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Abstract

Many teleost fishes exhibit sequential hermaphroditism, where male or female gonads develop 

first and later undergo sex change. Model sex change species are characterized by social 

hierarchies and coloration changes, which enable experimental manipulations to better understand 

these processes. However, other species such as the protogynous black sea bass (Centropristis 

striata) do not exhibit these characteristics and instead receive research attention due to their 

importance in fisheries or aquaculture. Black sea bass social structure is unknown, which makes 

sex change sampling difficult, and few molecular resources are available. The purpose of the 

present study was to induce sex change using exemestane, an aromatase inhibitor, and assess 

gonadal gene expression using sex markers (amh, zpc2) and genes involved in steroidogenesis 

(cyp19a1a, cyp11b), estrogen signaling (esr1, esr2b), and apoptosis or atresia (aen, casp9, fabp11, 

parg, pdcd4, rif1). Overall, dietary exemestane treatment was effective, and most exposed females 

exhibited early histological signs of sex change and significantly higher rates of ovarian atresia 

relative to control females. Genes associated with atresia did not reflect this, however, as 

expression patterns in sex changing gonads were overall similar to those of ovaries, likely due to a 
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whole ovary dilution effect of the RNA. Still, small but insignificant expression decreases during 

early sex change were detected for ovary-related genes (aen, casp9, fabp11, zpc2) and anti-

apoptotic factors (parg, rif1). Exemestane treatment did not impact spermatogenesis or testicular 

gene expression, but testes were generally characterized by elevated steroidogenic enzyme and 

estrogen receptor mRNAs. Further research will be needed to understand these processes in black 

sea bass, using isolated ovarian follicles and multiple stages of sex change.
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1. Introduction

Hermaphroditism refers to the development of both male and female reproductive structures, 

and may be simultaneous or sequential, in which male (protandry) or female (protogyny) 

organs develop first and later undergo sex change (Policansky, 1982; Jalabert, 2005). 

Protandrous and protogynous sex change occurs in many teleost fishes that exhibit dramatic 

plasticity in reproductive strategies (Devlin and Nagahama, 2002; Nakamura et al., 2005). 

The pivotal events related to gonadal reorganization, however, are largely conserved across 

teleosts and mediated by major sex steroids, 11-ketotestosterone (11KT) and 17β-estradiol 

(E2) (Frisch, 2004; Guiguen et al., 2010). For example, in many protandrous species, E2 

administration can induce ovarian development and sex change is often associated with 

increases in gonadal aromatase (Cyp19a1a), the enzyme required for estrogen production 

(Godwin and Thomas, 1993; Frisch 2004; Wu et al., 2010b; Wu and Chang, 2018). In 

contrast, protogynous sex change is characterized by elevated 11KT and aromatase 

inhibition as testicular tissue develops (Cardwell and Liley, 1991; Nakamura et al., 2003; 

Bhandari et al., 2005). Gonadal fate is also influenced by other mechanisms associated with 

sex steroid pathways, including epigenetic modification of the cyp19a1a promoter and 

glucocorticoid interactions (Fernandino et al., 2013; Zhang et al., 2013).

Endocrine control of sex change has largely been studied in haremic species with easily 

manipulated social structures and dramatic coloration changes (Cardwell and Liley, 1991; 

Godwin and Thomas, 1993; Frisch 2004). One such species is the protogynous bluehead 

wrasse (Thalassoma bifasciatum), in which removal of the dominant male will induce 

behavioral and functional sex change in the largest female within 1–2 weeks (Warner and 

Swearer, 1991). However, not all species exhibit such well understood systems and instead 

receive considerable research attention related to sex change due to their importance in 

aquaculture or fisheries management (Yeh et al., 2003; Frisch et al., 2004).

Black sea bass (Centropristis striata) is a commercially important protogynous species along 

the U.S. Atlantic coast (Mercer, 1989). These fish are in high demand but only seasonally 

available, which has contributed to broad research toward aquaculture development 

(Berlinsky et al., 2000; Atwood et al., 2003; Watanabe et al., 2003; Berlinsky et al., 2004; 

King et al., 2005; Alam et al., 2008b). Black sea bass change sex between 2–5 years of age, 

though this process is often accelerated in culture, and juveniles can undergo precocious sex 
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change (Shepherd and Idoine 1993; Howell et al., 2003; Colburn et al., 2009). While social 

cues are known to influence sex ratios, black sea bass social dynamics are poorly understood 

and sex change progression is not associated with predictable coloration changes (Benton 

and Berlinsky, 2006; Provost et al., 2017). In addition, endocrine mechanisms in this species 

are not well-studied and there are few available molecular resources, such as gonadal 

sequences or transcriptomic databases (Breton et al., 2015; Morin et al., 2015). A better 

understanding of endocrine mechanisms and sex change processes could enhance 

aquaculture practices, to more effectively maintain viable broodstock populations, or to 

possibly improve growth rates by restricting energy use for gonadal reorganization.

The objective of the present study was to induce the initiation of female-to-male sex change 

in black sea bass using short-term treatment with exemestane, a third generation aromatase 

inhibitor previously used for sex reversal in only a few fish species (Ruskana et al., 2010; 

Horiguchi et al., 2013). Gonads of exemestane-exposed and control fish were histologically 

characterized, and gene expression was assessed in male, female, and early sex changing 

fish using a suite of candidate genes involved in steroidogenesis, estrogen signaling, and 

follicular atresia.

2. Materials and Methods

2.1. Exemestane treatment and animal sampling

Black sea bass (~1–2 years old, n = 48, 296.0 ± 16.4 g, 262 ± 50 mm total length) were 

wild-caught from Rhode Island (USA) waters in October 2014 and transported to a 2,200 L 

recirculating seawater system at the University of New Hampshire (UNH) Aquaculture 

Research Center. All fish were maintained under UNH Institutional Animal Care and Use 

Committee guidelines, held at 17–20°C, and fed a commercially prepared marine finfish diet 

(Skretting, Stavanger, Norway). After acclimation to culture conditions for two months, fish 

were randomly separated into two independent 1,200 L systems that each consisted of three 

replicate tanks (n = 8 fish/tank). Black sea bass in one system were fed pellets top-coated 

with the fat-soluble, steroidal inhibitor exemestane (Horiguchi et al., 2013), while fish in the 

other system received a control diet. Control and exemestane diets were prepared using 

established protocols (Mankiewicz et al, 2013; DiMaggio et al, 2014). Briefly, gelatin 

(Knox, Kraft Foods Global, Inc., Northfield, IL, USA; 0.008g/g diet) and exemestane 

(Selleck Chemicals, Houston, TX, USA, 1 mg/g diet) were dissolved in hot water (17 ml/g 

gelatin) and ethanol (0.067 ml/mg exemestane), respectively, combined, and mixed 

vigorously with Skretting Europa 6 mm feed. The control diet was made in a similar manner 

using gelatin and ethanol, but without exemestane. Both diets were air-dried overnight, 

stored at −20°C, and fed to each system twice daily to satiation for 16 days. The dosage and 

treatment duration were based on previous trials in three-spot wrasse to maximize fish 

sampling at the onset of sex change (Horiguchi et al., 2013). Following treatment, all fish 

were euthanized with 200 mg/L buffered tricaine methanesulfonate (MS-222, Argent 

Chemical Laboratories, Redmond, WA, USA) and gonads were immediately removed. One 

gonad from each fish was preserved in 10% neutral buffered formalin (Sigma Aldrich, St. 

Louis, MO, USA) for 24–48 h, and longitudinal sections were processed for routine 

hematoxylin and eosin staining. The other gonad was immediately placed into a sterile 1.5 
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ml cryovial (Wheaton Science Products, Millville, NJ, USA), snap frozen in liquid nitrogen, 

placed on dry ice, and stored at −70°C until RNA extractions were performed. Histological 

sections were examined using a compound microscope to identify male, female, and sex 

changing fish. Gonads with predominantly ovarian tissue (~80–90%) and visible 

spermatocyte and spermatid development only in the posterior gonad were classified as early 

sex change, while late sex change was identified as predominantly testicular tissue (>90%) 

with few remaining oocytes (Cochran and Grier, 1991; Breton et al., 2015). Atresia stages 

were characterized using established criteria in other teleosts (Miranda et al., 1999; Blazer, 

2002; Kurita et al., 2003). To quantify follicular atresia in females, pictures were taken of 

each ovary section and gonadal area was determined using ImageJ (Abramoff et al., 2004). 

Atretic follicles were counted manually throughout the gonad using a compound microscope 

and expressed relative to the total area.

2.2. RNA extractions and cDNA synthesis

RNA extractions were performed using gonads from 29 fish, including males (n = 6) and 

females (n = 6) fed the control diet, and males (n = 6), females (n = 5), and early sex 

changing fish from the exemestane treatment (n = 6). Due to large sizes, gonads were 

homogenized using a 15 ml glass mortar and pestle (Kontes Glass Co., Vineland, NJ, USA) 

with 1–3 ml of cold Tri Reagent (depending on size). Homogenized tissues were stored at 

−70°C prior to RNA extraction. Briefly, homogenized tissue (500 μl) was added to Tri 

Reagent (500 μl; Sigma Aldrich) and extractions were performed using standard phenol/

chloroform procedures (Molecular Research Center, Cincinnati, OH, USA). Total RNA 

quantity and quality were assessed using an ND 1000 NanoDrop spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA) and 1.0% agarose gel electrophoresis. All 

samples exhibited no contamination (260/280 nm and 260/230 nm ratios ~2.0) and intact 

rRNA banding patterns. Total RNA (2.5 μg) was DNase-treated using the Promega RQ1 

RNase-free DNase kit (Promega Corp., Madison, WI, USA) and cDNA synthesis was 

performed using 1.8 μg DNase-treated RNA, 2.5 μM oligo dT primer (20mer), and 200 units 

of Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). Complementary 

DNA samples were stored at −20°C.

2.3. Candidate gene identification and primer design

To identify candidate genes for expression analyses, we used a black sea bass gonadal 

transcriptome sequence read archive (SRA) previously generated by our group and deposited 

in NCBI (SRA acc. no.: SRP135689). The SRA database consisted of male, female, and sex 

changing juvenile black sea bass cDNAs sequenced using Illumina HiSeq 3000 technology 

(Illumina Inc., San Diego, CA, USA) by the Oregon State University Center for Genome 

Research and Computing (Corvallis, OR, USA). Gonadal sequences were quality-trimmed 

using Trimmomatic (v.0.36) and trimmed reads were used to generate a partial and 

preliminary de novo transcriptome assembly using Trinity (v.2.0.6) (Grabherr et al., 2011; 

Harding et al., 2013; Bolger et al., 2014). The transcriptome assembly consisted of 181,263 

unique contigs (mean length = 496 bp) that were annotated using blastn and blastx against 

NCBI’s nt (partially non-redundant nucleotide) and nr (non-redundant protein) databases, 

respectively. Contigs were parsed manually to identify coding domain sequences (cds) for 12 

genes of interest. Several sequences were identified that corresponded to well-studied genes 
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involved in steroidogenesis and estrogen signaling, including estrogen receptor alpha (esr1), 

an estrogen receptor beta (esr2b), gonadal aromatase (cyp19a1a), and 11β-hydroxylase 

(cyp11b). Four genes previously associated with differential expression during follicular 

atresia in fish were also used, including caspase 9 (casp9), programmed cell death protein 4 

(pdcd4), fatty acid binding protein 11 (fabp11), and replication timing regulatory factor 1, 

also known as RAP1 interacting protein 1 (rif1) (Agulleiro et al., 2007; Tinguad-Sequeira et 

al., 2009; Yamamoto et al., 2011, 2016). Partial sequences for apoptotic genes poly(ADP-

ribose) glycohydrolase (parg) and an apoptosis-enhancing nuclease (aen) were also included 

(Affar et al., 2000; Kawase et al., 2008; Shirai et al., 2013). Lastly, fragments corresponding 

to zona pellucida C (zpc2) and anti-Mullerian hormone (amh) were used as a potential 

ovarian or testicular marker, respectively (Onichtchouk et al., 2003; Wu et al., 2010a; Smith 

et al., 2013).

To confirm putative cds fragments obtained from Illumina sequencing and assembly, primers 

were designed and used in polymerase chain reaction (PCR) (Table 1). Each reaction 

consisted of 30 μl total volume, with 4 μl cDNA template from a control fish, 1X Promega 

GoTaq Flexi PCR buffer (Promega, Madison, Wisconsin USA), 2.0 mM MgCl2, 0.2 μg/μl 

bovine serum albumin, 0.28 mM deoxynucleoside triphosphates, 0.7 μM of each primer, and 

0.2 U of GoTaq Flexi DNA polymerase. PCR was conducted in a C1000 Touch Thermal 

Cycler (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and consisted of an initial 

denaturation step (95°C for 5 min), followed by 40 cycles of 95°C for 30 sec, 58 or 60°C for 

30 sec, and 72°C for 40 sec, and a final extension step (72°C for 5 min). PCR reactions 

using cyp19a1a primers required a 58°C annealing temperature for amplification, while all 

other primer sets were effective at 60°C. PCR products were treated with ExoSAP-IT PCR 

Product Cleanup Reagent (Affymetrix, Inc., Santa Clara, CA, USA) and transported to the 

MDI Biological Laboratory (Bar Harbor, ME, USA) for sequencing using the dideoxy chain 

termination method on an Applied Biosystems 3130xl Genetic Analyzer (Foster City, CA, 

USA). All PCR products were sequenced in both directions using forward and reverse 

primers, and sequence chromatograms were trimmed for quality prior to manual assembly 

and analysis using blastn and blastx against NCBI databases. Confirmed partial cds 

fragments for all targeted genes were deposited in GenBank (Table 1) and used to design 

qPCR primers in NCBI Primer-BLAST (Table 2). Previously developed black sea bass-

specific primers for eef1a were also included as a reference gene for qPCR analyses (Breton 

et al., 2015).

2.4. Real time quantitative PCR (qPCR)

Relative quantification SYBR Green qPCR assays were performed using a StepOne Plus 

Real Time PC System and the FAST SYBR™ Green Master Mix (Applied Biosystems). 

Each reaction consisted of 10 μl total volume, with 1.33 μl diluted template and 0.1–2.5 μM 

primer concentration, depending on the assay. Each assay was run under standard cycling 

conditions (95 °C for 10 min, 40 cycles of 95 °C for 15 s and 60 °C for 1 min), except for 

cyp19a1a, which required a 58°C annealing temperature. All assays were followed by 

dissociation curve analysis and exhibited only single peak amplification. All samples were 

assayed in duplicate (diluted 1/40, 1/50, or 1/100, depending on assay) and triplicate relative 

standard curves (diluted 1/5–1/1280) were made from pooled cDNA samples represented 

Breton et al. Page 5

Comp Biochem Physiol A Mol Integr Physiol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



across treatments. Optimized linear standard curves consisted of four to eight points, and all 

assays exhibited approximately 90–110% PCR efficiency. PCR products from each assay 

were also electrophoresed in 2% agarose gels to confirm amplification of the intended target, 

and no contamination was evident in all standard qPCR negative controls (no template and 

no reverse transcriptase).

2.5. Statistical analyses

Quantitative PCR results were analyzed using the Pfaffl method for relative quantification 

(Pfaffl, 2001). Individual expression levels were: 1) calibrated to the sex change (SC) group 

mean, 2) normalized to eef1a, to compensate for differences in cDNA synthesis efficiency 

among samples, and 3) expressed relative to the SC group (set to 1.0), to enhance data 

presentation (Luckenbach et al., 2008). Relative expression values of some assays were log-

transformed prior to analyses to satisfy assumptions of normality or equal variance among 

groups. To group similar qPCR expression profiles and individual gonad samples, the online 

program Heatmapper was used with the average linkage and Pearson methods for clustering 

and distance measurements, respectively (Babicki et al., 2016). To include all gene assays in 

the cluster analysis, individuals with mRNA levels below quantifiable ranges were arbitrarily 

set to 0. Percentage data associated with tank sex ratios or ovarian stages were arcsine 

square root-transformed, and atretic follicle data were log-transformed. All data were 

expressed as mean ± standard error and analyzed using one-way ANOVAs in JMP 13.0 

(SAS Institute, Cary, NC, USA), followed by Tukey’s post hoc tests to identify significant 

differences (p < 0.05) among reproductive stages and treatments.

3. Results

3.1. Exemestane-induced initiation of sex change

Following treatment, the proportion of males per tank did not differ between control and 

exemestane-treated groups (Fig. 1A). Female proportions were more variable but also not 

significant, while significantly more exemestane-treated fish were changing sex (p = 

0.0177). Females also exhibited significant histological differences in ovarian composition 

by treatment. Control female ovaries were largely in the cortical alveolus (CA) stage (early 

secondary growth) (p = 0.0120, Fig. 1B), while exemestane-treated females exhibited 

significantly more atresia (p < 0.0001, Fig. 1C).

Overall, black sea bass fed the control diet exhibited normal ovarian or testicular 

development (Fig. 2A-B). The majority of female ovarian tissue was comprised of primary 

growth oocytes and CA stage follicles, while males were characterized by multiple stages of 

spermatogenesis, including spermatocyte and spermatid development, as well as the 

presence of mature spermatozoa. Exemestane fed males were similar to control males, while 

females exhibited largely primary growth oocytes (Fig. 2C-D). Most sex changing fish in the 

exemestane treatment group were in early sex change (Fig. 2E). Only one fish per treatment 

was in late sex change (data not shown) and had both likely initiated sex change before the 

experiment started. For this reason, these fish were not included in later molecular analyses.
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To more fully characterize ovarian development and atresia in black sea bass, individual 

follicles were examined in both control and exemestane-treated females (Fig. 3). In control 

females, CA stage follicles exhibited a clearly defined nucleus and zona pellucida, and the 

presence of small, peripheral follicle cells (Fig. 3A). Only exemestane-treated females 

exhibited high proportions of atretic follicles, which were largely at initial or mid atresia 

stages (Fig. 3B), with clear nuclear and zona pellucida degeneration, and a vacuolated or 

fragmented cytoplasm. No follicles were identified in later stages of atresia, typically 

characterized by complete oocyte cytoplasm phagocytosis or accumulation of yellow-brown 

bodies (Rizzo and Bazzoli, 1995; Miranda et al., 1999; Blazer, 2002; Kurita et al., 2003).

3.2. Gene expression patterns

All 12 gene fragments matched their respective putative transcriptome assembly sequences 

with high similarity (96–100% identity) and exhibited significant matches to respective 

nucleotide and protein sequences of related teleost species, including orange-spotted grouper 

(Epinephelus coioides), European sea bass (Dicentrarchus labrax), Japanese sea bass 

(Lateolabrax japonicus), and common clownfish (Amphiprion ocellaris). Relative transcript 

levels for each gene varied, and some individuals in some treatments had non-detectable 

levels of amh, esr2b, or rif1. Expression of amh could not be quantified in any female or 

early sex changing fish, as well as one control male, while esr2b and rif1 expression could 

not be quantified in three exemestane-treated females and three early sex changing fish, 

respectively. In contrast, reference gene expression (eef1a) was largely stable and did not 

significantly differ among gonadal stages.

Clustering analysis grouped the 12 gene expression patterns into three clusters, broadly 

divided into genes that exhibited: 1) largely similar patterns between testes and ovaries, 2) a 

testis-dominated expression profile, or 3) an ovary-dominated profile (Fig. 4). In addition, 

individual sample clustering identified a division between fish with either primarily testes or 

ovaries. There was little variance in control and exemestane-treated males, while females 

and early sex changing fish clustered separately as a more variable group.

Cluster 1 genes exhibited largely stable expression patterns with a few small decreases 

evident in exemestane-treated females and sex changing fish (Fig. 5). For example, esr1 

exhibited approximately equal expression in males and variable expression in control 

females. Exemestane-treated females and sex changing fish, however, exhibited somewhat 

lower expression (2–3 fold) with evidence of weak differences overall (p = 0.0402). Pairwise 

significant differences among groups were not detected, though, due to the conservative 

nature of the post-hoc analysis. Similarly, parg expression was overall equal among males 

and females, with a small decrease in early sex changing fish that was significantly different 

from control females (p = 0.0272). In contrast, the pdcd4 transcript showed a slightly more 

testis predominant profile, while exemestane-treated females and early sex changing fish 

were characterized by a 2–3 fold decrease in expression relative to males only (p = 0.0001).

Cluster 2 genes exhibited a testis-dominated expression profile, and three of the five genes 

were characterized by non-quantifiable or extremely weak levels in some female and sex 

changing fish (Fig. 6). Expression of amh was weakly detected in most males but could not 

be detected in any gonad with predominantly ovarian tissue (i.e., F and SC fish). Transcript 
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levels for cyp19a1a, esr2b, and cyp11b were highly upregulated in males, including 4-, 5-, 

and 60-fold changes, respectively, compared to females and early sex changing fish (p < 

0.0001). Expression of rif1 was also testis predominant (p = 0.0151), with non-quantifiable 

levels in most early sex changing fish, but fold changes were variable and not significantly 

different in post-hoc analysis.

Cluster 3 genes exhibited an ovary-dominated profile, with early sex changing fish typically 

characterized by intermediate expression levels (Fig. 7). Transcript levels for zpc2 and 

fabp11 were high in all ovarian samples, with approximately 50- and 10-fold higher levels in 

females compared to males, respectively (p < 0.0001). Expression levels in early sex 

changing fish were overall intermediate but more similar to ovaries than testes. In contrast, 

aen and casp9 differences were comparatively less than those observed for other genes in 

this cluster, but still downregulated 2–3 fold in males (p < 0.0001 and p = 0.0038, 

respectively) and intermediate in early sex changing fish.

4. Discussion

The initiation of sex change was induced in black sea bass using exemestane, a third 

generation, irreversible aromatase inhibitor commonly used during breast cancer treatment 

in postmenopausal women (Geisler et al., 1998; Miller et al., 2008; Goss et al., 2011). The 

older, reversible inhibitor fadrozole has previously been used in fish to induce 

masculinization (Kitano et al., 2000; Kwon et al., 2000), including black sea bass (Benton 

and Berlinsky, 2006), but is no longer commercially available and is generally less potent 

than third generation inhibitors (Lønning, 2011). Recently, the third generation reversible 

inhibitor letrozole has been used for sex reversal/inhibition in a variety of fishes, but little 

research has focused on steroidal inhibitors with similar potency, such as exemestane (Li et 

al., 2005; Lønning, 2011; Singh, 2013). In fishes, exemestane use has been limited only to 

masculinization of juvenile, gonochoristic Nile tilapia (Oreochromis niloticus) and sex 

change induction in adult protogynous three-spot wrasse (Halichoeres trimaculatus) 

(Ruskana et al., 2010; Horiguchi et al., 2013, 2018). Female black sea bass (present study) 

and wrasse (Horiguchi et al., 2013) were exposed to an identical dose and short duration (1 

mg/g diet, 15 or 16 days) and both species were characterized by similar sex change stages. 

In other studies, male wrasse were only exposed to low exemestane doses (0.002 and 0.2 

mg/g diet) that negatively impacted spermatogenesis (Kobayashi et al., 2011, 2014). Male 

black sea bass in this study, however, were exposed to a higher dose (1 mg/g diet) for a 

shorter duration (16 days vs. 10 weeks) and exhibited no testicular degeneration. As a result, 

effects on spermatogenesis likely require longer-term exposure to manifest histologically. 

Overall though, responses to exemestane in adult black sea bass were largely similar to the 

three-spot wrasse and reflect its potency in masculinizing fishes.

4.1 Atresia and apoptotic processes

Exemestane-treated females were characterized by increased ovarian atresia, with follicles at 

initial or mid stages of degeneration. These apoptotic processes are often induced by factors 

that influence the hypothalamic-pituitary-gonadal (HPG) axis, such as environmental 

stressors and starvation, or through decreased plasma E2 (Afonso et al., 1999; Janz et al., 
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2001; Ankley et al., 2002; Sato et al., 2005; Yamamoto et al., 2011; Nakamoto et al., 2018). 

The atresia we observed in black sea bass is consistent with estrogen signaling dysfunction, 

and longer exemestane exposure would likely lead to greater proportions of atretic follicles 

and sex change in most, if not all, females.

Expression patterns associated with atresia in gonochoristic species were not detected in 

black sea bass. For instance, atresia in coho salmon (Oncorhynchus kisutch) was 

characterized by elevated expression of both casp9 and pdcd4, which are well-studied genes 

in intrinsic, mitochondria-mediated apoptosis pathways and translational repression, 

respectively (Lankat-Buttgereit and Göke, 2009; Tait and Green, 2010; Yamamoto et al., 

2011, 2016). However, black sea bass did not exhibit elevated levels of either mRNA in 

atretic gonads. Instead, pdcd4 and casp9 only exhibited either a testicular or ovarian-

dominated profile, respectively. Pdcd4 is implicated in gonadal germline stem cell 

differentiation in invertebrates, but the functional significance of testicular pdcd4 in 

vertebrates is unknown (Onishi et al., 1998; Lankat-Buttgerreit and Göke, 2003; Cash and 

Andrews, 2012). Casp9 in ovaries, in contrast, may indicate high constitutive expression in 

growing vertebrate oocytes to regulate meiotic progression (Ene et al., 2013). Transcripts for 

aen and fabp11 also exhibited elevated ovarian expression and likely reflect normal oocyte 

functions associated with RNA processing and lipid transport, respectively (Liu et al., 2003; 

Kawase et al., 2008; Wu et al., 2010a). These patterns were also similar to zpc2, which is not 

associated with atresia but is an ovary gene essential to proper zona pellucida formation 

(Onichtchouk et al., 2003). Overall, genes previously associated with atresia in 

gonochoristic species may not be effective markers in black sea bass due to their basal 

functions in normal ovarian development or functional differences associated with 

alternative reproductive strategies like hermaphroditism.

All black sea bass ovaries exhibited similar transcript levels, irrespective of treatment and 

despite significant histological differences. In these samples, atretic follicles only 

represented a small proportion of each ovary, which were largely dominated by primary 

growth oocytes that undergo massive transcription (Song and Wessel, 2005; Breton and 

Berlinsky, 2014). This produces a gonadal dilution effect in species like iteroparous black 

sea bass, which exhibit multiple populations of different oocyte stages (Goetz et al., 2006; 

Breton et al., 2012). In contrast, semelparous species such as coho salmon exhibit a 

homogenous oocyte population that more easily enables stage-specific transcript analyses 

(Luckenbach et al., 2008; Breton and Berlinsky, 2014). Therefore, the ability to detect 

relatively small, atresia-specific RNA differences within intact black sea bass gonads was 

likely limited, especially across such a short-term treatment. A longer exemestane exposure, 

in contrast, would likely produce detectable expression differences among tissues due to 

greater proportions of atretic follicles and sex changing tissue in the homogenized ovary.

Testicular signals in early sex changing gonads were also likely minimized due to the same 

gonadal dilution effect. This is similar to patterns in protogynous honeycomb grouper 

(Epinephelus merra) in which early sex change was characterized by oocyte degeneration 

and spermatocyte development, yet gene expression mirrored that of ovaries (Alam et al., 

2008a). In the present study, however, many ovary-predominant genes exhibited weak 

decreases in expression during early sex change that may indicate onset of a progressive loss 
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of ovarian phenotype. In addition, when compared to females, sex changing fish were also 

characterized by a significant decreases in parg and largely non-detectable levels of rif1, 

which are both anti-apoptotic factors. Parg functions in cell survival and hydrolyzes 

poly(ADP-ribose), a well-characterized death signal that accumulates in damaged or stressed 

cells (Andrabi et al., 2008). Rif1 is a DNA repair protein that acts in a protective manner to 

limit progression of caspase-dependent apoptosis (Wang et al., 2009) and is downregulated 

during atresia in Senegalese sole (Solea senegalensis) (Tinguad-Sequeira et al., 2009). These 

small changes suggest that decreases in expression of anti-apoptotic genes may occur early 

in sex change, but this requires further research using later sex change stages and isolated 

ovarian follicles.

4.2 Steroidogenesis and estrogen receptors

Transcript levels associated with steroid hormone signaling and gonadal differentiation were 

largely elevated in testes relative to ovaries and sex changing gonads. For instance, amh and 

cyp11b were elevated in males, which is consistent with sexually dimorphic patterns in other 

species (Rodríguez-Marí et al., 2005; Wang and Orban, 2007; Smith et al., 2013). Both 

genes also commonly exhibit elevated profiles during early testicular development, while 

gonadal aromatase (cyp19a1a) is higher during ovarian differentiation (Luckenbach et al., 

2005; Wang and Orban, 2007; Smith et al., 2013). In adults, however, expression profiles are 

more complex, as amh is also expressed in granulosa cells in ovarian follicles, and estrogen 

signaling is important in spermatogenesis (Rodríguez-Marí et al., 2005; Carreau et al., 

2011).

Gonadal estrogens are likely important in black sea bass testes, as both cyp19a1a and 

estrogen receptor beta (esr2b) were upregulated. Estrogen receptor alpha (esr1) was only 

slightly elevated, but may exhibit greater upregulation later during spermiation, as in 

rainbow trout (Oncorhynchus mykiss) (Bouma and Nagler, 2001; Delalande et al., 2015). 

These data are largely consistent with elevated levels of estrogen receptor transcripts in 

testes of other teleosts, including zebrafish (Danio rerio) and red porgy (Pagrus pagrus) 

(Menuet et al., 2002; Tsakogiannis et al., 2018). Estrogens are also critical in ovarian 

development and maintenance, but cyp19a1a expression is relatively low during primary 

oocyte growth, and decreased gene expression in female black sea bass likely reflects these 

early stages (Kobayashi et al., 2004; Breton and Berlinsky, 2014). Lastly, both males and 

females exposed to exemestane exhibited no significant changes in estrogen-related 

transcripts. This is consistent with gonadal cyp19a1a expression in other species, which is 

not directly responsive to E2 levels, but is instead regulated by the HPG axis and other local 

processes (Kishida et al., 2001; Guiguen et al., 2010) that were likely not impacted in the 

present study.

5. Conclusions

The initiation of female-to-male sex change was induced in the protogynous black sea bass 

using dietary exemestane treatment. Early sex change was marked by significant increases in 

the number of atretic ovarian follicles and development of testicular tissue in the posterior 

gonad. Gonadal effects were overall similar to those previously documented in three-spot 
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wrasse, and longer duration of exemestane treatment (30 days; Horiguchi et al., 2013) may 

also induce functional testis development and complete sex change in black sea bass, but this 

requires further study. Gonadal expression of sex markers and candidate genes involved in 

steroidogenesis, estrogen signaling, atresia, and apoptosis were largely divided into testis- or 

ovary-dominated patterns. Small changes associated with early sex change were mostly not 

detected, possibly due to a whole gonad dilution effect. Some small, insignificant expression 

shifts, however, were observed that suggest both decreases in ovarian phenotype and some 

apoptosis-related factors at the onset of sex change. These will require further investigations 

using manually isolated follicles, or laser-capture microdissections, coupled with apoptotic 

(TUNEL) assays and in situ hybridization to better characterize atresia and identify 

transcript changes likely occurring in oocytes and follicle cells.
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Highlights:

- Exemestane induced the initiation of female-to-male sex change in black sea 

bass.

- Exemestane-exposed females exhibited significantly greater ovarian atresia 

than control fish.

- Males did not exhibit gonadal effects from exemestane treatment.

- All testes exhibited elevated steroiogenic enzyme and estrogen receptor 

mRNAs.

- Small decreases in apoptosis-related mRNAs were evident in sex changing 

gonads.
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Fig. 1. 

Mean percentage of fish (A) in each tank (± standard error) that were either male, female, or 

sex changing, as determined by gonadal histology. In females, (B) the mean percentage of 

fish per tank (± standard error) with some proportion of cortical alveolus (CA) stage oocytes 

was determined, as well as (C) mean number of atretic follicles/cm2 ovary (± standard 

error). White and gray bars refer to control and exemestane treatments, respectively. 

Asterisks indicate either (*) p < 0.05 or (**) p < 0.0001.
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Fig. 2. 

Representative gonadal histology of control (A) female and (B) male fish, and exemestane-

treated (C) female, (D) male, and (E) early sex changing black sea bass. Scale bar represents 

100 μm. Arrowheads indicate atretic follicles. PO, primary growth oocyte; CA, cortical 

alveolus, or early secondary growth stage oocyte; SZ, spermatozoa; ST, spermatids; SC, 

spermatocytes; OV, ovarian tissue; T, testicular tissue.
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Fig. 3. 

Representative gonadal histology of (A) cortical alveolus stage follicle in control females 

and (B) atresia in exemestane-fed females. Scale bar represents 20 μm. ZP, zona pellucida; 

NO, nucleolus; N, nucleus; CA, cortical alveolus; PO, primary growth oocyte; FC, follicle 

cells; AF, atretic follicle.
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Fig. 4. 

Cluster analysis of 12 gonadal gene expression patterns in control male (CM), control 

female (CF), exemestane-treated male (EM), exemestane-treated female (EF), and 

exemestane-induced early sex changing fish (SC). Each row represents a single gene 

(labeled at right) and each column represents an individual (labeled at bottom). Colored 

blocks represent relative gene expression on a scale of high (yellow), medium (black), or 

low (blue), based on Pearson distance measurements. Brackets below surround either 

entirely testicular (male) or ovarian-dominated samples (F and SC), and bold numbers to the 

left indicate major gene clusters.
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Fig. 5. 

Relative mRNA expression (mean ± standard error, normalized to eef1a) of cluster 1 genes 

(esr1, parg, and pdcd4) in male (M), female, (F), and early sex changing (SC) fish. White 

and gray bars refer to control and exemestane treatments, respectively. Different letters 

denote significant differences.
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Fig. 6. 

Relative mRNA expression (mean ± standard error, normalized to eef1a) of cluster 2 genes 

(amh, cyp19a1a, esr2b, cyp11b, and rif1) in male (M), female, (F), and early sex changing 

(SC) fish. White and gray bars refer to control and exemestane treatments, respectively. 

Different letters denote significant differences.
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Fig. 7. 

Relative mRNA expression (mean ± standard error, normalized to eef1a) of cluster 3 genes 

(zpc2, fabp11, aen, and casp9) in male (M), female, (F), and early sex changing (SC) fish. 

White and gray bars refer to control and exemestane treatments, respectively. Different 

letters denote significant differences.
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Table 2.

qPCR primer sequences, product sizes (bp), PCR efficiencies (%), and mean cycle threshold (Ct) values for 

eef1a and 12 candidate gene assays in black sea bass. Mean Ct refers to the mean diluted 1/20 standard curve 

point in each assay.

Gene symbol qPCR primer sequence (5’−3’)
Product
size (bp)

PCR
efficiency (%) Mean Ct

aen F - GAGAGCTGCAGGACAAACT
R - GTGACATCATCGGGCCAGTA

104 94.0 21.8

 amh F - CAAGACCACCCTGAATCCCC
R - CTGGAGGAGAGGCCTAGTGT

80 97.0 30.0

 casp9 F - GCACGTCCCAGTTCAGTACA
R - GGACACCTCAAAGCCTGTGT

130 97.0 26.9

 cyp11b F - TGTGTCGGGAGGAGAATTGC
R - TGCAGGATGAGCGTGACTTT

122 89.8 26.7

 cyp19a1a F - GGTCCGTCTTTCTGTCTGGG
R - GTAGTTGCTGGCTGTGCCTA

84 97.5 26.9

 eef1a F - GTGACAACGTCGGCTTCAAC
R - ATTGGTGGGTCGTTCTTGCT

91 102.4 22.8

 esr1 F - CTGTCCCGGCAAACTCATCT
R - GGTTTGAGTTTGAGCAGGCG

135 87.6 26.6

 esr2b F - GCCTGCTGGACTCTGTGATT
R - AGCATGGTGAGGTGTCCAAG

100 104.1 29.2

 fabp11 F - GCGAAGCCTAACCTGGTGAT
R - TGACGGTCTTGGTCTTTCGG

148 88.3 15.5

 parg F - GCAAGCACCTCTCTGCACTA
R - TGTGAAGTACGCCACGTCTC

128 98.2 23.0

 pdcd4 F - CATGGCGACCGAAGTGGATA
R - GATGGTTAGCCTCTGCCAGG

89 89.2 23.7

 rif1 F - CTCCAAACGGACTCTCAACCA
R - AAGCACTTCAGCAGATGGCA

84 89.4 26.8

 zpc2 F - GGTTCACCCCATCATCAGCA
R - CCGTGACCGAACTTGAAGGA

126 90.3 16.5
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