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INJECTIVE COVERS OVER COMMUTATIVE
NOETHERIAN RINGS WITH GLOBAL
DIMENSION AT MOST TWO

Epcar E. ENOCHS, HAE-sIK KIM AND YEONG-MOO SONG

ABSTRACT. In (3], Del Valle, Enochs and Martinez studied flat en-
velopes over rings and they showed that over rings as in the title
these are very well behaved. If we replace flat with injective and
envelope with the dual notion of a cover we then have the injective
covers. In this article we show that these injective covers over the
commutative noetherian rings with global dimension at most 2 have
properties analogous to those of the flat envelopes over these rings.

1. Introduction

R will denote a commutative ring with identity. Let X be a class
which is closed under isomorphism, direct summands, and finite direct
sums. An X-envelope of a module M is a linear map ¢ : M — X with
X € X such that the following two conditions hold;

(1) Homg(X, X') — Homp(M, X') — 0 is exact for any X' € X.
(2) Any f: X — X with fo¢ = ¢ is an automorphism of X.

If  : M — X satisfies (1), and perhaps not (2), ¢ is called an X-
preenvelope of M. Dually, an X-precover of M is a linear map 9 : X —
M with X € X such that Homg(X', X) — Homg(X', M) — 0 is exact
for any X' € X and if an X-precover ¢y : X — M of M satisfies the
condition that any f : X — X with ¢y o f = 9 is an automorphism of
X, then ¥ : X — M is called an X-cover of M.

Note that an X-envelope (an X-cover, respectively) of a module is
unique up to isomorphism, if it exists. By convention, (pre)envelopes
and (pre)covers are named according to the name of the class X. For
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example, an injective cover is an X'-cover where X is the class of injective
modules.

We recall that for a class X of R-modules, X1 consists of all R-
modules K such that Extj(X,K) = 0 for all X € X and L X consists
of all R-modules G such that ExtL(G,X) = 0 for all X € X (See [7,
p.29)).

Wakamatsu’s lemma ([7, Lemma 2.1.1] or [6]) says that if¢ : X — M
is an X-cover of an R-module M and if X is closed under extensions, then
Kery € X1, Conversely, if 1 : X — M is a surjection with X € X and
Kery) € XL, then for any X' € X, Homg(X', X) — Hompg(X', M) —
Ext}a(X’,Kerzp) =0 is exact. So 9 : X — M is an X-precover. Such a
precover is called a special X -precover of M.

In studying injective covers, the modules C such that Homg(E,C) =
0 and Ext(E, C) = 0 for all injective modules E play an important role
(because of Wakamatsu’s lemma). If the ring is k[[z,y]] with k a field,
this class contains all direct summands of products of modules of finite
length (Theorem 2.9). One objective of this paper is to study modules
C with Homg(E,C) = 0 and Exth(E,C) = 0 for all injective modules
E over a noetherian ring R with global dimension at most 2.

2. Rings with global dimension at most 2

From results in [2, Proposition 8.1], we know that if ¢ : £ — M is an
injective cover with kernel K, then Homg(E, K) = 0 and Ext}(E, K) =
0 for all injective modules E. Conversely, given such a module K, if

K C E is an injective envelope, then the natural map ¢ : E —» E/K is
an injective precover. Moreover,

LeMMA 2.1. The diagram
E % E/K

v%
E

can only be completed to a commutative diagram by idg.
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Proof. If f and g both complete the diagram

E—%E/K

f:g/
v Y

E

then the map f — g : F — E has its image in K. But Hom(E, K) = 0,
so f — g =0. Since f = idg is one possibility, this is the only one. O

DEFINITION 2.2. An X-cover ¢ : X — M for some class X will be
called a rigid X-coverif o f = for f: X — X implies f = idx. A
rigid X -envelope is defined in an analogous manner.

LEN{MA 2.3. Let K be an R-module Wit_h HomR(E', K) = 0 and
Exth(E,K) = 0 for all injective modules E and let K C E be an
injective envelope of K. Then E /K has no nonzero injective submodules.

Proof. Let E be an injective submodule of E/K. Then E/K = E®N
for some N. Let ¢ : F — N be an injective cover of N. Then o :
F@®E — N@&E is also an injective cover. Since the natural map
E — E/K is a rigid injective cover by Lemma 2.1, so F ® E = E.
Moreover, Kero = Kery, and so K C F. Since FNE =0, KNE = 0.
But K C E is an injective envelope, and thus E = 0. O

DEFINITION 2.4. ([7]) Let X be a class of R-modules and let M be
an R-module. Then an element £ € ExtL(L, M) where L € X is said
to generate Extp(X, M) (or € is a generator of Exth(X, M)) if for any
L € X and € € Extk(L, M), there is a linear map f : L — L such that

Exth(f, M)(€) = £.

Diagrammatically this says we have a commutative diagram

0 M G L 0
|
0 M G L 0,

where the rows represent the extensions £ and £&. Moreover, ¢ € Ext}z(L,
M) is called a minimal generator if it is a generator and if any f €
Hompg(L, L) such that Exth(f, M)(¢) = ¢ is necessarily an automor-
phism of L. Then we see that if £ € Exth(L, M) and € € Exth(L, M)
are both minimal generators of Extk (X, M), then any f € Hompg(L, L)
such that Exth(f, M)(¢) = £ is an isomorphism.
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If§ e ExtR(L M) is a generator of Ext (X, M) and Extk(f, M)(€) =
€ for € € Exth(L, M) and L € X, then ¢ is also a generator.

THEOREM 2.5. If R is a noetherian ring, then every R-module M has
a generator of Ext}%(é’ , M), where € is the class of injective R-modules.

Proof. We will only sketch this argument (which is due to Naveed
Zaman). Since R is noetherian, there is a representative set of indecom-
posable R-modules. Then for the given R-module M, we see that there is
a family 0 - M — G; — E; — 0(i € I) of short exact sequences where
E; is indecomposable and injective such that any short exact sequence
0 —- M — G — E — 0 with F indecomposable and injective is isomor-
phic over M to one of the sequence 0 - M — G; — E; — 0. Let G be
the direct sum of the G; amalgamated over M. Then we have an exact
sequence 0 > M — G —» ®E; - 0. Nowlet 0 > M — H - E — 0
be an exact sequence with F an arbitrary injective module. Then E is
the direct sum of indecomposable injective modules. If E is any inde-
composable 1nJect1ve submodule of F, we have the short exact sequence
0—>M—>H —E —>0Wh1chweder1vefr0m0—>M—»H—»E——>0
(H' is the preimage of E' ). By construction there is a commutative
diagram ;

0— M H E 0
0 M G > PE; 0.

But then using the fact that E is the direct sum of some set of such
E' C E we see that we have the following commutative diagram

0—M—H—F—>0

|

0 M G oFE; 0.

Hence the exact sequence 0 - M — G — @QE; — 0 is a generator of
Exth(£, M). O

PROPOSITION 2.6. If 0 - M — K — E — 0 is an exact sequence
with E injective and K € £+, where £ is the class of in jective R-modules,
then M — K is an envelope for the class £+.

Proof. Let G € £+, Then Homg(K,G) — Homgp(M,G) — Exth(E,
G) = 0 is exact. So M — K is an £1-preenvelope. Now if 0 — M —
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K — Ez — 0 is exact with £ € £, then Homg (K, K) — Hompg(M, K) —
Exth(E, K) = 0 is exact, so the diagram

M—K

|,

M—K

can be completed to a commutative diagram. This shows that 0 — M —
K — E — 0 s a generator of Ext}(£, M). Since £ is closed under direct
limits, 0 = M — K — E — 0 is a minimal generator by [7, Theorem
2.2.2]. So the diagram

M—K

R

K
can be completed only by automorphisms. Thus M — K is an £%-
envelope. O

Note that if 0 = M — K — K/M — 0 is an exact sequence with
M — K an £t-envelope, then K/M is an injective R-module.

COROLLARY 2.7. If R is a noetherian ring with gl.dim.R < 2, then
every R-module has a rigid £+-envelope.

Proof. By Theorem 2.5 and [7, Theorem 2.2.2], every R-module M
has a minimal generator for Ext}z(é“ , M) where £ is the class of injective
R-modules. Soif 0 - M — K — F — 0 is a minimal generator of
Exth(E, M), then K € £+ by [7, Proposition 2.2.1]. Thus M — K is
an £+-envelope by the proposition above. Now if f, g both complete the
diagram

0 M K K/M 0
|
\
M—K

then f—g = 0 by the argument in the proof of Lemma 2.1. So f =¢. [

When we say that (R, M, k) is a local ring, we mean that R is a local
ring, M is the unique maximal ideal of R and k is the residue field of R.
For any module M, the injective envelope of M is denoted by E(M).

ExXAMPLE 2.8. If (R, M, k) is a complete local ring of depthR > 2,
then by (1], Extp(k, R) = 0. But R = E(k), k = k and Exth(k, R) =
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ExtL(R, k) (this uses the fact that the elements of Exth(M, N) can be
identified with equivalence classes of short exact sequences 0 — N —
U— M —0). Sofor P € SpecR,if P# M,lett ¢ Pandt € M. Then
multiplication by ¢ on E(R/P) is an isomorphism and is zero on k. From
this we can get Homp (E(R/P),k) = 0 and Exth(E(R/P),k) = 0. If
P = M, the Matlis duality gives Homg (E(k), k) = 0 and ExtL(E(k), k)
= 0. This is because Homp(k, R) = Ext}%(k,f%) = 0. For example, if
R = k[[z, y]], then k & %y)—]l has the above properties.

The next theorem shows that there is a plentiful supply of modules C
over R = k[[z,y]] with Homg(E, C) = 0 and ExtL(E,C) = 0 whenever
E is an injective R-module.

THEOREM 2.9. If a module C' over R = k|[z,y]] with k a field is a
direct summand of a product of modules of finite length, then C has
the property that Homg(E,C) = 0 and Exth(FE,C) = 0 for all injective
R-modules E.

Proof. If we use induction on the length of C, it is not hard to argue
that any module C of finite length over R has the desired properties.
And we easily see that the class of modules C with these properties is
closed under products and summands. O

DEFINITION 2.10. ([2]) Let R be a noetherian ring and M an R-
module. The complex --- — E; — Eg —» M — 0 with the requirement
that Ey — M, E; — Ker(Ey — M) and En41 — Ker(E, — E,_1) for
n > 1 are injective precovers is called an injective resolvent of M. If the
maps E,y1 — Ker(E, — E,_;) are furthermore injective covers, then
we call our sequence a minimal injective resolvent.

Note that the minimal injective resolvent is unique up to isomorphism
and finite sums of minimal resolvents are minimal resolvents.

For arbitrary class X, it is not in general true that the product of
A-covers is an X-cover (even if X is closed under products). The next
result shows this is the case in our situation.

THEOREM 2.11. Let R be a noetherian ring with gl.dim.R < 2.
(1) If ¢; : E; — M; are injective covers for i € I, then [] ¢; : [1E: —
II M; is also an injective cover.
(2) If ¢; : E; — M, are injective covers for i = 1,2,--- ,n, then so is
Oit19i : O By — &7 M,
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Proof. (1) Since [] E; is injective, [[ ¢; : [ Ei — [] M; is an injective
precover by [7, Theorem 1.2.9]. From [2, Proposition 8.1}, we see that
if R is noetherian and gl.dim.R < 2, then the minimal resolvent of any
R-module M is of the form

0 0 0 E¢M 0.

But this means that HomR(E/, Ker¢) = 0 for any injective module E’.
To get [1¢: : [1EBi — [[M;: is an injective cover, we need only show
that if C; = Ker¢; for each ¢ € I, then [[C; has no nonzero injec-
tive submodules. Now if E is an injective submodule of []C;, then
Hompg(E,[]C;) = [[Hompg(E,C;) =0. So E =0.

(2) This follows from [2, Proposition 4.1] when we take E,, = 0 for
m > n. O

THEOREM 2.12. If (R, M, k) is a Gorenstein local ring of Krull di-
mension > 2, then Extp,(E(k), R) = 0.

Proof. From [1], we know that if 0 — R — E°(R) — --- — E*(R) —
- is a minimal injective resolution of R, then for each h > 0,

E"(R) = ®pep-nE(R/P).

To get Exth(E(k),R) = 0 we only need to argue that Homg(E(k),
E(R/P)) = 0 when htP = 1 by [5]. If vy € M and v ¢ P, then the
multiplication E(R/P) — E(R/P) by « is an isomorphism. But for
z € E(R/P), y*z =0 for some n > 1. If f: E(k) — E(R/P) is linear,
then 0 = f(7y"x) = 4" f(z). This implies f(z) = 0 by the above. So we
get Exth(E(k),R) = 0. O

3. An equivalence of module categories

In this section we assume R is a commutative noetherian ring with
global dimension at most 2. We find an equivalence between the category
of modules C we have been considering and another category of modules.

Let C be the category of R-modules C such that Homg(F, C) = 0 and
ExtL(E,C) = 0 for all injective modules E and let D be the category
of R-modules D such that D is isomorphic to a quotient of an injective
R-module (or equivalently the injective cover E — D is surjective) and
D has no nonzero injective submodules.

We can define a functor G : D — C as follows: for each D €
obj(D), define G(D) = the kernel of the injective cover of D. Then
Homg(E,G(D)) = 0 and Exty(E, G(D)) = 0 for all injective R-modules
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E. So G(D) € obj(C). For the given D-morphism D; — D, with the
injective covers £y — D; and E, -~ Dy, we can complete uniquely to
the following commutative diagram

Ey— D

|

E2 —> D2.

So from this way we get a well-defined functor G : D — C. Also, it is
easy to see that G is an additive functor.

REMARK 3.1. (1) Since an injective cover of D is unique up to iso-
morphism, if we make a different choice of injective cover E — D for
each D and get another functor G:D— C, then it is not hard to see
that G and G’ would be naturally isomorphic functors.

(2) It is easy to see that D is an object D if and only if its injective
cover E — D is surjective and if Ker(F — D) C E is an injective
envelope.

We know from Lemma 2.1 and Lemma 2.3 that for each C € obj(C),
E(C)/C has no nonzero injective submodules and E(C) — E(C)/C is
the injective cover. If f : C; — (3 is a C-morphism, then there is a
linear f : E(C1) — E(C3) such that the following diagram commutes

0—> C; — E(C1) —> E(C1)/C1 —=0

o)

0—Cy — E(Cy) — E(Cy)/Co —0.

So if f € Hom¢(G(D;),G(D2)), then there exists an extension f :
E(G(D1)) — E(G(Dz)) such that flgp,) = f. Thus there is a map
g : E(G(D1))/G(D1) — E(G(D3))/G(D2) such that goa = So f.
Hence we get the following proposition.

PROPOSITION 3.2. Homp(D1,Ds) e Hom¢(G(D1),G(D7)) is al-
ways bijective.
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Proof. We only need to ensure that A is injective. From the following
diagram ;

0—> G(Dn) Es D, 0
0 ————>-(;(l)2) Es Dy 0

Ker A = {f € Homp (D1, Da)| G(f) = 0}

= {f € Homp(D;, D3)| G(f) can be factored through an injective mod-
ule E1} by [4, 13.2]

= {f € Homp(D;, Ds)| f can be factored through an injective mod-
ule F2} by [4, 13.8]

— {f € Homp(D1, Dy)| f = 0}

=[0]. 0

REMARK 3.3. (1) We know that the functor G “preserves products”,
that is, G(I] D;) = [[G(D;) naturally. It is probably not true that
G(®D;) = ®G(D;) in general.

(2) If gl.dim.R < 1 (so then gl.dim.R < 2), then every injective cover
is just of the form E — M, where F is the largest injective submodule
of M. SoD=0and C =0.
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