helices [27]. With incompressibility assumed, the strain energy

function Ψ for each layer is a function of the seven invariants I1, I2, I4, I5, I6, I7, I8 defined

by (Spencer [28])

I1 = tr C, I2 =
1

2
(I2

1 − tr C2), I4 = M · CM , I5 = M · C2
M ,

I6 = M
′ · CM

′, I7 = M
′ · C2

M
′, I8 = M · CM

′, (2.1)

where C is the right Cauchy-Green strain tensor, and M and M
′ are the directions of

the two families of fibres in the reference configuration. The Cauchy stress tensor is then

given by

σ = −pI + 2Ψ1B + 2Ψ2(I1B − B2) + 2Ψ4m ⊗ m

+2Ψ5(m ⊗ Bm + Bm ⊗ m) + 2Ψ6m
′ ⊗ m

′

+2Ψ7(m
′ ⊗ Bm

′ + Bm
′ ⊗ m

′) + Ψ8(m ⊗ m
′ + m

′ ⊗ m), (2.2)

where p is the pressure associated with the constraint of incompressibility, B is the left

Cauchy-Green strain tensor, Ψi = ∂Ψ/∂Ii (i = 1, 2, . . . , 8), and m = FM , m
′ = FM

′

with F being the deformation gradient.

We shall choose a common cylindrical polar coordinate system, with basis vectors

er, eθ, ez, to describe vectors and tensors in both the current and reference configurations.

Thus, we may write

M = cos φ eθ + sin φ ez, M
′ = cos φ eθ − sin φ ez, (2.3)

where φ is the constant angle between the collagen fibres and the circumferential direction.

We consider the problem of axi-symmetric inflation of a straight artery that has con-

stant wall thickness H and uniform mid-plane radius R before inflation. Thus, in general,

the axisymmetric deformed configuration may be described by

r = r(Z), z = z(Z), (2.4)

where Z and z are the axial coordinates of a representative material particle before and

after inflation, respectively, and r is the mid-plane radius after inflation.

Since the deformation is axially symmetric, the principal directions of stretch coincide

with the lines of latitude, the meridian and the normal to the deformed surface. Denoting

the unit vectors in these principal directions by e1, e2, e3, respectively, we have

e1 = eθ, e2 = cos γez + sin γer, e3 = − sin γez + cos γer, (2.5)
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Figure 1: Axisymmetric deformation of an artery.

where γ is the angle between the meridian and the z-direction; see Fig.1. The associated

principal stretches are given by

λ1 =
r

R
, λ2 =

√
r′2 + z′2, λ3 =

h

H
, (2.6)

where h denotes the deformed wall thickness and the primes indicate differentiation with

respect to Z. In the following analysis, we use R as the unit of length, which is equivalent

to setting R = 1.

The deformation gradient F may be written as

F = λ1e1 ⊗ eθ + λ2e2 ⊗ ez + λ3e3 ⊗ er. (2.7)

See, e.g., Haughton [29]. It then follows that

m = λ1 cos φ e1 + λ2 sin φ e2, m
′ = λ1 cos φ e1 − λ2 sin φ e2, (2.8)

and so

I4 = m · m = λ2
1 cos2 φ + λ2

2 sin2 φ = I6, (2.9)

I5 = m · Bm = λ4
1 cos4 φ + λ4

2 sin4 φ = I7. (2.10)

We make the further assumption that the two families of fibres are mechanically equivalent

and so the strain energy must be symmetric with respect to interchange of I4 and I6. This

then implies that Ψ4 = Ψ6 and Ψ5 = Ψ7. With the use of the additional results

m ⊗ m + m
′ ⊗ m

′ = 2λ2
1 cos2 φ e1 ⊗ e1 + 2λ2

2 sin2 φ e2 ⊗ e2, (2.11)

m⊗Bm+Bm⊗m+m
′⊗Bm

′+Bm
′⊗m

′ = 4λ4
1 cos2 φ e1⊗e1+4λ4

2 sin2 φ e2⊗e2, (2.12)

m ⊗ m
′ + m

′ ⊗ m = 2λ2
1 cos2 φ e1 ⊗ e1 − 2λ2

2 sin2 φ e2 ⊗ e2, (2.13)

we can see from (2.2) that σ is co-axial with B and that the three principal stresses are

given by

σ1 = 2Ψ1λ
2
1 + 2Ψ2(λ

2
1λ

2
2 + λ2

1λ
2
3) + (4Ψ4 + 2Ψ8)λ

2
1 cos2 φ + 8Ψ5λ

4
1 cos2 φ − p, (2.14)
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σ2 = 2Ψ1λ
2
2 + 2Ψ2(λ

2
1λ

2
2 + λ2

3λ
2
2) + (4Ψ4 − 2Ψ8)λ

2
2 sin2 φ + 8Ψ5λ

4
2 sin2 φ − p, (2.15)

σ3 = 2Ψ1λ
2
3 + 2Ψ2(λ

2
1λ

2
3 + λ2

2λ
2
3) − p. (2.16)

Similar expressions have previously been given by Ogden [30] for the case when the two

families of fibres are symmetrically disposed in a plane.

With the use of the membrane assumption σ3 = 0, we may eliminate p from the above

expressions and then show that

σ1 = λ1
∂Ψ̂

∂λ1

, σ2 = λ2
∂Ψ̂

∂λ2

, (2.17)

where

Ψ̂(λ1, λ2) = Ψ(I1, I2, I4, I5, I6, I7, I8), (2.18)

and λ3 has been eliminated using λ1λ2λ3 = 1.

For a 3-layered arterial model, simple consideration of equilibrium shows that the

principal stresses in the composite artery are given by

σα =
∑

i

H(i)

H
σ(i)

α = λα

∂

∂λα

∑

i

H(i)

H
Ψ̂(i), α = 1, 2; no summation on α, (2.19)

where the summation is over the three composite layers with superscript (i) signify-

ing association with the individual layers (for instance H(i) is the uniform thickness of

the i-th layer). The above expression motivates the introduction of the following effec-

tive/homogenized strain-energy function:

W (λ1, λ2) =
∑

i

H(i)

H
Ψ̂(i), (2.20)

and in terms of it the expressions for the principal stresses have the same form as for the

case of an isotropic and homogeneous hyperelastic membrane tube.

3 Bifurcation condition

The equilibrium equations can be obtained by minimizing the energy functional

E =

∫ L

−L

W (λ1, λ2)2πRHdZ − P

∫ L

−L

πr2z′dZ, (3.1)

where L is the length of the artery in the un-inflated configuration and P is the internal

pressure; see Fig.1. On setting the first variation of E to zero, we obtain

(

HW2r
′

λ2

)

′

+ Prz′ − HW1 = 0, (3.2)

(

HW2z
′

λ2

)

′

− Prr′ = 0, (3.3)
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where W1 = ∂W/∂λ1, W2 = ∂W/∂λ2. The equilibrium equation (3.3) can be integrated

straight away to yield
HW2z

′

λ2

− 1

2
Pr2 = constant ≡ C2, (3.4)

which reflects the fact that the resultant in the Z-direction at any cross section must be

a constant. The two equilibrium equations also have another integral

W − λ2W2 = constant ≡ C1, (3.5)

as first noted by Pipkin [31].

Since we are only concerned with localized deformations, the artery can effectively be

assumed to be infinite. On taking the limit Z → ∞ in (3.2), (3.4) and (3.5), we obtain

P =
HW

(∞)
1

r∞z∞
, C2 = HW

(∞)
2 − 1

2
Pr2

∞
, C1 = W (∞) − z∞W

(∞)
2 , (3.6)

where the superscript (∞) signifies evaluation at

λ1 = r∞, λ2 = z∞, (3.7)

r∞ and z∞ being the radius and z′ at infinity, respectively. In our subsequent analysis,

z∞ is assumed to take a fixed value and r∞, related to pressure through (3.6)1, is taken

to be the single control parameter in our bifurcation analysis.

We note that the uniform solution (3.7) is always a solution. To investigate whether a

non-uniform solution can bifurcate from this uniform solution or not, we write r = r∞ +y

and assume that |y| ≪ 1. Equation (3.5) can then be used to find the Taylor expansion

λ2 = z∞ + d1y +
1

2
d2y

2 + · · · , (3.8)

and (3.4) used to find the Taylor expansion

z′ = z∞ + g1y +
1

2
g2y

2 + · · · , (3.9)

where d1, d2, g1, g2 are constants that can easily be determined with the use of a symbolic

manipulation package such as Mathematica [32]. On substituting these expansions into

λ2 =
√

r′2 + z′2, we obtain

y′2 = ω(r∞, z∞)y2 + O(y3), (3.10)

where

ω(r∞, z∞) =

(

r∞W
(∞)
11 − W

(∞)
1

)

W
(∞)
22 z2

∞
− r∞

(

W
(∞)
1 − W

(∞)
12 z∞

)2

r∞z∞W
(∞)
12 W

(∞)
22

, (3.11)

and W12 = ∂2W/∂λ1∂λ2 etc, with superscripts (∞) signifying evaluation at the state (3.7).

The solution of (3.10) changes character when ω(r∞, z∞) = 0. It can be shown that this is
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the condition for the onset of localizations [15]. Previously this bifurcation condition has

been derived by Haughton and Ogden [33] as the condition for axi-symmetric buckling of

a membrane tube at zero axial mode number (or equivalently infinite tube length). More

recently, an alternative derivation of this bifurcation condition was given by Rodŕıguez

and Merodio [34] who also explored certain aspects of the bifurcation interpretation of

aneurysm formation.

4 Numerical results

4.1 Results based on Holzapfel et al.’s [25] multi-layer model

Following Holzapfel et al. [25], we ignore the effect of the intima and assume that the

behaviour of each of the two other layers may be modeled by a strain energy function of

the form

Ψ = µ(I1 − 3) +
k1

2k2

∑

α=4,6

(

exp [k2(Iα − 1)2] − 1
)

, (4.1)

where µ and k1 are material parameters with the dimension of stress, and k2 is a dimen-

sionless material parameter. It is understood that the material parameters µ, k1, k2, φ

take different values for the media and adventitia, respectively. Holzapfel et al. [25] gave

18 sets of values for these parameters by fitting this model to the experimental data and

results given by Fung et al. [22] and Chuong and Fung [35] for the carotid arteries of

a young rabbit. Similar values for human arteries do not seem to be available in the

literature, although we note that parameter values for human coronary arteries have been

given by Holzapfel et al. [36] for the extended strain energy function

Ψ = µ(I1 − 3) +
k1

2k2

∑

α=4,6

(

exp
{

k2[(1 − ρ)(I1 − 3)2 + ρ(Iα − 1)2]
}

− 1
)

, (4.2)

where ρ ∈ [0, 1] is an additional parameter. This extended strain energy function will be

discussed in the final section.

We use the command “ContourPlot” in Mathematica to plot ω(r∞, z∞) = 0 in the

(r∞, z∞)-plane. We find that this bifurcation condition has a solution only for the 9th set

of material parameters, that is when

µ(a) = 0, k
(a)
1 = 6.1998 kPa, k

(a)
2 = 0.7520, φ(a) = 45o,

µ(m) = 0, k
(m)
1 = 4.94 kPa, k

(m)
2 = 0.6246, φ(m) = 0o, (4.3)

where superscripts (a) and (m) correspond to the adventitia and media, respectively.

The corresponding solution is shown in Fig.2. Interestingly, this is the only set in

which the media fibres are in the circumferential direction. For the three choices z∞ =

1, 1.3, 1.6, the corresponding bifurcation values of r∞ and the associated pressures are
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Figure 2: Solution of ω(r∞, z∞) = 0 when the artery is described by the two-layer model.

The label (9) on the curve signifies association with the 9th set of material parameters in

Table 1 of [25].

1.8 2.0 2.2 2.4 2.6 2.8

-20

-10

10

20 0.38 0.35 0.3

r∞

ω(r∞, 1)

Figure 3: Variation of ω(r∞, 1) when the values of k
(1)
2 and k

(2)
2 are simultaneously mul-

tiplied by 0.38, 0.35, 0.3, respectively.

(1.636, 434 mmHg), (1.988, 2.25× 104 mmHg), (2.251, 3.36× 106 mmHg), respectively. To

bring each of these three pressures down to 120 mmHg, the required reductions in r∞ are

11%, 25%, 35%, respectively. Fung et al. [22] gave 1.6 as the approximate axial in situ

stretch for the carotid artery. If this is the case, then bifurcation is unlikely to occur

unless pathological changes can also induce a reduction in the axial stretch.

Although bifurcation is not possible for the other 17 sets of material parameters, we

now give an indication on how much the material parameters need to be varied in order

to induce bifurcation. We first consider the effect of reducing the values of k
(a)
2 and k

(m)
2

by a common factor. For the first set of material parameters given in [25], it is found

that ω(r∞, 1) begins to have a zero when the above material values are reduced by a

factor of 0.3935. In Fig.3 we have shown how the first zero of ω(r∞, 1) moves to the left

as the material values are subject to more reductions. It is found that as we increase
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Figure 4: Solution of ω(r∞, z∞) = 0 for the Choi and Vito [26] material model

z∞ gradually, it becomes increasingly more and more difficult to induce a bifurcation.

For example, when z∞ = 1.4, 1.6, respectively, the required minimum reduction factor

becomes 0.1 and 0.06, respectively.

We have also considered the effect of reducing k
(a)
1 and k

(m)
1 by a common factor while

keeping the other material parameters unchanged. It is found that this mechanism of

inducing aneurysm formation is much less efficient. For example, when z∞ = 1, the

required reduction factor is 0.0025545 with the associated zero occurring at r∞ = 1.8.

4.2 Numerical results based on Choi and Vito’s [26] single-layer

model

Vande Geest et al. [6] carried out a series of biaxial experiments on human abdominal

aortic aneurysm tissues and compared their mechanical properties with those of age-

matched healthy abdominal aorta tissues. They fitted their experimental data to the

following strain-energy function proposed by Choi and Vito’s [26]:

W = b0

{

e
1

2
b1E2

θθ + e
1

2
b2E2

zz + eb3EθθEzz − 3
}

, (4.4)

where the b’s are material constants and the E’s are the components of the Green-Lagrange

strain tensor E = (C − I)/2 referred to cylindrical polar coordinates (r, θ, z) in the

reference configuration. They gave 8 sets of parameter values for healthy abdominal aorta

tissues. Again using the command “ContourPlot” in Mathematica to plot ω(r∞, z∞) = 0 in

the (r∞, z∞)-plane, we find that ω(r∞, z∞) = 0 has solutions for all the 8 sets of parameter

values. Fig.4 shows a typical plot of these solutions for their first set of parameter values

given by

b0 = 0.13 kPa, b1 = 391.6, b2 = 302.6, b3 = 309.8. (4.5)

Plots of ω(r∞, z∞) = 0 for the other 7 sets of material parameters are qualitatively
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similar, and in particular they all have the double-branch behaviour in Fig.4. It is not

clear from [6] what the axial pre-stretch is in the human arteries considered, and so we

shall consider some typical values. For z∞ = 1, 1.3, 1.6, respectively, we find that the

first bifurcation value of r∞ is equal to 1.19, 1.19, 1.35, with corresponding pressure equal

to 7.62 × 104 mmHg, 4.61 × 1010 mmHg, 8.94 × 1043 mmHg, respectively. These pressure

values are clearly unrealistic. However, the large pressure values are due to the fact that

the pressure is an exponentially growing function of r∞ for each fixed z∞, and to bring

these pressures down to 120 mmHg, we only need to reduce the critical values of r∞ by

6.7%, 14%, and 25%, respectively. As shown by Fu and Xie [18], such reductions can

be achieved by geometrical and/or material imperfections such as localized weakening of

collagen fibres.

5 Conclusion

We have considered two material models to argue that the initial formation of aneurysms

can be modeled as a bifurcation phenomenon. Using the single-layer model proposed

by Choi and Vito [26], with material parameters given by Vande Geest et al. [6] for

healthy human aortic arteries, we have demonstrated that bifurcation can be induced by

geometrical and material imperfections. This is consistent with the established view that

localized weakening of collagen fibres serves as a precursor to aneurysm formation. For the

multi-layer model proposed by Holzapfel et al. [25], with material parameters given for

carotid arteries of a young rabbit, our calculations show that bifurcation is much harder

to achieve. This is consistent with the well-known result that aneurysms are very rare in

animals [37].

We observe that Fu and Xie’s [18] claim that “a 10% maximum wall-thinning can

induce a 19% reduction in the critical circumferential stretch” was based on a convenient

choice of localized wall-thinning profile, and they did not make any attempt to find the

types of imperfections that will induce maximum reduction in the critical circumferential

stretch. Also, it is well-known that a localized bulge can be maintained at a much lower

pressure than the initiation pressure. Thus, the amount of reductions in the initiation

pressure quoted in our discussion in the previous section is not the maximum possible,

and bifurcations are probably easier to induce than we have shown, especially if dynamic

effects are also taken into account.

Finally, we wish to point out that the bifurcation condition is very sensitive to the

choice of the material model. To illustrate this point, we have also solved the bifurcation

condition for two additional material models. The first is the following strain energy

function proposed by Chuong and Fung [35]:

W =
1

2
c
{

eQ − 1
}

,
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Q = b1E
2
θθ + b2E

2
zz + b3E

2
rr + 2b4EθθEzz + 2b5EzzErr + 2b6ErrEθθ, (5.6)

where c and the b’s are material constants. Chuong and Fung [35] obtained 18 sets of

values for these constants by fitting their model to the experimental results of Fung et

al [22] for the carotid arteries of five normal rabbits. In fact the 18 sets of material

parameters given by Holzapfel et al. [25] are obtained by requiring their model and

Chuong and Fung’s [35] model to give the same response when each artery is subjected to

bi-axial stretching. Holzapfel et al. [25] demonstrated that their model and Chuong and

Fung’s [35] model then predicted very similar behaviour for uniform inflation. However,

we find that these two models give very different bifurcation results. Firstly, according

to [35], the bifurcation condition does not have any solution for the 9th set of material

parameters, but instead it has solutions for the 4th, 6th, 8th, 15th, 16th and 17th sets of

material parameters; see Fig. 5. Secondly, the bifurcation prediction for the 4th, 6th, 8th,

15th, and 17th sets of parameters does not seem to be realistic: the corresponding values

of r∞, and hence the pressure, is too low, which makes aneurysm formation too easy. The

prediction for the 16th set looks feasible: at z∞ = 1.6, the corresponding r∞ and pressure

are 1.88 and 263 mmHg, respectively. We also observe that for the 8th, 16th and 17th

sets of parameter values, the denominator in (3.11) has zeros for values of r∞ close to

unity, signifying violation of the strong ellipticity condition. This undesirable feature of

Chuong and Fung’s [35] model has previously been pointed out by Wilber and Walton

[38]. These additional calculations serve to highlight the fact that very accurate material

modelling is crucial if the bifurcation condition is expected to give reliable predictions

about aneurysm formation.
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Figure 5: Solution of ω(r∞, z∞) = 0 when the artery is described by Chuong and Fung’s [35]

model. The label (4), for instance, indicates association with the 4th set of material material

parameters given by Chuong and Fung’s [35].

We finally consider the material model (4.2) for which Holzapfel et al.[36] have given

13 sets of parameter values for human coronary arteries with nonatherosclerotic intimal

thickening. It is found that the bifurcation condition does not have a solution for any set

of the parameter values. This result and those given in Section 4.2 are consistent with the

12



fact that abdominal aortic aneurysms are more common than other forms of aneurysms.
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