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Introduction

Despite advances in medical care, the preterm birth (PTB) 

rate has been steady globally at up to 10.0% for the past 

several decades [1]. The most common phenotype (60%) of 

PTB occurs spontaneously with 30–40% being preceded by 

preterm premature rupture of the fetal membranes (pPROM) 

[1]. Current interventions to reduce the risk of preterm labor 

have been designed primarily based on our understanding of 

signaling at the maternal myometrium, specifically in terms 

of minimizing contractions to prolong gestation. A higher 

rate of spontaneous PTB globally warrants a better under-

standing of these signals and their mechanisms that initiate 

normal term pregnancies, which can provide insights into 

the pathological activation of signals associated with preterm 

parturition [2].

PTB and pPROM are associated with intra-amniotic inflam-

mation [3-8]. Sterile inflammation, in the absence of infec-

tion, is increasingly being reported in PTB and pPROM and 
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is hypothesized to be a trigger for term birth as well [9,10]; 

however, etiologies contributing to sterile inflammation in 

adverse pregnancies are difficult to ascertain. This is partly 

because inflammatory pathways and biomarkers overlap, 

irrespective of the etiology [11]. Both infectious and non-

infectious risk factors during pregnancy can cause oxidative 

stress (OS) and OS-mediated damage to cells and cellular 

organelles, which can lead to inflammation [12,13]. Similarly, 

in normal term pregnancies, OS-induced cellular damage 

and sterile inflammation can contribute to labor initiation 

pathways. Increased inflammation, irrespective of term or 

preterm status, is associated with decidual activation [14,15], 

transition of the quiescent myometrium to an active contrac-

tile state [16,17], and cervical ripening [2,18]. However, the 

mechanisms that generate sterile inflammatory mediators 

that can affect normal term parturition have still not been 

elucidated. 

Although signals initiating parturition may arise from both 

fetal and maternal uterine tissues; a precise understanding of 

the true initiator is yet to emerge. It is unclear on who (mother 

vs. fetus) determines the timing of the inflammatory activa-

tion on maternal uterine tissues. One of the theories is based 

on fetal organ maturation and endocrine signaling [19-23]. 

Mature fetal organs release various biochemical mediators 

into the uterine environment [24]. These biochemicals are 

pro-inflammatory and can increase the overall inflammatory 

load in feto-maternal uterine tissues to induce labor. A classic 

example was provided by Mendelson et al. [25], who report-

ed the role of surfactant protein-A and platelet-activating 

factor (PAF) expression, which increased in the developing 

fetal lung. These proteins can increase myometrial inflam-

mation and labor. Endocrine signals are also well-reported 

time determinants of parturition [26-30]. Tan et al. [17] and 

Mesiano et al. [31] described the functional progesterone 

withdrawal theory based on the changes in progesterone 

receptor function in the myometrium. The quiescent state 

of the myometrium is maintained during pregnancy via 

progesterone-progesterone receptor (PR) B function. At term, 

this state is compromised and the active labor state is gener-

ated when PRA phosphorylation and progesterone binding 

contribute to a pro-inflammatory milieu [17,32]. Similarly, 

cervical remodeling and ripening is also impacted by changes 

in the endocrine and inflammatory mediators in response 

to fetal maturation signals [18]. In summary, parturition is a 

timed event where the fetus signals mature through various 

biochemical and endocrine mediators. These biochemical 

mediators include, but are not limited to, platelet activa-

tion factor [33], endothelins [34-36], transforming growth 

factor [37], and platelet-derived growth factor, all of which 

enhance inflammation in various feto-maternal tissues. Thus, 

inflammation disrupts homeostasis of various uterine func-

tions, resulting in labor-associated changes. 

The functional impact on maternal uterine tissues imposed 

by various biochemical signals and the signal-generated path-

ways leading to inflammation, which transition a quiescent 

state to an active labor state, has been well-reported [38-43]. 

However, very few studies have examined the contributions 

of fetal tissues, specifically fetal membranes (amniochorion), 

in this process [44-56]. Fetal membranes line the intrauterine 

cavity where they are enriched by the amniotic fluid com-

posed of various biochemicals produced by the maturing 

fetal organs. Disruption of the functional and mechanical 

integrity of the fetal membrane, chorioamnionitis (infiltration 

of leukocytes), or mechanical derangement in response to 

various endogenous and/or exogenous factors are anteced-

ent to both term and preterm parturition [48,57-60]. Since 

fetal membranes act as a barrier between the fetus and uter-

ine tissues, they play a major role in maintaining pregnancy 

by protecting the fetus. Fetal membranes are hypothesized 

to promote parturition as they are exposed to various bio-

chemical and physiological stressors at term. These stressors 

can disrupt fetal membrane homeostasis, leading to their 

dysfunction and/or rupture. A stressed and inflamed fetal 

membrane can signal term parturition. Our laboratory has 

recently elucidated the mechanisms by which OS inducers 

contribute to parturition by forcing fetal membranes to un-

dergo senescence, a mechanism of aging [61]. The aging of 

a cell is a non-reversible process and is often associated with 

sterile inflammation, referred to as the senescence-associated 

secretory phenotype (SASP) [62]. The rest of this review will 

be dedicated to summarizing the recent developments in 

fetal membrane senescence research and how membrane 

senescence may signal term and preterm parturition.

Fetal membrane

1. Fetal membrane development

Fetal membranes consist of 2 major cell layers: a single cu-

boidal amnion epithelial layer and the chorion trophoblast 
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layer. Both of these layers are connected to a collagen-rich 

extracellular matrix via type IV collagen-rich basement mem-

branes. Amnion and chorion mesenchymal cells can be seen 

dispersed in this extracellular matrix. The development of the 

amnion and chorion begins with embryogenesis, although 

they do not participate directly in the formation of the em-

bryo or fetus. Like the fetus, early growth of the amnion and 

chorion layers is rapid and independent of each other. The 

formation of the amniochorion as a combined structural unit 

is completed between the 13th and 15th week of gestation. 

The growth and development of the amniochorion correlate 

with fetal growth, with a longevity period of 40 weeks (term 

gestation period).

2. Fetal membrane senescence

Fetal membrane cells have stem cell-like properties, as they 

are capable of growth, DNA replication, and transition at 

term, as well as exhibiting stem cell transcription factors [63]. 

Recent work using primary amnion epithelial cells showed 

that these cells can proliferate, migrate, express stem cell 

markers, and transition into other cell types [63]. These 

properties are essential for fetal membrane remodeling and 

to maintain membrane integrity, as membranes during preg-

nancy are constantly subjected to shear stress and stretching 

because of the fluid and fetus, respectively. During growth, 

membrane cells are constantly shed and gaps referred to as 

microfractures are often created [64]. Stem cell-like proper-

ties, proliferation, and cell transitions help to rebuild any 

structural compromises created by cell shedding [63]. This 

process also generates localized inflammation, which is re-

quired for membrane matrix remodeling. Uterine cavity OS 

levels change during gestation [65-67]; however, redox bal-

ance during pregnancy sustains this remodeling process as 

well as other reproductive functions [68]. Interestingly, the 

process is stalled as the membrane reaches the end of its lon-

gevity period at term and demonstrates structural, function-

al, and biomolecular changes that are characteristic of aging 

[61]. Two key function-based definitions proposed by Masoro 

[69] and Finch [70] may aid in understanding the biological 

aging process of fetal membranes: 1) Fetal membranes are 

expected to deteriorate during gestation once its maturation 

is completed around the 12th week of pregnancy, and will 

be vulnerable to subtle changes in the intrauterine environ-

ment, decreasing survival ability; 2) Senescence is a mecha-

nism associated with the deterioration process of the mem-

branes, which alters its function and decreases vitality [71]. 

3. Mechanism of fetal membrane senescence

In normal pregnancies, the methodical progression of senes-

cence is under physiological control and is an inevitable pro-

cess [61]. Senescence in fetal membranes is a telomere-de-

pendent process, where telomere (cap structures protecting 

chromosomal edges and biological markers of aging) lengths 

are progressively shortened as gestation progresses [71-73]. 

The “Hayflick Phenomenon” explains this process by demon-

strating the halt in cell division after a certain number of divi-

sions [74,75]. Telomere length reduction in fetal membranes 

inversely correlates with fetal growth and reduction peaks at 

term when the fetus is mature [76,77]. One of the key accel-

erators of telomere length reduction is OS, as the guanine-

rich telomere region is highly susceptible to OS [78,79]. As 

mentioned previously, redox balance maintains the structural 

remodeling of the membranes during gestation. However, 

term pregnancy is characterized by increased intrauterine OS 

due to the following reasons: 1) increase in the metabolic 

demands of the fetus [80,81]; 2) no change in the supplies 

of the maternal substrate to meet fetal metabolic demands 

[82,83]; 3) no change in the antioxidant status in both the 

fetal and maternal uterine tissues at term [53,84]; and 4) 

increase in the reactive oxygen species levels in the amniotic 

fluid at term when compared to other periods of gestation 

[85-88]. OS increase accelerates an already progressing ag-

ing process in fetal membranes through the activation of the 

p38 mitogen-activated protein kinase (p38MAPK) pathway, 

a stress-associated signaling pathway. OS specifically causes 

damage to various cell components, and this damage in fetal 

membranes can result in the activation of p38MAPK to cause 

senescence [12,61,71,89-93]. This mechanism of fetal mem-

brane aging was confirmed when the antioxidant, N-acetyl 

cysteine, and a p38MAPK inhibitor reversed OS-induced 

and p38MAPK-mediated senescence and the senescence-

associated secretory phenotype (SASP) in our in vitro and in 

situ animal models [13,90,92-94].

4. Consequence of fetal membrane aging

Fetal membranes attain an irreversible senescent phenotype 

due to increased OS prior to the initiation of labor at term. 

OS-p38MAPK-mediated senescence also diminishes the pro-

liferative and transitional capacities of fetal membrane cells, 

thereby losing their functional and mechanical properties 
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[13,55,63,93,95]. This deterioration in fetal membrane func-

tion at term is a natural and physiological indicator of fetal 

membrane longevity. As mentioned previously, the dysfunc-

tional status of fetal membranes coincides with fetal organ 

maturation, thereby indicating fetal readiness for delivery. 

Senescence of the fetal membrane increases SASP, a unique 

inflammatory signature [61]. Therefore, senescence of fetal 

membranes can be detrimental to the existence of pregnan-

cy as the inflammatory signals (SASP) from senescent fetal 

membranes are uterotonins and could potentially trigger par-

turition [61]. Besides SASP, senescence-associated cellular in-

jury increases damage-associated molecular patterns (DAMPs; 

which consist of high mobility group box 1 [HMGB1], uric 

acid, S100 proteins [a family of 25 members], interleukin 

[IL]-33, heat-shock protein 70, and telomere fragments) in 

cell-free fetal DNA (cffDNA) from term membranes. DAMPs 

from senescent fetal membranes act as signals arising from 

the maturing fetus and generate inflammation in other in-

trauterine compartments, readying them for labor. We have 

also reported how DAMPs may exaggerate an ongoing in-

flammatory onslaught on fetal membrane and other tissues. 

A description of their functional contributions in terms of 

increasing overall inflammation is provided below.

HMGB1 exists predominantly as a nuclear 25 kDa, non-

histone chromatin-associated protein that binds double-

stranded DNA and stabilizes nucleosomes during DNA repair 

and recombination [96,97]. However, the acetylation of 

lysine residues translocates HMGB1 to the cytoplasm, where 

it functions as a pro-inflammatory cytokine [98,99]. HMGB1 

is known to be expressed in the human endometrium [100], 

placenta [101,102], decidua [101,103], cervix [104], fetal 

membrane cells [105,106], and immune cells, and has been 

reported in chorioamnionitis cases [105,107,108]. Higher 

HMGB1 concentrations in the amniotic fluid of laboring (term 

and preterm) vs. non-laboring women suggest that it has a 

role in parturition [9]. An increase in HMGB1 indicates cel-

lular damage, suggesting that it can be a critical mediator in 

both infectious and sterile inflammatory processes, as seen 

in both preterm and term labors. Buhimschi’s lab showed 

the impact of HMGB1 in animal inflammation models and 

documented that RAGE-dependent HMGB1 induced the 

activation of fetal inflammation [109]. In our own studies us-

ing fetal membrane cells, we were able to demonstrate that 

HMGB1 secretion was higher in OS-induced fetal membrane 

cells [110]. HMGB1 utilizes a positive feedback loop to en-

hance fetal cell senescence, tissue injury, and inflammatory 

cytokine production, which are capable of functioning as 

pro-parturition molecules. The enhancement of senescence 

by HMGB1 in these cells is mediated via Toll-like receptors 

(TLRs) and by increasing p38MAPK activation [110]. Interest-

ingly, antioxidant, N-acetyl cysteine, and p38MAPK inhibitor, 

SB203580, treatments reduced the pro-senescent and pro-

inflammatory effect of HMGB1 on fetal membrane cells [110]. 

This mechanism is similar to the OS effect seen on fetal 

membranes, suggesting that HMGB1 released from an OS-

damaged cell can enhance senescence and inflammation in a 

feed-forward loop [92].

Dr. Mark Phillippe’s group [111,112] has suggested that 

cffDNA in maternal circulation may activate human partu-

rition. In his report, Dr. Phillippe [111]mentioned that an 

increase in cffDNA, which is released during apoptosis in 

the placenta and fetal membranes at term, has the ability to 

stimulate TLR9, leading to the increased release of cytokines 

and chemokines. One important component of cffDNA is 

fragmented telomeres. Telomere length in the fetal mem-

branes decreases progressively throughout gestation with 

the shortest telomeres seen at term, which is consistent with 

in utero aging [72]. We also found a significant labor-asso-

ciated increase in the abundance of cell-free fetal telomere 

fragments (cffTFs) in the amniotic fluid [73,113]. Additionally, 

cffTFs are also reported to have similar functional effects as 

HMGB1. To determine the functional consequences of in-

creased cffTFs, in vitro and in situ animal model studies were 

conducted. Similar to the HMGB1 reports, cffTFs produced 

a positive feedback loop to enhance fetal cell senescence, 

tissue injury, and inflammatory cytokine production. Senes-

cence induced by cffTFs were also associated with p38MAPK 

activation. To further determine the impact of cffTFs in par-

turition, we injected cffTFs into mouse models of pregnancy, 

thereby resulting in mouse fetal membrane p38MAPK acti-

vation, senescence, and inflammatory cytokine production 

[94,113].

Although our studies were restricted to HMGB1 and cffTFs, 

other reports showed an association between other DAMPs 

like uric acid [102,114], S100 proteins [109,115], IL-33 [116], 

and HSP70 [117] during pregnancy complications [118]. In 

summary, parturition signaling can be viewed from the fetal 

membrane perspective, where a novel paracrine signaling 

mechanism mediated by fetal tissue stress (i.e., physiologi-

cal or pathophysiological senescence and/or OS) generates 
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sterile inflammation within the maternal-fetal interface (fetal 

membranes, decidua, and myometrium). Term labor can be 

triggered by factors collectively referred to as DAMPs, which 

are produced from senescent fetal membrane cells.

Can the mechanism of senescence 
explain the pathobiology of preterm 
birth and preterm premature rupture of 
the fetal membranes?

The ultimate goal of all of these studies is to identify the 

initiators and mechanistic effectors of PTB and pPROM. Hav-

ing determined that fetal membrane senescence may be 

one of the mechanisms triggering parturition at term, we 

examined similar pathways in PTB and pPROM. For this, fetal 

membranes and amniotic fluid samples were collected from 

women with PTB and pPROM. Molecular, biochemical, and 

histological markers were used to document differences in 

OS and antioxidant enzyme status, DNA damage, second-

ary signaling, MAPK activation, and senescence activation 

between the membranes in both groups. OS was higher and 

antioxidant enzymes were lower in pPROM when compared 

to PTB. PTB membranes had minimal OS and DNA damage, 

no p38MAPK activation, and minimal signs of senescence 

[119]. Conversely, pPROM had higher numbers of cells with 

OS, DNA damage, p38MAPK activation, and signs of senes-

cence [119]. Telomere lengths were also substantially shorter 

in pPROM membranes than in PTB membranes and fetal cord 

blood samples supported the hypothesis that pPROM may 

have a pathology due to premature aging of membranes [72]. 

Histologically and biochemically, pPROM membranes resem-

bled normal term-delivered membranes, whereas PTB mem-

branes were distinctly different. Both pPROM and normal 

term birth are associated with fetal membrane senescence, 

inflammation, and dysfunction. Hence, pPROM is a disease 

of the fetal membrane where the premature activation of se-

nescence predisposes them to rupture [120]. We concluded 

that PTB and pPROM arose from distinct pathophysiological 

pathways. OS and OS-induced cellular damage are likely de-

terminants of signaling pathways and phenotypic outcomes. 

This conclusion does not rule out OS in PTB, as a subset of 

women with exposure to OS may still develop this pathway, 

ultimately leading to labor; however, it is more dominant in 

pPROM. We also postulate that pPROM is a disease of the 

fetal membrane and senescence, with senescence leading to 

dysfunctions that act as the primary mediators of this mecha-

nism [120].

How does fetal membrane senescence 
signal parturition?

As detailed previously, in vitro and in situ animal models dem-

onstrated the consequences of fetal membrane senescence. 

Senescence and sterile inflammation mediated by SASPs and 

DAMPs are uterotonins, which are capable of inducing labor. 

However, the question remains whether this inflammation 

and cellular damage is restricted to the membranes or if 

membrane-derived inflammatory mediators are propagated 

to other feto-maternal uterine tissues to trigger inflammatory 

changes. Although the diffusion of these mediators is pos-

sible, it is unlikely that molecules like HMGB1 can traverse 

through the feto-maternal tissue layers and still be function-

ally viable at distant sites [121]. Our group has hypothesized 

that signal propagation between feto-maternal tissues can 

be effectively achieved via extracellular vesicles, specifically 

exosomes, which are bioactive, spherical, cell-derived vesicles 

(30–150 nm in size) that are secreted during the process of 

exocytosis. Exosomes contain molecular constituents of their 

cell of origin, including proteins and RNA that reflect the 

physiological state of the cell source [122-125]. In addition 

to common membrane and cytosolic molecules, exosomes 

harbor unique cell-specific subsets of proteins. Exosomes 

are released from the cell when multi-vesicular bodies fuse 

with the plasma membrane. They contain high concentra-

tions of cholesterol and detergent-resistant lipid membranes, 

which make them extremely stable and efficient carriers of 

molecules across tissue layers [126-128]. Exosomes mostly 

act as transporters of paracrine signals between tissues, but 

can regulate intracellular pathways by sequestering signaling 

molecules from the cytoplasm, thereby reducing their bio-

availability [127,128].

Amniochorion cell-derived exosomes 
carry inflammatory mediators

To test whether fetal membrane cells produced exosomes, 

we isolated and characterized primary amnion cell-derived 
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exosomes. We also treated amnion cells with OS-inducing 

agents to mimic the conditions experienced at term. Am-

nion cells were previously shown to produce exosomes that 

exhibited classic characteristics; however, OS treatment 

changed their cargo contents [129]. Inflammation was also 

witnessed in exosomes derived from cells grown under nor-

mal conditions and in cells exposed to OS [129]. The nature 

of inflammatory mediators differed between normal and OS-

treated exosomes. Bioinformatic analysis of the proteomic 

contents in exosomes derived from cells grown under nor-

mal cell culture conditions exhibited nuclear factor (NF)-κB 

signaling pathways, whereas transforming growth factor β 

(TGFβ)-related signaling was dominant in OS-exposed cell-

derived exosomes. Although both represent inflammation, 

the underlying cellular physiology contributing to the distinct 

inflammatory mediators in the exosomes reflects the specific 

exposure and the OS-associated state of cells [129]. TGFβ has 

been previously reported to increase with term labor and is 

an activator of p38MAPK, a senescent inducer in fetal mem-

branes [95]. Besides these inflammatory pathways, senescent 

amnion cell-derived exosomes (from amnion cells grown 

under OS conditions) contain HMGB1 and cffTFs. These exo-

somes also carry both genomic and mitochondrial DNA [130]. 

Although our published reports focus on amnion cell-derived 

exosomes, ongoing work in our laboratory demonstrates 

that amnion mesenchymal cells and chorion mesenchymal 

and trophoblast cells also generate exosomes with distinct 

cargo contents in response to various stimulants.

Trafficking of exosomes carrying 
fetal signals between feto-maternal 
compartments

Propagation of senescent fetal cell-derived signals via exo-

somes and the trafficking of exosomes from fetal to mater-

nal compartments was previously determined using animal 

models [131]. In this study, pregnant CD-1 mice were intra-

amniotically injected on gestational days 16 and 17 with exo-

somes isolated from primary human amnion epithelial cells 

fluorescently labeled with the lipophilic dye, 1,1-dioctadecyl-

3,3,3,3-tetramethylindotricarbocyanine iodide (DiR). In vivo 

imaging of the mice showed fluorescence in the uterus on 

the exosome-injected side, whereas the uterine tissues on 

the non-injected side and in saline and dye alone-injected 

animals remained negative. Histological analysis of the pla-

centa showed exosome migration from the fetal to the ma-

ternal side of the placenta. Fluorescence released from the 

exosomes was seen in maternal blood samples and in the 

maternal uterus and kidneys, demonstrating that exosomal 

cargo can be carried via the systemic route from the fetus to 

the maternal side of the uterine tissues during pregnancy. 

This supports our hypothesis that fetal signals can be deliv-

ered via exosomes to the maternal side. A similar form of 

exosomal trafficking was also reported by other study groups 

[132].

Senescent fetal membrane-derived 
exosomes cause functional changes in 
maternal uterine cells

After documenting fetal exosome traffic to the maternal 

side, we tested the hypothesis that fetal exosomes could 

produce inflammatory changes in maternal uterine cells. 

The pro-inflammatory effect of fetal exosomes on maternal 

cells will be considered as a signaling mechanism by the fetal 

membranes to initiate the labor process by enhancing the in-

flammatory load. To test this theory, primary amnion epithe-

lial cells were grown in normal cell cultures or exposed to OS, 

and myometrial and decidual cells were treated with various 

doses of exosomes derived from amnion cells. Treatment re-

sulted in the increased production of inflammatory mediators 

(IL-6, IL-8, and PGE2) and activation of NF-κB. This is sugges-

tive of fetal membrane cell-derived exosomes contributing to 

labor-associated inflammatory changes in maternal uterine 

cells [133]. Similar to our data, Holder et al. [134] showed 

that macrophage-derived exosomes caused the release of 

pro-inflammatory cytokines from the placenta. Another study 

suggested the ability of the placenta to respond to maternal 

inflammatory signals mediated by the interaction of maternal 

immune cell exosomes [134].

Recently, we tested the hypothesis that exosomes, as para-

crine signaling molecules, can cause parturition. For this, 

maternal plasma exosomes from CD-1 mice were isolated 

and characterized throughout gestation and the biological 

pathways associated with differentially-expressed cargo pro-

teins were determined. The results indicated that the shape 

and size of the exosomes remained constant throughout the 

gestational period; however, a progressive increase in the 
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quantity of the exosomes carrying inflammatory mediators 

was observed from embryonic day 5 (E5) to E19. Moreover, 

intraperitoneal injection of E18 exosomes (enriched in in-

flammatory mediators) into E15 mice caused them to un-

dergo PTB when compared to mice that were injected with 

E9 exosomes (minimal levels of inflammatory mediators) or 

normal saline. The injection of E18 exosomes produced in-

flammation in the cervix and uterus on the penultimate day 

of delivery. Thus, these results support the functional role of 

exosomes as paracrine signaling molecules in causing par-

turition. Notably, this study used total exosomes rather than 

fetal exosomes; therefore, it is not a true in situ replication of 

the reported in vitro data.

Studies have also reported about the role of exosomes in 

implantation [135,136], placental immunomodulation [137], 

and their biomarker potential in various pregnancy complica-

tions [135,138-143]. Abnormal quantity and cargo contents 

of exosomes may serve as biomarkers of various adverse 

pregnancy events. Thus, ongoing studies, both in our labo-

ratory and many other laboratories, are examining the bio-

marker potential of exosomes in predicting PTB [134].

Summary and conclusions

PTB pathways, biomarkers, and intervention strategies re-

main an enigma in the obstetric world [144]. Although mul-

tiple initiator and effector signals from both the fetus and 

mother have been proposed, the rate of PTB continues to 

rise. Thus, this suggests that our current knowledge is inad-

equate to reduce PTB risk. A better understanding of normal 

term birth and its pathways is needed to re-examine the pre-

mature activation of such pathways as triggers during pre-

term labor conditions. This manuscript provides an overview 

of a novel mechanism of parturition initiation signal based 

on well-reported data. The data summarize the progressive 

senescence of fetal membrane cells as term approaches. 

Senescent fetal cells generate inflammatory cargo-laden exo-

somes that move from the fetus to maternal uterine tissues 

in order to cause parturition by promoting inflammation. 

This can be considered a signal from the fetus, or specifically 

the fetal membrane, which indicates its longevity and dys-

functional status. The loss of fetal membrane integrity due 

to senescence and generation of inflammation (SASPs and 

DAMPs) can be considered to be one of the signals required 

to initiate parturition. The premature activation of membrane 

senescence in response to various pregnancy-associated 

risk factors can be attributed to a major subset of PTBs and 

pPROM. A better understanding of senescence activators 

and exosomal signaling may help us to sub-classify PTBs with 

such pathologies. Exosomes may also serve as biomarkers 

indicative of risk status.
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