
 

Article

Reference

Injecting self-organisation into pervasive service ecosystems

MONTAGNA, Sara, et al.

MONTAGNA, Sara, et al. Injecting self-organisation into pervasive service ecosystems. Journal
on special topics in mobile networks and applications, 2013, vol. 18, no. 3, p. 398-412

DOI : 10.1007/s11036-012-0411-1

Available at:
http://archive-ouverte.unige.ch/unige:42390

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:42390


Mobile Netw Appl

DOI 10.1007/s11036-012-0411-1

Injecting Self-Organisation into Pervasive Service
Ecosystems

Sara Montagna · Mirko Viroli · Jose Luis Fernandez-Marquez ·

Giovanna Di Marzo Serugendo ·

Franco Zambonelli

© Springer Science+Business Media, LLC 2012

Abstract Pervasive service ecosystems are a new par-

adigm for the design of context-aware systems featur-

ing adaptivity and self-awareness. A theoretical and

practical framework has been proposed for address-

ing these scenarios, taking primary inspirations from

natural ecosystems and grounding upon two basic ab-

stractions: “live semantic annotations” (LSAs), which

are descriptions stored in infrastructure nodes and

wrapping data, knowledge, and activities of humans,

devices, and services; and “eco-laws”, acting as system

rules evolving the population of LSAs as if they were

molecules subject to chemical-like reactions. In this

paper, we aim at deepening how self-organisation can

be injected in pervasive service ecosystems in terms

This work has been supported by the EU-FP7-FET
Proactive project SAPERE Self-aware Pervasive Service
Ecosystems, under contract no.256873.

S. Montagna (B) · M. Viroli
Alma Mater Studiorum–Università di Bologna,
Via Venezia 52, 47521 Cesena, Italy
e-mail: sara.montagna@unibo.it

M. Viroli
e-mail: mirko.viroli@unibo.it

J. L. Fernandez-Marquez · G. Di Marzo Serugendo
University of Geneva, Battelle, Batiment A, Route de Drize
7, 1227 Carouge, Switzerland

J. L. Fernandez-Marquez
e-mail: joseluis.fernandez@unige.ch

G. Di Marzo Serugendo
e-mail: giovanna.dimarzo@unige.ch

F. Zambonelli
Università di Modena e Reggio Emilia,
Via G. Amendola 2, 42122 Reggio Emilia, Italy
e-mail: franco.zambonelli@unimore.it

of spatial structures and algorithms for supporting the

design of context-aware applications. To this end, we

start from an existing classification of self-organisation

patterns, and systematically show how they can be

supported in pervasive service ecosystems, and be com-

posed to generate a self-organising emergent behav-

iour. A paradigmatic crowd steering case study is used

to demonstrate the effectiveness of our approach.

Keywords Self-organising systems ·

Bio-inspired mechanisms · Pervasive computing ·

Context awareness

1 Introduction

A pervasive service ecosystem is a computing system

immersed in our everyday environment, made of actors

and components of various kinds, which we refer to

as individuals. They can be mobile users, their smart-

phones, software services, pervasive displays, sensors

and devices spread across the environment, sources

of knowledge, data and events. They all interoperate

opportunistically to achieve individual goals, but are

also globally guided and governed by some “laws”

enacted by the infrastructure. The pervasive service

ecosystem (pervasive ecosystem in short) paradigm is

aimed at tackling context-awareness of components

and processes, and handling adaptivity without hu-

man or supervised control. This scenario has notable

relations with natural ecosystems, and, in particular,

it shares with them the need of an intrinsic self-

organisation by which the globally intended behaviour

emerges out of the local interaction of individuals,

driven by the local manipulations enacted by those



Mobile Netw Appl

laws. Examples of application contexts include provi-

sioning of visualisation services on adaptive displays,

services for smart cities, intelligent traffic control, and

augmented social reality [41].

To address the engineering of this kind of systems,

which will soon emerge due to the increasingly wide-

spread diffusion of pervasive computing technologies,

we adopt a framework of self-organising coordina-

tion [35] tailored to spatially distributed, context-

dependent, and open systems—as pervasive computing

systems are. Drawing on existing works in the field

of coordination models and languages [6, 33, 34, 36],

middlewares for context-aware applications [5, 16, 24],

and on models of concurrency and bio-inspired com-

puting [9, 22, 25], we adopt a model based on the idea

of continuously reflecting the presence and activities of

components in the pervasive computing system through

Live Semantic Annotations (LSAs), which are stored

across computational devices, and altogether form a

global network of annotations representing the virtual

counterpart of the ecosystem. Ecosystem behaviour is

regulated by a set of laws, called eco-laws, which act

locally on each node and its neighbourhood, combining

and manipulating annotations using a chemical style

and semantic pattern matching [37, 39].

In this paper we study the problem of supporting

self-organising mechanisms on top of this model. Self-

organisation is known to be an effective source of

mechanisms for supporting applications that require

adaptivity and toleration of unpredictable changes, by

ensuring that spatial and temporal patterns of behav-

iour emerge out of local interactions and without a

central authority that imposes pre-defined plans. Such

patterns are usually inspired by natural systems, and

show appealing characteristics for pervasive scenarios,

since they are, first of all, able to adapt to environmen-

tal changes and able to achieve complex behaviours

using a limited set of basic rules [10].

To this end, we adopt the classification of self-

organising patterns provided in [11], in which a set of

basic functioning behaviours is discussed which can be

used in isolation or composed together to form more

complex patterns. In order to equip a pervasive ecosys-

tem with self-organisation we here propose a set of eco-

laws enacting fine-grained processes of LSA diffusion,

interaction, composition and decay: they will be shown

not only to support basic self-organising patterns, but

also their seamless composition into more articulated

ones.

The proposed approach is exemplified by a perva-

sive computing scenario of crowd steering, in which

groups of people are guided (by signs appearing in pub-

lic/private displays) towards locations based on their

preference, along optimal paths and taking into ac-

count contextual information describing the presence

of crowded areas which should be dynamically inter-

cepted and circumvented.

The remainder of the paper is organised as follows:

Section 2 introduces the pervasive service ecosystem

framework (detailing the outlined version appeared in

[37] and refining the eco-law language presented in

[39]), Section 3 discusses the problem of injecting self-

organisation in it, Section 4 presents the corresponding

solution we propose, Section 5 presents the case study,

Section 6 discusses related works, and finally Section 7

concludes providing final remarks.

2 Scenario, requirements, motivations and concepts

One notable application scenario of pervasive ecosys-

tems is that of crowd steering, which we here introduce

to describe the general requirements of situation-

awareness and adaptivity that our approach faces. The

idea is to guide people towards locations hosting events

of interest in a complex and dynamic environment

(using semantic matching with people’s interests),

avoiding obstacles that can dynamically appear and dis-

appear, such as crowded rooms or corridors, and with-

out any supervision—namely, in a self-organised way.

In particular, we consider a museum with a set of rooms

connected by corridors, whose floor is covered with

a network of computational devices (sensor nodes).

These devices exchange information with each other

based on proximity, sense the presence of visitors, and

hold information of various kinds (e.g., about exhibits

currently active in the museum). Visitors exploring the

museum are equipped with a smartphone that holds

their preferences. By interaction with sensor nodes,

a visitor can be guided towards rooms with a target

matching his/her interest, thanks to signs dynamically

appearing on the smartphone or on public displays.

2.1 Pervasive system requirements

Pervasive ecosystems deal with spatially-, temporally-

and socially-situated activities of users, and should

therefore be able to interact with the surrounding world

and adapt their behaviour accordingly. In the museum

infrastructure, local information from crowd sensors

has to be exploited and propagated around to create

a global awareness of crowd distribution over the expo-

sition. Situation-awareness is hence a key requirement,

and it is generally achieved by infrastructures reifying



Mobile Netw Appl

data/knowledge/events in the precise point (or region)

of space where they pertain, promoting interactions just

based on proximity.

Another complementary requirement is adaptivity:

pervasive ecosystems and their infrastructures should

inherently exhibit properties of autonomous adapta-

tion and management to survive contingencies without

human intervention and/or global supervision. In the

museum infrastructure, the direction towards the point

of interest has to be defined according to the current

state of the surrounding physical and social environ-

ment, e.g., circumventing dynamically forming crowded

places. Namely, when new devices are deployed, new

information is injected, or new people arrive, a spon-

taneous re-distribution and re-shaping of the overall

system information should take place. For instance:

the route towards an exhibition could be automatically

computed by self-organisation so as to dynamically

avoid overcrowded rooms or corridors, or alternative

exhibitions may be selected if one has reached (or

will shortly reach) its maximum capacity. Adaptivity is

often achieved by designing coordination rules that by

acting locally (namely, on a given network neighbour-

hood) make global properties emerge dynamically—

following e.g. a natural inspiration as in [36].

Finally, to support openness, pervasive ecosystems

should feature standard technologies for the descrip-

tion of services, and for the rules by which we manipu-

late such descriptions. This has the twofold goal of

supporting open models of production of services, as

well as the possibility of reusing existing languages,

tools and engines for developing a common infrastruc-

ture for pervasive service ecosystems. Candidate frame-

works to reach this goal include the suite of standards

of the Semantic Web [26, 40, 42].

2.2 Abstract architecture

Having introduced the scenario and its requirements,

we now define the set of core components that consti-

tute our pervasive ecosystem architecture.

Agents Any software component whose services act to

make the pervasive system working is here modelled as

an agent. It can be for instance a sensor, a web-service,

the software handling a user profile into a smartphone,

a situation-recogniser, a display driver or a full-fledged

application.

LSA Because of the need of coordinating different

kinds of entities in an open way and without global su-

pervision, a cornerstone of pervasive ecosystems is that

a uniform representation is required for agents, expos-

ing any information about the agent (state, interface,

goal, knowledge) that is pertinent for the ecosystem

as a whole or for any subpart of it. This is called a

“Live Semantic Annotation” for it should continuously

represent the state of its associated component (live),

and it should be implicitly or explicitly connected to

the context in which such information is produced,

interpreted and manipulated (semantic)—relying on

standard languages for the description of resources, like

RDF [26, 40].

LSA-space To handle situation-awareness, the behav-

iour of each agent should be strictly affected by the

local context in which it runs, that is, on the state of

other agents living in the same locality (intended as

network neighbourhood). As such, the LSAs of each

agent are reified in a distributed space (called an “LSA-

space”) acting as the fabric of the ecosystem, where

“context” is simply defined and represented as the set

of LSAs stored in a given locality.

LSA bonding Additionally, and in order to make any

agent act in a meaningful way with respect to the

context in which it is situated, special mechanisms are

needed to provide a fine-tuned control of what is vis-

ible to/modifiable by each agent and what is not. We

tackle this issue by allowing an LSA to include bonds

(i.e., references) to other LSAs in the same context.

It is only via a bond that an agent can inspect the

state/interface of another agent and act accordingly,

while modifications are allowed only to the LSAs an

agent injected itself.

Eco-laws Because of adaptivity, while agents enact

their individual behaviour by observing their context

and updating their LSAs, global behaviour (i.e., global

system coordination) is enacted by manipulation rules

of the LSA-space, called eco-laws. They can execute

deletion/update/movement/re-bonding actions applied

to a small set of LSAs in the same locality. They

are structured as chemical-resembling reactions over

LSAs, similarly to other approaches like [4, 34, 36]—

and their definition should leverage standard languages

for the manipulation of resource descriptions, like

SPARQL [1, 40].

Figure 1 shows an architectural view, based on the

above abstractions, of a portion of an ecosystem fea-

turing: two smartphones (carried by people) and two

public displays forming a network of 4 computational

nodes; a local LSA-space and some agents running in

each node (e.g., recommendation agents, advertising

agents, visualisation agents in displays, profile agents

and sensor agents in smartphones); LSAs through



Mobile Netw Appl

Fig. 1 An architectural view of a pervasive ecosystem

which agents manifest (in colour); additional LSAs rep-

resenting data, knowledge, and contextual information

like the existence of neighbouring nodes (in white);

bonds between LSAs; and a set of eco-laws executed

by an underlying engine working over the global LSA-

space.

In a more general case, one should think at a

very larger and mobile set of devices connected to

each other based on proximity creating a distributed

“space”—ideally a pervasive continuum—where LSAs

form spatial structures evolved over time.

2.3 Operational model

We now describe in more detail the model of LSAs and

eco-laws, focussing on the dynamics of their interaction

and grounding it on standard frameworks and tech-

nologies for the Semantic Web, due to their support

for openness (supporting interactions with third party

software and data) and semantic reasoning (relying on

ontologies and semantic matching) [40]. As already

mentioned, we shall use RDF as language for struc-

turing LSAs, and rely on SPARQL/SPARUL query

languages for coding eco-laws: the main advantage of

this choice is that off-the-shelf query engines (support-

ing execution of SPARQL queries and updates over

RDF stores) and reasoners [29] can be used to support

scheduling and execution of eco-laws locally.

2.3.1 LSAs

LSAs have a unique, system-wide identifier (LSA-

id), needed to support a notion of identity that is

key both to uniquely identify the agents that injected

an LSA and to properly support a bonding mecha-

nism based on reference rather than on value/copy.

We refer to the content of an LSA as its description,

which includes all the information the agent wants to

manifest to the ecosystem. We realise an LSA as an

RDF-like [26] set of triples that consist of a subject

(an LSA-id), a predicate (the property name) and

an object (the assigned value). By adopting a nota-

tion resembling N3 [18], in which the list of triples

is provided in a more compact form, an LSA is rep-

resented, for example, as “id p v; q w1 w2 w3.”

where id is the LSA-id, property p is assigned to

value v, and property q is assigned to values w1,

w2, and w3. Concretely, each element of a triple is

an URI (a term qualified by a universally-accessible

namespace as in namespace:term); additionally, a

value can be an RDF literal (a string), or a description

included into square brackets, recursively having the

form of an LSA without identifier and trailing dot, e.g.,

“[p v; q w1 w2 w3]”. Concrete examples of LSAs

will be given in Section 5 (e.g. in Fig. 4).

2.3.2 Contextualisation and LSAs

In order to support situation-awareness, LSAs should

be contextual, i.e., carry some information about their

current context, and/or the context in which they have

been created. Accordingly, either implicitly (enacted

by the middleware) or explicitly (coded by the agent

creating it) an LSA’s semantic description includes,

among the others, information like: current location,

location of creation, creation time, last update time,

creator, and so on. We call these synthetic properties:

e.g., we shall use synthetic property eco:location to

hold the id of the node in which the LSA is currently

stored.

Contextual information not related to any specific

agent is reified as a new LSA (which we call a syn-

thetic LSA), which some middleware component is in

charge of creating and updating. These LSAs contain

information concerning the physical situation, such as

current time, neighbouring nodes, and so on. In each

node, we shall assume that for each neighbouring node

there is one LSA of type eco:neighbour holding

information such as orientation and estimated distance

to it, and a single LSA of type eco:time holding

information about the local time—the rate at which



Mobile Netw Appl

they are actually updated, or whether they are updated

only when accessed, is not prescribed by our model.

2.3.3 Eco-laws

Eco-laws are structured as chemical-resembling

rules [4] with the syntactic structure:

P+..+P --r--> Q+..+Q SideConditions

Elements P and Q are patterns of LSAs, expressed like

LSAs but with the following changes: (i) in place of

each element of a triple one can use a variable ?V;

(ii) constraints on such variables are specified into an

unordered sequence of side conditions, which are either

“FILTER(exp)” or “BIND(exp as ?V)” (following

the syntax of SPARQL FILTER and BIND constructs

[1]); (iii) each predicate in a triple can be prepended

by either symbol +, - and =, the former assumed by

default—respectively meaning that the triples with this

object should exist, should not exist, should be the

only that exists for that subject and predicate. Note

that we may use external functions to add computation

abilities to the eco-law language, by using them into exp

expressions of FILTER and BIND constructs.

An eco-law consumes a set of reactant LSAs based

on left-hand side patterns and produce a set of prod-

uct LSAs based on right-hand side patterns. It also

obeys a numeric transformation rate r representing

a Markovian rate in a continuous-time Markov chain

(CTMC) system—though the underlying infrastructure

may rely on approximations of this stochastic model for

efficiency purposes. Rate eco:asap is used for eco-

laws to be executed with “as soon as possible” seman-

tics, namely, with infinite rate—namespace eco will be

used for all concepts related to the pervasive ecosys-

tems in general. An eco-law can apply in many different

locations of the ecosystem, and to different sets of

LSAs. We call reaction the pair consisting of a set of

reactant LSAs and corresponding product LSAs that an

eco-law can trigger. Execution of a reaction amounts to

atomically remove reactant LSAs from the LSA-space

and insert product LSAs back. Among all reactions that

an eco-law can trigger, a node n schedules only those

that are ef fective (reactant and product LSAs do not

coincide, i.e., execution has a neat effect), consistent

(do not invalidate uniqueness of LSA-ids), and local

(reactants are located in n, products possibly in n’s

neighbourhood—so that a reaction can also ultimately

move or diffuse some LSA from its current location

to a neighbouring one, and by repeated application, to

larger regions).

3 Self-organisation for pervasive systems

Several recent works exploit the lessons of adaptive

self-organising natural systems to enforce situation-

awareness and adaptation in distributed and pervasive

computing systems [3, 16, 27]. In natural systems (at

the physical, chemical, biological, or social level), all

the activities of the system components are inherently

situated in space and driven by local interactions only.

Such interactions are not ruled by pre-defined orches-

trated patterns. Rather, interactions are simply sub-

ject to a limited set of natural laws, from which even

complex patterns of interactions dynamically emerge

via self-organisation. In this way, adaptivity becomes

an inherent characteristic deriving from the existence

of self-organising interactions patterns, whose struc-

ture can flexibly and robustly re-shape in response to

contingencies. Typical self-organising mechanisms are

those using stigmergy, like ant foraging for coordinat-

ing behaviour, schooling and flocking for coordinating

movements, or gradients based systems [7, 10, 28, 41].

3.1 Self-organising patterns

To make self-organising mechanisms applicable more

systematically, different authors have focussed on

proposing descriptions of those mechanisms under the

form of software design patterns [13] and their clas-

sification. The idea of design pattern structure makes it

easy to identify the problems that each mechanism can

solve, the specific solution that it brings, the dynamics

among the entities and the implementation. In [14], a

set of design patterns is proposed for self-organising

systems all related with ant colonies behaviour, to-

gether with the idea that a mechanism can be composed

with others. The provided model, however, presents

too many constraints to be generalised and the exam-

ples of usage are not related to spatial and situated

computing systems as typically required. Based on the

set of mechanisms proposed in [17], [31] discusses how

the intended multi-agent systems (MAS) dynamics can

be modelled and refined to decentralised MAS design,

proposing a systematic design procedure that is exem-

plified in a case study. In [8] it is presented an ex-

tended catalogue of mechanisms as design patterns for

self-organising emergent applications. The patterns are

presented in detail and can be systematically applied

for engineering self-organising systems. However, rela-

tions among the patterns are missed, i.e., the authors do

not describe how patterns can be combined to create

new patterns or adapted to tackle different problems.

An approach more useful here was presented in [11],

which we shall adopt in this paper, where a set of



Mobile Netw Appl

Fig. 2 Self-organising
patterns, their relationships,
and their constituting
mechanisms

To
p
 L

a
ye

r

M
id

d
le

 L
a
ye

r

B
o
tt
o
n
 L

a
ye

r

MorphogenesisQuorum Sensing

Aggregation

Gradient

Chemotaxis

SpreadingEvaporation

B
a
si

c 
M

e
ch

a
n
si

sm

bio-inspired self-organising mechanisms are analysed,

classified and described, identifying their relations and

the recurrent problem they solve—see Fig. 2 including

a fragment of that catalogue. The result that comes

out from there is that most natural-inspired algorithms

presented in the literature can be designed and imple-

mented as extensions and compositions of low level

patterns of Spreading, Aggregation and Evaporation.

The spreading pattern allows entities to increment the

global knowledge of a system by periodically sending

information from one entity to another. To avoid an

explosion of information in the system, the aggregation

pattern synthesises this information, extracting meani-

ngful information. Finally, evaporation decreases

information’s relevance over time (i.e., making infor-

mation deposited recently more relevant than infor-

mation deposited previously). Moreover, in [11], it is

suggested that these low-level patterns can be mod-

elled by simple transformation rules, paving the way

towards design and implementation in general-purpose

platforms—as we develop in this paper.

3.2 Execution models for self-organising patterns

A previous proposal for supporting the patterns of [11]

into a general-purpose abstract architecture inspired

to the pervasive service ecosystems framework is pre-

sented in [12]. Such an abstract execution model is pre-

sented providing low-level functionalities for designing

and implementing self-organising systems. The corre-

sponding computational model includes: (i) agents—

autonomous and pro-active software entities running in

a host; (ii) infrastructure—a set of connected hosts and

infrastructural agents; (iii) environment—the physical

space where the infrastructure is located. It is then

composed of: (i) a core’s Data Space, where agents

deposit and retrieve data; (ii) a set of basic bio-inspired

services implementing low-level patterns through rules

applying on data deposited in the data space; and (iii)

core interfaces providing primitives for the infrastruc-

tural agents to access neighbouring nodes, and sensors

and actuators of the local node.

In this paper we follow this idea, and develop it

to full extent in the context of the pervasive service

ecosystems framework as described in Section 2.

4 Self-organisation for pervasive ecosystems: a model

Following the above described approaches, we here

show how self-organising patterns can be mapped into

the framework presented in Section 2.3. Accordingly,

we will identify (i) a set of basic chemical-like rules

in the form of chemical reactions (Table 1), (ii) the

constituting relations of these basic rules with low-level

patterns (Fig. 2), and (iii) a model for basic patterns in

terms of LSAs and eco-laws whose details are given in

the next section.

Table 1 Set of basic rules

Bio-chemical reaction Name

X → X ′ Evolution

X → Ø Decay

X → X∗
+ X Diffusion

X + Y → X + Y ′ Contextualisation

X + Y → Z Composition

X → X + Y Synthesis

The chemical representation is rather standard—we marked by a
“*” those LSAs whose locations will be changed by the reaction,
namely, which will be spread in neighbours



Mobile Netw Appl

4.1 A set of basic rules and eco-laws

Relying on the ecosystem model, we equip each LSA-

space with a minimal set of eco-laws that model

chemical-like reactions as in Table 1. We shall demon-

strate that by a simple composition of these basic

rules, Spreading, Aggregation and Evaporation au-

tonomously emerge as low-level patterns for providing

thereby systems with higher level ones, such as Gradi-

ent. Note that the set of basic rules that we identified is

not intended to be complete with respect to real-world

phenomena, but sufficient for supporting the low-level

patterns of Fig. 2. The representation of these rules in

terms of eco-laws is formalised in Fig. 3.

In particular, LSAs that once injected are meant

to be subject to one of such eco-laws feature a non-

empty property sos:request—namespace sos will

be used for all concepts related to the support of self-

organisation. Such a property has, as values, descrip-

tions that define all the elements that are necessary to

identify which eco-law should apply and its parameters,

such as rate, operators/predicates (in the form of URIs

or strings, as usual), and the property that is going to

be evaluated and possibly changed by the eco-law exe-

cution. Hence, the sos:request property can specify

more descriptions, if the LSA is expected to be part of

more then one eco-law.

Consider eco-law [EVOLUTION]. It expresses the

fact that if an LSA with id ?LSA (namely, whose id gets

binded to variable ?LSA) features a sos:request for

evolving the content of property ?P by operator ?E_op

with rate ?R, and it has property ?P assigned to value

?C, then the eco-law will actually fire with rate ?R. Its

effect would be to update property ?P, which will be

assigned to the result of applying ?E_op to ?C—this

is achieved by a BIND side-condition, in which library

function eco:exec is used to apply operator ?E_op to

value ?C.

Note that ?E_op will have to bind to an URI or

string that the eco-law engine in the middleware can

interpret as a function over values (primitive ones or

descriptions). As an example, by a request of the kind:

[ev:rate "1.0"; ev:prop ex:p;

ev:op ex:dividebytwo]

Fig. 3 Eco-laws for the basic rules in Table 1



Mobile Netw Appl

where ex:dividebytwo represents the functions that

divides a real number by two, we make the LSA halving

its property ex:p once per time unit—we typically

use seconds as time units. We shall assume that inside

the middleware (e.g., enconded in the ex ontology),

URI ex:dividebytwo is associated with a function

whose evaluation provides the required result. To this

end, in this paper, we describe also such functions by

mathematical expressions, and denote arguments of

the function orderly as #1, #2 and so on, such that

ex:dividebytwo would be described also by string

expression “%1/2”—other notations will be explained

as needed in the following. Also, when application of

an operator yields the special value eco:error, then

the eco-law is not triggered at all for that LSA, in that

function eco:exec will fail.

The [DECAY] eco-law is similar, but it makes ?LSA

disappear (note the 0 on the right-hand side) at rate

?R if the content ?C of its property ?P is such that

predicate ?D_pr holds for it—function eco:check

in construct FILTER is used to perform this test.

E.g., we could make an LSA be disposed if a certain

property ex:p reaches (for instance because of the

above [EVOLUTION] eco-law) a value smaller than

0.01—the content of dec:prop is to be set to ex:p

and dec:predicate to expression “#1<0.01” to this

end.

The other eco-laws are a bit more involved for they

manipulate more than one LSA, but their behaviour is

similar. Eco-law [DIFFUSION] continuously diffuses

an LSA in neighbouring locations, one at a time. Let

?NG be a synthetic LSA reifying information about

the existence of a neighbouring node at location ?L1

and estimated distance ?D. Also, let ?DIF be an LSA

which, at rate ?R, is aimed at diffusing clones of it with

an updated value of property ?P, namely, obtained by

applying operator ?D_op. Then, at rate ?R we create

a new LSA ?NEI (?DIF and ?NG are not changed),

obtained by cloning ?DIF (using function eco:clone

in the BIND construct), locating it at ?L1, and chang-

ing property ?P to the result of applying ?D_op to

current value ?C and to the estimated distance ?D—

we use value ?D since often diffusion depends on the

distance from the chosen neighbour, and rely on func-

tion eco:exec3 as a ternary version of eco:exec.

By iterative application, this eco-law is used to diffuse

copies of ?DIF in all neighbours.

By eco-law [CONTEXTUALISATION], LSA ?LSA

is updated by the presence of an LSA ?CTX nearby: the

content of its ?P property is updated by the result of

applying ?C_op to the old value ?C and to the current

value of property ?P2 in ?CTX. The [COMPOSITION]

eco-law works similarly, but the result of its application

is that the two originating LSAs are removed, and a

new one cloning ?LSA is created with an update value

of ?P. Finally the [SYNTHESIS] eco-law allows for the

creation of a new LSA cloning an existing one (?LSA)

featuring a new property ?P2 assigned to the content

of ?LSA’s ?P, and property synth_time assigned to

the current time ?T as extracted by the synthetic LSA

?TIME. In this case, function eco:cloneprop in the

FILTER construct is used to transfer all the values

assigned to a property into another LSA’s property.

4.2 Basic patterns

This section is meant to describe how we intend to

model low-level patterns upon the basic rules de-

scribed. As shown in Fig. 2, constituting relations have

been identified: arrows indicate how these patterns

result from the composition of basic laws. A dashed

arrow indicates that using the below eco-law is actual

optional, i.e., the pattern itself can be realised also

without that basic rule.

Spreading Pattern

“The Spreading Pattern is a basic pattern for in-

formation diffusion/dissemination. The Spreading

Pattern progressively sends information over the

system using direct communication among agents,

allowing the agents to increment the global knowl-

edge of the system by using only local interac-

tions” [12].

Therefore Spreading mainly relies upon the Diffusion

rule, but it can also require the Synthesis rule when

the diffusing data has to be synthesised by an original

LSA. The Synthesis rule is a specific instance of the

one shown in Fig. 3, where the synthesised LSA has to

contain the sos:request property value enabling the

diffusion.

Aggregation Pattern

“The Aggregation Pattern, is a low-level pattern

for information fusion. The dissemination of in-

formation in large-scale systems deposited by the

agents or taken from the environment may pro-

duce network and memory overload, thus, the

necessity of synthesising the information. The

Aggregation Pattern reduces the amount of in-

formation in the system and assesses meaningful

information” [12].

In our model the Aggregation Pattern firstly results

from the application of the Composition rule where two

data in input are aggregated into a new information

through an operator that can take many forms, such



Mobile Netw Appl

as filtering, merging, transforming. This rule can also

be composed with the Contextualisation rule, by which

aggregation can be affected also by some contextual

LSA present in the LSA-space but which is not to be

changed or removed. These two basic rules provide a

minimal set of functions for the Aggregation Pattern

working. The idea is that they are fired repetitively (and

typically with a very high rate) until aggregation can no

longer be applied, namely when it leads to an atomic

information.

Evaporation Pattern

“Evaporation is a pattern that helps to deal with

dynamic environments where information used by

agents can become outdated. In real world sce-

narios, the information changes with time and its

detection, prediction, or removal is usually costly

or even impossible. Thus, when agents have to

adapt their behaviour according to information

from the environment, information gathered re-

cently must be more relevant than information

gathered a long time ago” [12].

In our model the Evaporation Pattern is mainly ob-

tained through the Evolution rule, that ensures the

reduction of relevance of information through a proper

operator. It can be composed with the Decay rule once

the relevance of the information is null or very low and

must be disposed of.

Gradient Pattern The Gradient Pattern is an exam-

ple of computational field: a data-structure distributed

in a networked system based on spatial abstractions

(distance, region, paths, and so on). Computational

fields are a remarkable self-organisation mechanism,

as demonstrated by their wide adoption in literature

[5, 16, 23, 36]. The Gradient Pattern in particular maps

each node to the minimum distance from a source.

It is a very important pattern in pervasive computing

systems, for it makes a possibly large set of nodes that

surrounds a single one (the gradient source) be aware

of its state (or parts of it), and aware also of how it

can be reached efficiently (i.e., along the optimal path

crossing nodes with decreasing distance)—hence sup-

porting long-distance interactions in ad-hoc networks.

“The Gradient Pattern focuses on large systems

that suffer from lack of global knowledge to esti-

mate the consequences of the actions performed

by other agents beyond their communication

range. Using the Gradient Pattern, information

spreads from a location it is initially deposited

and aggregates when it meets other information.

Thus, agents that receive gradients have informa-

tion that come from beyond their communication

range, increasing the knowledge of the global sys-

tem not only with gradient’s information but also

with the direction and distance of the information

source” [12].

According to our model the Gradient Pattern emerges

from the composition of the Spreading and Aggrega-

tion Patterns (as shown in Fig. 2), properly instantiated.

In particular the Diffusion rule, in charge of diffusing

data, has a specific operator that increases the dis-

tance value depending on the estimated distance of the

neighbour, while the Composition and Contextualisa-

tion rules work respectively for merging gradient values

coming from the same source but through different

paths, so as to ensure that the smaller distance from the

source is stored in each node, and for contextualising

the gradient value to the actual node state, so as to

advantage or penalise nodes/regions according to their

actual context—as we will exemplify in detail in next

section.

5 A crowd steering application

We here present the model for the crowd steering

scenario described at the beginning of Section 2 to

exemplify the approach and demonstrate how the eco-

laws presented in previous section can be used to use

and compose self-organisation patterns. In one recall-

ing sentence, the goal of the scenario is to guide people

inside a museum towards their preferences, following

the shortest, and possibly quickest path, as can be dy-

namically computed from the structure of the environ-

ment and the presence of people making certain rooms

or corridors too crowded.

We here model the whole ecosystem as the set of

LSA-spaces hosted in the sensor nodes covering the

museum floor, displaced in a grid-like manner. Nodes

are connected to the four adjacent ones, following the

structure of the environment. Steering of people can

be done using computational gradients injected from

sources of a point of interest (POI), diffusing around

such that each node holds the minimum distance from

source along an optimal path, and matching with some

user preferences [5, 36]. We do not focus here on

the details by which a user can decide to follow the

gradient of a given POI among the many that can exist

around—she can explicitly select one by interaction

with the smartphone, or a match can be implicit. Once

this has been selected, simply following the directions

descending the gradient (as provided by private/public

displays) leads to a proper path for the situation at



Mobile Netw Appl

hand. If we want the gradient to be dynamically com-

puted taking into account also the presence of crowd,

the gradient value (estimated distance to the source)

should be contextualised considering the presence of

people, becoming higher in nodes detecting a bigger

number of people around.

In the following we show how we are able to create

such a contextualised gradient through the patterns and

eco-laws presented in Section 4.1.

5.1 Specific LSAs

According to the proposed framework, all the infor-

mation exchanged is encapsulated by LSAs, namely:

(i - source LSAs) representing POIs currently active;

(ii - field LSAs) representing diffused copies of source

LSAs and carrying an updated estimated distance from

the source along the best path available; (iii - pre-field

LSAs) temporary copies of field LSAs, used as interme-

diate ones to enact aggregation and contextualisaton,

and to establish the final gradient; (iv - user LSAs) rep-

resenting presence and state of a user (stored in their

smartphone); and (v - crowd LSAs) representing the

presence of a crowded area by a sensor node. The shape

of source LSAs is the most important to show here, for

it is by its injection that field and pre-field LSAs get

automatically created. The source LSAs shown in Fig. 4

exemplifies the POI of a Michelangelo’s sculpture ex-

hibition in a museum. Other than namespaces eco (for

general concepts related to pervasive ecosystems) and

sos (for those related to self-organisation patterns),

we shall use museum for application-specific concepts.

In a source LSA, eco:type keeps track of a general

declaration about the kind of LSA, eco:location is

the synthetic property (automatically generated by the

middleware) holding the location id for the LSA, and

museum:poi_desc holds a list of keywords describing

the POI (used to match with a user preferences). The

other properties will be described in the following.

The injection of a source LSAs fires the Synthe-

sis basic mechanism because of the content of prop-

erty sos:request, by which at rate 1 a new LSA

is created locally, which—according to the [SYN-

THESIS] eco-law—is similar to the source LSA but

reassigns sos:request to the actual content of

museum:exh_request. This new LSA represents

the gradient at the source location: the new prop-

erty syn_time records the time at which it has been

generated, museum:desc holds the information to be

propagated, and museum:grad_state the informa-

tion about how one can retrieve the source. The latter

is a description with a pair of a distance value (initially

set to 0) and a pre-field flag tagging pre-fields—this is

initially set to false, meaning this is not a pre-field,

but a field LSA.

The resulting LSA includes now four requests into

sos:request: one for diffusing, two for aggregating

and one for contextualising, which we will describe in

turn. Initially, diffusion rule spreads copies of that LSA

around, updating the property museum:grad_state

according to the museum:diffsum operator which

has the following definition:

Definition of operator

This function is applied to two arguments, the

old museum:grad_state content, and the distance

of the selected neighbour. Ternary operator ?: has

the same meaning of Java programs, while notation

“#1.museum:pre” stands for the content of property

museum:pre in the description passed as first argu-

ment. Hence, this function checks whether the property

museum:pre into first argument is true: if it is, then we

return an error since pre-fields are not to be diffused,

otherwise we return a new description with updated

distance (old distance plus neighbour distance) and

setting it as a pre-field.

Fig. 4 LSA for the museum case study



Mobile Netw Appl

To a pre-field, shipped into neighbours by this eco-

law, aggregation and contextualisation eco-laws can

then be applied to remedy the inevitable divergence

(an increasingly number of copies of a pre-field will

be spread in neighbours). Eco-law for composition is

fired which matches two LSAs and aggregate them into

one in two ways: one keeps the most recent LSA (hav-

ing greater syn_time), as computed by the operator

museum:youngest, while the other keeps the one

with smaller distance from the source, as computed by

the operator museum:shortest. Such two operators

are as follows:

Definition of operator

Definition of operator

Note that the rates of application of aggregation

with youngest is eco:asap, while aggregation with

shortest has a finite rate: stochastically, this ensures

that we first keep most recent information, and then we

consider better paths.

Before such an aggregate LSA can be diffused again,

it should contextualise with a crowd LSA, so as to make

sure that the distance from the source gets increased

(i.e., penalised) when the crowd level is locally greater

than 0. Such an information is carried into a crowd LSA

of the kind:

where museum:crowd_level set to 1.0 means that

the sensor perceived the highest crowd. The eco-law

for contextualisation is then triggered which takes a

pre-field LSA and a crowd LSA, and updates property

museum:distance in the former according to the

function:

Definition of operator

museum:crowd_factor is a multiplication factor dic-

tating how museum:crowd_level should penalise es-

timated distance.

5.2 Simulation

By the structure of the LSAs and eco-laws described

above, we are able to maintain and contextualise a

stable gradient. As a proof-of-concept for the proposed

solution, we rely on simulations of the evolution of

the population of LSAs. As such, once the initial state

of LSAs and eco-laws are fixed, the evolution of a

service ecosystem can be simulated using any available

framework for CTMCs, typically working via Stochastic

Simulation Algorithms (SSA) based on [15].

We performed simulations conducted over an expo-

sition of nine rooms connected via corridors. A first

set of tests was aimed at testing the effectiveness of

gradients in the process of steering to a destination,

even in an averagely-crowded situation. Four snapshots

of a simulation run are reported in Fig. 5, where we

considered four different targets located in the four

rooms near environment edges. People (each having

interest in one of the targets chosen randomly) are

initially spread randomly in the museum, as shown in

the first snapshot, and they eventually reach the room

in which the desired target is hosted, as shown in the

last snapshot.

Fig. 5 A simulation run of the reference exposition (top–left, top–right, bottom–left, bottom–right): from random positions people move
to 4 targets



Mobile Netw Appl

Fig. 6 Dark visitors occupy a central room: others move left to right by a longer, less crowded path circumventing the central room
on top

A second set of tests was aimed at verifying the

management of overcrowding, and in particular, how

the behaviour of the ecosystem can dynamically and au-

tomatically become self-aware of crowding conditions,

and react accordingly. Figure 6 shows another simula-

tion run: two groups of people, each with a common

interest in an exhibition—denoted with empty (light)

and filled (dark) circles—are initially located in two

different rooms, as shown in the first snapshot. The

target for the dark visitors is located in the central

room of the second row, while the others’ is in the

right room of the second row. In the simulation, dark

visitors reach their target first because it is closer, how-

ever, the resultant crowded area formed intersects the

shortest path towards the other visitors’ target. Due to

this jam the latter visitors are guided along a different

path, which is longer but less crowded. Also note that

people do not all follow the same path to a destination,

but rather spread and take several different paths to

the POI by an emergent “self-crowding” phenomenon:

people dynamically tend to follow different paths to

avoid themselves to make some corridor or room too

crowded.

Both tests show qualitative effectiveness of the pro-

posed eco-laws, and suggest that our simulation

approach can be used for additional experiments

Fig. 7 Time units of convergence time with different values of
crowd parameter and different percentages of people

focussing on tuning system parameters (crowd factor k)

or alternative strategies (e.g., diffusing crowd informa-

tion) to optimise paths to destinations. For instance, in

the context of the second case, Fig. 7 shows how factor k

can influence the time for (sub)groups of (light) people

to reach the destination, by which we can see that even

small values of k lead to a significant improvement—

which slowly decreases as k grows.

6 Related work

We already surveyed the existing approaches to self-

organisation patterns in Section 3.1. In this section we

review the existing coordination models and middle-

wares that could be used to support those patterns, as a

possible alternative to the ecosystem model presented

here as an extension to [37]. Most of them are based on

tuple space architectures, which we describe in terms

of how they support basic mechanisms of diffusion and

management of tuples.

As described in [19], applications of coordination

models and languages—and especially space-based

ones—are inevitably entering the realm of self-

organisation, where complexity of interactions be-

comes the key to make desired properties appear by

emergence. Given the intrinsic difficulty of design-

ing emergence, most approaches simply mimic nature-

inspired techniques to organise and evolve tuples

according to specified rules. Anthill [2] is a framework

built to support design and development of adaptive

peer-to-peer applications. It consists of a dynamic net-

work of peer nodes, each one provided with a lo-

cal tuple space, in which distributed mobile agents

can travel and can indirectly interact and cooperate

with each other by leaving and retrieving tuples. Self-

organisation in Anthill is realised by agents, without

additional mechanisms “in the space”. A similar idea

is applied in [38], in which tuples can create spatial

processes defining evolving regions to be used for co-

ordination in mobile networks. SwarmLinda [32] is a



Mobile Netw Appl

middleware that exploits the idea of the collective intel-

ligence displayed by swarms of ants for guiding agents

in charge of tuple storage and efficient tuple retrieval.

Tuples are handled as sort of pheromones or items

that ants (agents) relocate in order to improve overall

efficiency. TOTA (Tuples On The Air) [16] is a tuple-

based middleware supporting field-based coordination

for pervasive-computing applications. In TOTA each

tuple, when inserted into a node of the network, is

equipped with a content (the tuple data), a diffusion

rule (the policy by which the tuple has to be cloned and

diffused around) and a maintenance rule (the policy

whereby the tuple should evolve due to events or time

elapsing). The evolving tuples model, presented in [30],

is an extension to traditional Linda tuple spaces with

the goal of supporting resource discovery in a perva-

sive system, relying on ideas inspired to TOTA. The

extension allows tuples to evolve so to be context-aware

and able to adapt to environmental changes. Evolution

is firstly embedded in tuples by adding, to each field

of the tuple, a name and a formula that specifies the

field behaviour over time. Formulas support if-then-

else construct and arithmetic and boolean operators.

Secondly a new operation evolve() is introduced in

tuple space: it is responsible for applying formulas to

tuples using context information.

Finally, it is worth noting that the pervasive ecosys-

tem model originates from previous work of ours [34,

36], where a bio-chemical tuple spaces model has been

presented. There, tuples are associated with an activ-

ity level, which resembles chemical concentration and

measures the extent to which the tuple can influence

the state of system coordination—e.g., a tuple with low

activity level would be rather inert, hence taking part

in coordination with very low frequency. Chemical-

like reactions, properly installed into the tuple space,

evolve activity level of tuples over time in the same way

chemical concentration is evolved in chemical systems.

Differences of the above models with that of per-

vasive ecosystems is as follows. Behaviours that allow

system evolution and adaptation are not embedded in

tuples but in space so to guarantee multiple behaviours

in different locations of the network. Moreover our

model introduces probability in the selection of which

rule to execute, enabling the reproduction of a wider

range of mechanisms for modelling system evolution.

More in detail, and concerning [30], our model lets two

or more tuples be part of an eco-law that changes one

or more tuples according to the state of the others,

while in [30] each tuple evolves independently from the

others. Concerning TOTA, which is the model more

similar to ours also from the viewpoint of application

domain, we observe that while eco-laws are meant to be

fixed for the application domain and apply to all LSAs

(depending on semantic matching criteria), in TOTA

each tuple is responsible for carrying its behavioural

rules. So, while we call for specifying the evolution

rules of tuples at design-time, when the application

goals are identified, TOTA instead promotes a run-

time approach: diffusion behaviour is defined by an

agent before injecting the tuple in the system. Embed-

ding the behaviour in the tuples, rather than in the

space, makes difficult and basically impractical the task

of predicting overall ecosystem behaviour in advance.

Finally, we note that the approach presented in this

paper might be connected with a more general view of

agent-based systems, provided we rely on agent meta-

models tackling the environment as a first-class notion,

as developed in [20, 21].

7 Conclusion and future work

To support situation-awareness and adaptivity in per-

vasive computing applications, in this paper we propose

to exploit the lesson of self-organisation in natural sys-

tems, that—by grounding solely on distributed, locally-

scoped interactions—autonomously brings self-*

properties in the whole system. Recent works identified

a set of self-organising patterns and classified them into

a hierarchy where patterns at lower level represent

the constituting behaviours for self-organisation to

emerge. To model these patterns and show how they

can be composed to obtain higher level patterns, we

adopt a new framework of pervasive ecosystems based

on the eco-law and LSA abstractions—the former

regulates the overall ecosystem by basic mechanisms

of spatial coordination; the latter regulates agent

autonomy, controlling how the single agent is affected

by the ecosystem and manifests to it. In particular

we modelled eco-laws in terms of basic chemical-like

mechanisms of diffusion, decay, composition and

contextualisation. An example application in the

context of pervasive computing is provided to clarify

the concepts. Simulations of the associated CTMC

semantics have been conducted to qualitatively and

quantitatively validate the resulting behaviour.

Future works of this research include: (i) studying

connection with Web technologies for representing and

reasoning about state and behaviour, as well as to sup-

port information matching as in the Semantic Web; (ii)

integrate in the system external software entities that

perform more elaborated forms of situation recogni-

tion, relying on self-organising patterns for shaping data

within the network of pervasive devices; (iii) investigate

upon use cases of pervasive computing other design



Mobile Netw Appl

patterns with the goal of identifying a minimal set of de-

sign patterns required for supporting such applications;

(iv) studying analysis techniques, such the ones from

complex system sciences, to predict and control the sys-

tem emergent behaviour such that to avoid undesirable

effects; and (v) develop a prototype infrastructure to

support LSA-spaces.

Acknowledgements This work has been supported by the EU-
FP7-FET Proactive project SAPERE Self-aware Pervasive Ser-
vice Ecosystems, under contract no.256873.

References

1. ARQ (2012) A SPARQL processor for Jena. http://jena.
sourceforge.net/ARQ/

2. Babaoglu O, Meling H, Montresor A (2002) Anthill: a frame-
work for the development of agent-based peer-to-peer sys-
tems. In: Proceedings of the 22nd international conference
on distributed computing systems (ICDCS’02), ICDCS ’02.
IEEE Computer Society, Washington, DC, USA, pp 15–22.
http://dl.acm.org/citation.cfm?id=850928.851860

3. Babaoglu O, Canright G, Deutsch A, Caro GAD., Ducatelle
F, Gambardella LM, Ganguly N, Jelasity M, Montemanni R,
Montresor A, Urnes T (2006) Design patterns from biology
for distributed computing. ACM Trans Auton Adapt Syst
1(1):26–66. doi:10.1145/1152934.1152937

4. Banâtre JP, Priol T (2009) Chemical programming of future
service-oriented architectures. J Softw 4(7):738–746

5. Beal J, Bachrach J (2006) Infrastructure for engineered
emergence on sensor/actuator networks. IEEE Intell Syst
21(2):10–19. doi:10.1109/MIS.2006.29

6. Bonâtre JP, Le Métayer D (1996) Gamma and the chemical
reaction model: ten years after. In: Coordination program-
ming. Imperial College Press London, UK, pp 3–41

7. de Castro LN (2006) Fundamentals of natural computing:
basic concepts, algorithms, and applications (Chapman &
Hall/Crc Computer and Information Sciences). Chapman &
Hall/CRC

8. De Wolf T, Holvoet T (2007) Design patterns for decen-
tralised coordination in self-organising emergent systems. In
4th international workshop, ESOA 2006. Hakodate, Japan,
May 9, 2006. LNCS, vol. 4335. Springer, pp 28–49

9. Di Pierro A, Hankin C (2005) Wiklicky H continuous-time
probabilistic klaim. ENTCS 128(5):27–38

10. Dressler F, Akan OB (2010) A survey on bio-inspired net-
working. Comput Networks 6:881–900

11. Fernandez-Marquez J, Di Marzo Serugendo G, Montagna S,
Viroli M, Arcos J (2012) Description and composition of bio-
inspired design patterns: a complete overview. Nat Comput
1–25. doi:10.1007/s11047-012-9324-y

12. Fernandez-Marquez JL, Serugendo GDM, Montagna S
(2012) BIO-CORE: bio-inspired self-organising mechanisms
core. In: Hart E, Timmis J, Mitchell P, Nakamo T, Dabiri F,
Akan O, Bellavista P, Cao J, Dressler F, Ferrari D, Gerla M,
Kobayashi H, Palazzo S, Sahni S, Shen XS, Stan M, Xiaohua
J, Zomaya A, Coulson G (eds) Bio-inspired models of net-
works, information, and computing systems. Lecture notes
of the institute for computer sciences, social informatics and
telecommunications engineering, vol 103. Springer, Berlin
Heidelberg, pp 59–72. doi:10.1007/978-3-642-32711-7_5

13. Gamma E, Helm R, Johnson R, Vlissides J (1995) De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, Reading, Mass

14. Gardelli L, Viroli M, Omicini A (2007) Design patterns
for self-organising systems. In: Burkhard HD, Verbrugge
R, Varga LZ (eds) Multi-agent systems and applications
V. LNAI, vol 4696. Proceedings 5th international central
and eastern European conference on multi-agent systems
(CEEMAS’07), Leipzig, Germany, 25–27 Sep 2007. Springer,
pp 123–132

15. Gillespie DT (1977) Exact stochastic simulation of coupled
chemical reactions. J Phys Chem 81(25):2340–2361

16. Mamei M, Zambonelli F (2009) Programming pervasive and
mobile computing applications: the tota approach. ACM
Trans Softw Eng Methodol 18(4):1–56. doi:10.1145/1538942.
1538945

17. Mamei M, Menezes R, Tolksdorf R, Zambonelli F (2006)
Case studies for self-organization in computer science. J Syst
Archit 52:433–460

18. Notation3 (n3) (2011) A readable rdf syntax. http://www.w3.
org/TeamSubmission/n3/

19. Omicini A, Viroli M (2011) Coordination models and lan-
guages: from parallel computing to self-organisation. Knowl
Eng Rev 26(1):53–59. doi:10.1017/S026988891000041X. Spe-
cial issue 01 (25th Anniversary issue)

20. Omicini A, Ricci A, Viroli M (2006) Coordination artifacts
as first-class abstractions for MAS engineering: state of the
research. In: Garcia AF, Choren R, Lucena C, Giorgini
P, Holvoet T, Romanovsky A, (eds) Software engineering
for multi-agent systems IV: research issues and practical
applications. LNAI, vol 3914. Springer, pp 71–90. doi:10.
1007/11738817_5. http://www.springerlink.com/link.asp?id=
t710627571v4256h (Invited Paper)

21. Omicini A, Ricci A, Viroli M (2008) Artifacts in the
A&A meta-model for multi-agent systems. Auton
Agent Multi-Ag 17(3). doi:10.1007/s10458-008-9053-x.
http://www.springerlink.com/content/l2051h377k2plk07/

22. Paun G (2002) Membrane computing: an introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA

23. Pianini D, Montagna S, Viroli M (2011) A chemical inspired
simulation framework for pervasive services ecosystems. In:
Ganzha M, Maciaszek L, Paprzycki M (eds) In: Proceedings
of the federated conference on computer science and in-
formation systems. IEEE Computer Society Press, Szczecin,
Poland, pp 675–682

24. Picco GP, Murphy AL, Roman GC (1999) LIME: Linda
meets mobility. In: The 1999 international conference on soft-
ware engineering (ICSE’99), May 16–22, Los Angeles (CA),
USA. ACM, pp 368–377

25. Priami C (1995) Stochastic pi-calculus. Comput J 38(7):578–589
26. RDF primer (2012) http://www.w3.org/TR/rdf-primer/
27. Ricci A, Omicini A, Viroli M, Gardell, L, Oliva E (2007)

Cognitive stigmergy: towards a framework based on agents
and artifacts. In: Weyns D, Parunak HVD, Michel F (eds)
Environments for multiagent systems. LNAI, vol 4389. 3rd
international workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Springer, pp 124–140 (Selected revised and in-
vited papers)

28. Serugendo G, Gleizes M, Karageorgos A (2011) Self-
organising software: from natural to artificial adaptation.
Natural computing. Springer

29. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007)
Pellet: a practical OWL-DL reasoner. Web Semant 5:51–53

30. Stovall D, Julien C (2007) Resource discovery with evolving
tuples. In: International workshop on engineering of software
services for pervasive environments: in conjunction with the

http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/ARQ/
http://dl.acm.org/citation.cfm?id=850928.851860
http://doi.acm.org/10.1145/1152934.1152937
http://dx.doi.org/10.1109/MIS.2006.29
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/978-3-642-32711-7_5
http://doi.acm.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://dx.doi.org/10.1017/S026988891000041X
http://dx.doi.org/10.1007/11738817_5
http://dx.doi.org/10.1007/11738817_5
http://www.springerlink.com/link.asp?id=t710627571v4256h
http://www.springerlink.com/link.asp?id=t710627571v4256h
http://dx.doi.org/10.1007/s10458-008-9053-x
http://www.springerlink.com/content/l2051h377k2plk07/
http://www.w3.org/TR/rdf-primer/


Mobile Netw Appl

6th ESEC/FSE joint meeting, ESSPE ’07. ACM, New York,
NY, USA, pp 1–10. doi:10.1145/1294904.1294905

31. Sudeikat J, Renz W (2008) Engineering environment-
mediated multi-agent systems. Springer-Verlag

32. Tolksdorf R, Menezes R (2004) Using swarm intelligence in
linda systems. In: Omicini A, Petta P, Pitt J (eds) Engineering
societies in the agents world IV. Lecture notes in computer
science, vol 3071. Springer, Berlin/Heidelberg, pp 519–519.
doi:10.1007/978-3-540-25946-6_3

33. Tolksdorf R, Nixon LJB, Simperl EPB (2008) Towards a
tuplespace-based middleware for the semantic web. WIAS
6(3):235–251

34. Viroli M, Casadei M (2009) Biochemical tuple spaces for
self-organising coordination. In: Coordination languages and
models. LNCS, vol 5521. Springer, pp 143–162

35. Viroli M, Casadei M, Omicini A (2009) A framework for
modelling and implementing self-organising coordination. In:
24th annual ACM symposium on applied computing (SAC
2009), vol III. ACM, Honolulu, Hawai’i, USA, pp 1353–1360

36. Viroli M, Casadei M, Montagna S, Zambonelli F (2011)
Spatial coordination of pervasive services through chemical-
inspired tuple spaces. ACM Trans Auton Adap 6(2):14:1–
14:24. doi:10.1145/1968513.1968517

37. Viroli M, Nardini E, Castelli G, Mamei M, Zambonelli F
(2011) A coordination approach to adaptive pervasive ser-
vice ecosystems. In: IEEE international conferences on self-
adaptive and self-organizing systems – workskop AWARE

38. Viroli M, Pianini D, Beal J (2012) Linda in space-time:
an adaptive coordination model for mobile ad-hoc environ-
ments. In: Sirjani M (ed) Coordination languages and mod-
els. LNCS, vol 7274. Proceedings of the 14th conference
of coordination models and languages (Coordination 2012),
Stockholm, Sweden, 14–15 June. Springer, pp 212–229

39. Viroli M, Pianini D, Montagna S, Stevenson G (2012) Per-
vasive ecosystems: a coordination model based on seman-
tic chemistry. In: Ossowski S, Lecca P, Hung CC, Hong J
(eds) In: 27th annual ACM symposium on applied comput-
ing (SAC 2012). ACM, Riva del Garda, TN, Italy, pp 295–
302

40. Viroli M, Zambonelli F, Stevenson G, Dobson S (2012) From
soa to pervasive service ecosystems: an approach based on
semantic web technologies. In: Cubo J, Ortiz G (eds) Adap-
tive web services for modular and reusable software develop-
ment: tactics and solution, chap 8. IGI Global, pp 207–237.
doi:10.4018/978-1-4666-2089-6.ch008

41. Zambonelli F, Viroli M (2011) A survey on nature-inspired
metaphors for pervasive service ecosystems. Int J Pervas
Comput Commun 7(3):186–204

42. Zhang W, Hansen KM (2008) Semantic web based self-
management for a pervasive service middleware. In: Proceed-
ings of the 2008 second IEEE international conference on
self-adaptive and self-organizing systems. IEEE Computer
Society, Washington, DC, USA, pp 245–254. doi:10.1109/SASO.
2008.14. http://dl.acm.org/citation.cfm?id=1475691.1475960

http://doi.acm.org/10.1145/1294904.1294905
http://dx.doi.org/10.1007/978-3-540-25946-6_3
http://doi.acm.org/10.1145/1968513.1968517
http://dx.doi.org/10.4018/978-1-4666-2089-6.ch008
http://dx.doi.org/10.1109/SASO.2008.14
http://dx.doi.org/10.1109/SASO.2008.14
http://dl.acm.org/citation.cfm?id=1475691.1475960

	Injecting Self-Organisation into Pervasive Service Ecosystems 
	Abstract
	Introduction
	Scenario, requirements, motivations and concepts
	Pervasive system requirements
	Abstract architecture
	Operational model
	LSAs
	Contextualisation and LSAs
	Eco-laws


	Self-organisation for pervasive systems
	Self-organising patterns
	Execution models for self-organising patterns

	Self-organisation for pervasive ecosystems: a model
	A set of basic rules and eco-laws
	Basic patterns

	A crowd steering application
	Specific LSAs
	Simulation

	Related work
	Conclusion and future work
	References


