INJECTIVE MODULES OVER NOETHERIAN RINGS

EBEN MATLIS

Introduction In this discussion every module over a ring R will be
understood to be a left R-module. R will always have a unit, and every
module will be unitary. The aim of this paper is to study the structure
and properties of injective modules, particularly over Noetherian rings.
B. Eckmann and A. Schopf have shown that if M is a module over any
ring, then there exists a unique, minimal, injective module E(M) con-
taining it. The module E(M) will be a major tool in our investigations,
and we shall systematically exploit its properties.

In § 1 we show that if a module M has a maximal, injective sub-
module C (as is the case for left-Noetherian rings), then C contains a
carbon-copy of every injective submodule of M, and M/C has no injective
submodules different from 0. Although C is unique up to an automor-
phism of M, C does not in general contain every injective submodule
of M. In fact, the sum of two injective submodules of a module is
always injective if and only if the ring is left-hereditary.

In § 2 we show that for any ring B a module E is an indecom-
posable, injective module if and only if E = E(R/J), where J is an ir-
reducible, left ideal of R. We prove that if R is a left-Noetherian ring,
then every injective R-module has a decomposition as a direct sum of
indecomposable, injective submodules. Strong uniqueness assertions can
be made concerning such decompositions over any ring.

In § 8 we take R to be a commutative, Noetherian ring, and P to
be a prime ideal of R. We prove there is a one-to-one correspondence
between the prime ideals of R and the indecomposable, injective R-
modules given by P <> E(R/P). We examine the structure of the module
E = E(R/P), and show that if A, is the annihilator in E of P?, then
E=UA, and 4,,/A; is a finite dimensional vector space over the
quotient fleld of R/P. The ring of R-endomorphisms of E is isomorphic

in a natural way to Ep, the completion of the ring of quotients of R
with respect to R-P. As an R,-module E is an injective envelope of
R,/P, where P is the maximal ideal of E,. If P is a maximal ideal
of R, then E is a countably generated R-module. Every indecomposable,

injective R-module is finitely generated if and only if R has the minimum
condition on ideals.

In § 4 we take R to be a commutative, Noetherian, complete, local ring,
P the maximal ideal of R and E = E(R/P). Then the contravariant,
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exact functor Homg(A4, E) establishes a one-to-one eorrespondence be-
tween the category of modules with ACC and the category of modules
with DCC such that Hom,(Hom,(4, E), E) = A, for A in either category.
In particular, there is a lattice anti-isomorphism of the ideals of R and
the submodules of £ given by annihilation.

This paper is essentially the first half of a doctoral dissertation
submitted to the University of Chicago. The author would like to ex-
press his deep appreciation for the assistance and inspiration given to
to him by Professor I. Kaplansky.

1. Maximal Injective Submodules.

DErINITION Let E be a ring and S an R-module. Then an F-module
M is said to be an essential extension of S, if S M, and if the only
submodule T of M such that SNT = 0 is the submodule T = 0.

B. Eckmann and A. Schopf have shown [4] that if R is a ring and
M an R-module, then there exists an injective E-module E(M) which is
an essential extension of M. If C is any other injective extension of
M, then there exists in C a maximal, essential extension 4 of M, and
there is an isomorphism of E(M) onto A which is the identity on M.
We shall call E(M) the injective envelope of M. A. Rosenberg and D.
Zelinsky have called this module the injective hull of M [9].

LEMMA 1.1. Let R be a ring, S and T R-modules, and D an inject-
we submodule of S T. Let E be an injective envelope of DN S in D,
and let F be a complementary summand of E in D, Thus D = E@ F;
and E and F project monomorphically into S and T, respectively.

Proof. 1t is clear that F projects monomorphically into T. Let f be
the projection of E into S. Since Ker fC 7, Ker fN(DNS)=0.
However, E is an essential extension of DN S, and so Ker f = 0.

The following proposition is well known [3, Ch. 1, Ex. 8], but we
state it for the sake of reference.

ProPOSITION 1.2. Let R be a left-Nostherian ring. Then :

(1) A direct limit of injective R-modules is injective.

(2) A direct sum of R-modules is injective if and only if each
summand 1s injective.

It is an immediate consequence of Proposition 1.2 that if R is a
left-Noetherian ring and M an R-module, then M possesses a maximal,
injective submodule C. Concerning this situation we have the following :

THEOREM 1.3. Let R be any ring and M an R-module such that M
has a maximal, injective submodule C. Then :



INJECTIVE MODULES OVER NOETHERIAN RINGS 513

(1) If N is a complementary summand of Cin M, then M = C P N,
and M/C = N has no injective submodules different from 0.

(2) If E 4s any tnjective submodule of M, then the projection of E
wnto C maps E isomorphically onto an injective envelope of E N C in C.

(38) If D is any other maximal, tnjective submodule of M, then
there is an automorphism of M which carries C onto D and is the identi-
ty on N.

Proof. (1) is obvious, and (2) follows immediately from (1) and
Lemma 1.1. We will prove (3). Let f be the projection of D into C.
By (2) f(D) is an injective envelope of DNC in C; and thus C =
S(D)E&B C,, where C; is an injective submodule of C. However, since
(DNCyc f(D), DN C,=0; and thus by the maximality of D, C; = 0.
Therefore, since f is one-to-one by (2), f is an isomorphism of D onto
C, and so DN N=0. Thus M =D@ N, and this completes the proof
of the theorem.

If the sum of the injective submodules of a module M is always
injective, then M has a unique, maximal, injective submodule which
contains every injective submodule of M. However, in general, this is
not the case. In fact, we have the following.

THEOREM 1.4. Let R be any ring. The sum of two injective sub-
modules of an R-module is always ingective if and only if R is left-
hereditary.

Prosof. If R is left-hereditary and N,, N, are injective submodules
of an R-module N, then N, + N, is a homomorphic image of the inject-
ive R-module N, N,, and hence is injective.

Conversely, assume that the sum of two injective submodules of
any R-module is injective. Let M be any injective R-module and H a
submodule of M. We will show that M/H is injective, and this will
prove that R is left-hereditary.

Let M, M, be two copies of M, N = M, P M,, and D the submodule
of N consisting of the elements (%, 2), where %2 ¢ H. The canonical
homomorphism : N — N/D maps M,, M, isomorphically onto submodules
M, M, of N/D, respectively. Since N/D = M, + M,, N/D is injective;
and, therefore, (N/D)/M, is injective. The composite mapping: M —
M, - M, — (N/D)|M, defines a homomorphism of M onto (N/D)/M, with
kernel H. Therefore, M/H is injective; and the proof is complete.

It follows eagily from Proposition 1.2 and Theorem 1.4 that if M is
any module over a left-Noetherian, left-hereditary ring, then M has a

unique, maximal, injective submodule C which contains every injective
submodule of M.
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2. Indecomposable Injective Modules.

PROPOSITION 2.1. Let R be a ring and {M;} o finite family of R-
modules. Then the natural imbedding of >, P M, into >, P E(M,) can
be extended to an isomorphism of E(S, @ M,) and > @ EM,). If R is
left-Noetherion, the finileness restriction can be omitted.

Proof. We identify 3@ M, with its image in > @ E(M;). 1f the
family is finite, or if R is left-Noetherian, the latter module is injective.
Hence it suffices to show that 3. @ E(M;) is an essential extension of
S NP M,, regardless of whether the family is finite or not. Let
x# 0e Y, P EWMM,); then since x has only a finite number of non-zero
coordinates, we can by working successively on each coordinate find an
element » € R such that rz 0 and rx € >, M,. This proves the as-
sertion.

DEFINITION. Let A be a module over a ring B. We say that A is
indecomposable, if its only direct summands are 0 and A.
The following proposition follows readily from the definitions :

ProprosITION 2.2, Let M be o module over a ring RB. Then the fol-
lowing statements are equivalent :

(1) E(M) is an injective envelope of every one of its non-zero sub-
modules.

(2) M contains no non-zero submodules S and T such that SNT = 0.

(3) E(M) is indecomposable.

In general it is not true that if M is indecomposable, then E(M) is
also indecomposable. For let M be an indecomposable, torsion-free
module of rank two over an integral domain E. Let Q be the quotient
field of R. Then E(M)= Q@ Q [5, Th. 19].

DEFINITION. Let R be a ring and I a left ideal of R such that
I=Jn---NdJ, where J; is a left ideal of R. We call this a decom-
position of I, and we say the decomposition is ¢rredundant, if no J,
contains the intersection of the others.

THEOREM 2.3. Let R be a ring and I =J, N --- N J, an irredun-
dant decomposition of the left ideal I by left ideals J,. Assume that each
E(R|J}) is indecomposable. Then the natural imbedding of R|I into C =

ER[J)D --- D E(R|J],) can be extended to an isomorphism of E(R|I)
onto C.

Proof. We identify R/I with the submodule of C consisting of all
elements of the form (» +J,, --- , r+J,), where r e E. Since C is
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injective, it is sufficient to show that it is an essential extension of R/I. We
first show that R/I N RK/J; + 0 for all 4; for simplicity we will prove only
the case ¢ = 1. By the irredundancy of the decomposition of I we can
find » ¢ R such that red,nN---NnJ, but ¢ J. Then (r +J,r +
Sy ooy +J)=(+J,0,-.-,0) is a non-zero element of R/I N R|J..

By Proposition 2.2 E(R/J,) is an injective envelope of R/IN R/J,.
Let x = 0 e C. By working successively in each component we can find
se R such that sz # 0, and the ith component of sx is in R/I N R/J,.
Thus sz is a sum of elements of B/I, and hence sz € B/I. Thus C is an
essential extension of R/I.

DEFINITION. Let J be a left ideal of a ring B. We say that J is
srreducible, if there do not exist left ideals K and L of R, properly
containing .J, such that KN L = J.

NoTaTION. Let M be a module over a ring R, and let S be a sub-
set of M. Then we define O(S) = {r € R|»S = 0}. Clearly O(S) is a
left ideal of R.

THEOREM 2.4. A module E over a ring R is an indecomposable, in-
jective module if and only +f E = E(R[J), where J is an irreducible left
ideal of K. In this case, for every x + O € K, O(x) s an irreducible left
ideal and K = FE(R|O(x)).

Proof. Let J be an irreducible left ideal of R, and K, L left ideals
of R such that K/JNL/J=0. Then KN L =, and thus either K = J
or L =J. Hence E(R/J) is indecomposable by Proposition 2.2.

Conversely, let E be an indecomposable, injective module, = 0 ¢ E,
and J = O(z). By Proposition 2.2 E = E(Rx); and since Rz = R[J, we
have E = E(R/J). Suppose that J = KN Lis an irredundant decomposi-
tion of J by the left ideals K, L. We imbed R/J in C= E(R/K)YP E(R/L),
and let D be an injective envelope of R/J in C. Due to the irredund-
ancy of the decomposition of J, R/J N R/K #+ 0. Therefore, by Lemma
1.1 and the indecomposability of D, D projects monomorphically into
E(R/K). The image of D is an injective module containing E/K, and
hence is equal to E(R/K). Thus E(R/K) is indecomposable; similarly,
E(R/L) is indecomposable. Thus by Theorem 2.3 E(R/J)= E(R/K)PE(R/L).
This contradicts the indecomposability of E(R/J), and thus J is irreducible.

REMARKS.

(1) Every ring R possesses indecomposable, injective modules.
For if J is a maximal, left ideal of R (such exist by Zorn’s lemma and
the fact that R has an identity element), then J is an irreducible ideal,
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and so E(R/J) is indecomposable by Theorem 2.4.

(2) It can be shown that every injective module over a ring R
has an indecomposable, direct summand if and only if every left ideal
of R has an irredundant decomposition by left ideals, at least one of
which is irreducible.

THEOREM 2.5. Let R be a left-Noetherian ring. Then every injective
R-module has a decomposition as a direct sum of indecomposable, injective
submodules.

Proof. Let M be an injective R-module. Then by Zorn’s lemma
we can find a submodule C of M which is maximal with respect to the
property of being a direct sum of indecomposable, injective submodules.
Suppose that C = M. By Proposition 1.2 C is injective, and hence there
is a non-zero submodule D of M such that M = C@ D. Letax + 0¢ D;
since B is left-Noetherian, O(x) is an intersection of a finite number of
irreducible, left ideals [8, L.emma 1.8.2]. Therefore, by Theorems 2.3
and 2.4, E(R/O(x)) i a direct sum of a finite number of indecomposable,
injective R-modules. Now Rz = R/O(x), and so we can consider that
E(R/O(x)) is imbedded in D. But then C@ E(R/O(x)) contradicts the
maximality of C, and thus C = M. This concludes the proof of the
theorem.

Theorem 2.5 is a generalization of a theorem of Y. Kawada, K.
Morita, and H. Tachikawa [6, Th. 3.2] who considered the case of a
ring with the minimum condition on left ideals. Their theorem, in turn,
is a generalization of a theorem of H. Nagao and T. Nakayama [7]
concerning finite dimensional algebras over a field.

DEFINITION. Following the most general definition [3, p. 147] we
will call a ring H a local ring if the set of non-units of H forms a two-
sided ideal.

ProrosITION 2.6. Lot E be an injective module over a ring R and
H = Homg(E, E). Then H is a local ring +f and only iof E is indecom-
posable. In this case f e H is a unit if and only if Ker f = 0.

Proof. If E is not indecomposable, then H has a non-zero idempo-
tent different from the identity, which can’t happen in a local ring.
Conversely, assume that F is indecomposable. If fe¢ H is a unit, then
of course Ker f=0; while if Ker f=0, then f(E) is injective, f(E)=E,
and so f is a unit of H. Let g, % be non-units of . Then Ker g + 0,
Ker 2+ 0, and by Proposition 2.2 Ker gnNXer A+ 0. Since Ker
g N Ker h < Ker (g + &), it follows that g + & is a non-unit. It is well-
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known that if the sum of two non-units of a ring is always a non-unit,
then the ring is a local ring.

The preceding proposition shows that G. Azumaya’s generalization
of the Krull-Remak-Schmidt theorem [1, Th. 1] applies to direct sums
of indecomposable, injective modules. We state this theorem without
proof in the form in which it applies to our considerations.

ProPOSITION 2.7. Let R be a ring and M= > P E, (a € A) an R-
module which is a direct sum of indecomposable, injective submodules E,.
Then :

(1) Given a second decomposition of M into indecomposable sub-
modules F, (be B): M = S\ @ F,, then there exists o one-to-one mapping
a— b(a) of A onto B such that E, is isomorphic to F,, for each a € A.
In other words the decomposition of M into indecomposable submodules is
unique up to an automorphism of M.

(2) For any non-zero idempotent element f in Homg(M, M) there
exists at least one E, such that f is an isomorphism on E,. In particular
every indecomposable, direct summand of M is isomorphic to one of the

.
8.

It is an open question whether every direct summand of M is also
a direct sum of indecomposable, injective modules. Of course if R is
left-Noetherian, then Theorem 2.5 provides an affirmative answer.

The following proposition will be needed in § 3.

ProrosirioN 2.8. Let R be a ring, B an R-module, ond C an in-
jective R-module; let ye C and @, ---,x, € B. Then N O(x;,)C Oy) if
and only if there exist f,,---,f, € Homy(B, C) such that y=f12,4 -+ wZn

Proof. 1If y= fw, + .-+ + fux,, then clearly N O(z,) c O(y). Now
assume that N O(z;) C O(w). R/ N O(x;) is a eyclic B-module generated by
an element z with O(2) = N O(z;). There exists an R-homomorphism :
Rz —» Ry such that z— y; and there exists a natural imbedding of Rz
into > @ Rw; such that z— (z, ---,2,). This yields the diagram :

0— Bz— >, P R,
o
Ry
\
C

Since C is injective, there is an R- homomorphlom fi 3B Re, » C such
that f(x, ---,2,) =y. Now f= Zf“ where f, : Rx;, — C is the restric-
tion of f to Rx;. We have the diagram:
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0— Rz, —> B

Jid
C

Therefore, we have R-homomorphisms f;: B— C such that f, extends
ji for each ¢. Thus fia, + «-+ + [0, :f;w1 + .. —l—fnwn:f(xu' <y Bp) =Y.

3. Injective Modules over a Commutative, Noetherian Ring.

Throughout this section R will be a fixed commutative, Noetherian
ring.

PROPOSITION 3.1. There s a one-to-one correspondence between the
prime ideals of R and the indecomposable, injective R-modules given by
P« E(R/P), for P o prime ideal of R. If Q is an trreducible P-primary
ideal, then E(R|Q) = E(R/P).

Proof. It is obvious that a prime ideal is irreducible; and thus
E(R[P) is an indecomposable, injective module by Theorem 2.4. Let
P,P, be two prime ideals of R such that E(R/P,) = E(R/P,). We con-
gider that R/P, and R/P, are imbedded in E(R/P,). Hence by Proposition
2.2, R/IP,N R/P,+ 0. However, every nonzero element of R/P, (resp.
R/P,) has order ideal P, (resp. P,). Thus P, = P,, and the mapping
P — E(R/P) is one-to-one.

Let E be any indecomposable, injective R-module. Then by Theorem
2.4 there is an irreducible ideal @ of R such that FE = E(R/Q). Now
Q is a primary ideal with a unique associated prime ideal P [8, Lemma
1.8.3]. If @ =P, we are finished; hence assume that @ = P. Then
there is a smallest integer n > 1 such that P* < @. Take b ¢ P*! such
that b ¢ @, and denote the image of b in R/Q by b. Clearly O() > P;
on the other hand if a € O(b), then ab € Q, and so a € P, showing that
O(@) = P. Therefore, there is an element of E(R/Q) with order ideal
P, and thus E(R/Q) = E(R/P) by Theorem 2.4. This completes the proof
of the proposition.

LEMMA 3.2. Let P be a prime ideal of R and E = E(R|P). Then:

(1) Q is an irreducible, P-primary ideal if and only if there is an
x =+ 0e E such thot O(x) = Q.

(2) If r e R-P, then O(re) = O(x) for all x € E, and the homo-
morphism . E — E defined by x —> rx is an automorphism of E.

Proof.
(1) This is an immediate consequence of Theorem 2.4 and Pro-
position 3.1.
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(2) Let re R— P; the map: E — E defined by - rz, forz ¢ E,
has kernel O by (1); therefore, it is an automorphism by Proposition
2.6. It follows that O(x) = O(rx) for every = € K.

DEFINITION, Let M be an injective R-module, and P a prime ideal
of R. Define

M, = {x e M| Pc Rad O(x)}
and
N,={xe M,| P+ Rad O(z)} .

Let M= P FE, (ac A) be a direct decomposition of M by indecom-
posable, injective submodules E,. By Proposition 3.1 there is associated
with each E, a prime ideal which we shall designate by P,. Define H,
to be the direct sum of those E.’s such that P, = P. We shall call H,
the P-component of the decomposition of M ; and we define the P-index
of M to be the cardinal number of summands E, in the decomposition
of H,.

THEOREM 3.3.

(1) M, is the direct sum of those E,.’s such that P,D>P, and N,
w8 the direct sum of those E,’s such that P,2 P. Thus M, and N, are
submodules of M; and, in fact, are direct summands of M. In addition,
the direct sums of E.s just defined are independent of the decomposition
of M.

(2) M is o direct sum of the P,-components H, . We have H, =
M,/N,; and H, is unique up to an automorphism of M. In other words
M is determined up to isomorphism by a collection of cardinal numbers,
namely its P-indices.

If P is o maximal ideal of R, then H, = M,, and thus H, is in-
dependent of the decomposition.

Proof.

(1) Let x+0e M; then x =2, + -+ + ®,, Where @+ 0ek,.
Thus O(z) = N O(x;); and by Lemma 3.2 (1) O(z,) is P%—primary. From
this it follows that Rad O(x) = N P%_. Hence it is clear that z e M, if
and only if x is an element of the direct sum of those E,’s such that
P, P. It also follows that z € N, if and only if » is an element of
those K,’s such that P,2 P.

(2) This follows immediately from (1) and Proposition 2.7.

We now proceed to examine the structure of a typical indecom-
posable, injective R-module.
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THEOREM 3.4. Let P be a prime ideal of R, E = E(R/P), and A;=
{xe E|Px =0} Then:
(1) A; is a submodule of E, A, C Ay, ond E = U A,.
(2) XQA O(x) = PD, where P® is the ith symbolic prime power of P.
(3

(8) The non-zero elements of A;..JA; form the set of elements of
E[A; having order ideal P.

(4) Let K be the quotient field of R|P. Then A,..lA, is a vector
space over K, and A; = K.

Proof.

(1) Clearly A, is a submodule of E, and A, C A4,.;,. Letx + 0¢e E,
then by Lemma 3.2 (1) O(x) is a P-primary ideal. Thus there exists a
positive integer ¢ such that FiC O(z), and so « e A4,. Therefore,
E=UA,.

(2) By Lemma 3.2 (l)XQ O(z) is the intersection of all irreducible,

Ay

P-primary ideals containing F!. It is easily seen that this intersection
is equal to P®,

(3) Since PA,, C A,, it follows from Lemma 3.2 (2) that every
non-zero element of A,, /A, has order ideal P. Conversely, if z ¢ E is
an element such that PxC A,, then x € A4,,,. Therefore, every element
of E/A, having order ideal P is an element of A,../4,.

(4) If r e R, denote its image in R/P by #. Similarly, if z e A,,,,
denote its image in A,../4, by Z. If se B — P, then by Lemma 3.2 (2)
there exists a unique y € A,,, such that x = sy. Define an operation of
K on A;,,/JA; by (¥/8) - Z =7y. It is easily verified that with this defi-
nition A,../A; becomes a vector space over K.

Take z + 0 e A,. Since 4, =0, A, is a vector space over K; and
s0 we can define a K-monomorphism g: K— A; by g(#/s) = (¥/s) - «, for
Flse K. Let 2+ 0e A,. Since K is an essential extension of A,, there
exist t,we R — P such that ta = wz. Thus ¢(t/w) =2, and ¢ is an
isomorphism.

REMARKS.

(1) Let IC P be an ideal of R, and A(l) = {« ¢ E|Ix = 0}. Then
it follows from {2, Th. 17} that A(I), considered as an R/I-module, is
an injective envelope of (R/I)/(P/I). Therefore, A(I) is an indecom-
posable, injective R/I-module. We obtain from [8, Lemma 1] that
Homy(R/I, E) = A(I); and if J is an ideal of R containing I, then
Hom(J/I, E) = A(I)]A(J).

(2) 1If P=0, R is an integral domain, and E = A, = K, which is
then the quotient field of R. If P+ 0, the module E is the natural
generalization of the typical divisible, torsion, Abelian group Z, . We
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will show in a later theorem that A,.,/A; is a finite dimensional vector
space over K, although in general it is not one dimensional as is the
case for Z, . The ring of endomorphisms of Z, is the p-adic integers.
This will generalize to the theorem that the ring of R-endomorphisms
of E is E,, the completion of the generalized ring of quotients of R
with respect to R — P,

DEFINITION. Let P be b prime ideal of B, S= R — P, and N the
S-component of the 0-ideal of R; i.e. N = {a € R|there exists an ele-
ment ¢ € S with ca = 0}. Let R* = R/N, P* = P/N, and let S* be the
image of S in R*. No element of S* is a zero divisor in R*, and thus
we can form the ordinary ring of quotients of R* with respect to S*.
We denote this ring by R,; it is a commutative, Noetherian, local ring
with maximal ideal P' = R,P. We will denote the completion of R, by
}_Bp, and its maximal ideal by P. Further details of the construction
may be found in [8, Ch. 2].

LEMMA 3.5. Let K be the quotient field of R/P. Then K and R,/P’
are isomorphic as fields ; and PP Q) p»K and PP are isomorphic
as vector spaces over K.

Procf. Let re I8, se R — P and denote the images of #, s in B/N
by r*, s*, and their images in R/P by 7,s. It is easily verified that
the mapping : K — B,/P defined by r/s — (+*/s*) + P is a field isomor-
phism. We make every R,/P’-module into a K-module by means of this
isomorphism.

Let ¢ € P* and denote its image in R/N by ¢*. We define a map-
ping : P{Pi*' Q) pp K~ PP by [q + P*' @ 7/s — (v/5)[g* + P*+']. We
define a mapping in the reverse direction by ¢*/s* + P+ '—[g-+ P+ Qr/s.
These mappings are K-homomorphisms, and their product in either order
is the identity mapping. Thus P!/FP*' (X 5» K is isSomorphic as a vector
space over K to P?[P't+1,

It is easily seen that if @ is a P-primary ideal, then N Q. Hence
by Lemma 3.2 (1) E(R/P) is an R*-module. We will henceforth assume
(without loss of generality) that N = 0. The simplification amounts to
this : R, is an ordinary ring of quotients of R.

THEOREM 3.6. With the notation as already given let E = E(R|P).
Then E is in a natural way an Ep—module, and as such it is an injective
envelope of R,/P. The R-submodules A, = {x ¢ E | Pix = 0} of E are equal
to the corresponding submodules defined for Rp.
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Preoof. We define on operation of R, on E as follows: let z € E,
re R, and se R — P; then by Lemma 3.2 (2) there exists a unique
y € E such that # = sy. Define (r/s)x = ry. It is easily verified that
with this definition E becomes an R,-module. If G is an R,-module
containing F, then E is an R-direct summand of G. But then E is an
R,-direct summand of G also, and thus E is R,-injective. Since E is
indecomposable as an R-module, it is a fortiori indecomposable as an
R,-module.

If x € E has order ideal O(z) in R, then a straightforward calculation
shows that the order ideal of # in R, is R,0O(x). From this it follows
readily that Pz = 0 if and only if P’ = 0. These remarks show that
we may assume that R is a local ring with maximal ideal P. We denote
its completion by R, and the maximal ideal of B by P = RP.

Let @ € R; then there exists a Cauchy sequence {a,} in R such
that a,— a. Let x e E; then x e A4, for some 4. There exists an in-
teger N such that a, — a, € P* whenever n >m = N. Thus a.x = a,z,
and if we define ax = ayx, it is easily verified that this definition makes
E into an R-module.

Let E be the R-injective envelope of E. Since A4, = R/P = RP
over R, it follows from Proposition 2.2 that E is the R-injective envelope
of R/P. Therefore, by Theorem 8.4 E = U 4,, where 4, = {x ¢ E | Pz =0}.
As an R-module E splits into a direct sum of E and an R-module
C. If @€ C, then @ e A, for some i; and if r e R, there exists r e R
such that # =7 (mod P". Hence 7o = rx e C, and thus C is an R-
module. However, E is indecomposable as an R-module ; and thus C =0
and E = E. A simple calculation shows that if z € E has order ideal
O(z) in R, then it has order ideal I?O(w) in R From this it follows readily

that 4, = A,.

THEOREM 3.7. Witk the notation of Theorem 3.6 let H = Homg(E, E).
Then H is R-isomorphic to R,; more precisely, every R-homomorphism of
E into itself can be realized by multiplication by exactly one element of Ro.

Proof. 1t is easily seen that H = Hom;ﬂ(E, E). Therefore, by
Theorem 3.6 we can assume without loss of generality that R is a com-
plete, local ring with maximal ideal P. Since N P' =0, if r #0 e R,
there exists an integer ¢ such that » ¢ P!. Hence r4, + 0 by Theorem
3.4 (2); and E is a faithful E-module. Consequently, we can identify
R with the subring of H consisting of multiplications by elements of E.

Define H; = {h € H|h(A;,) = 0}. Then N H; = 0, and since g(4;) C A4,
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for every g € H, H, is a two-sided ideal of H. We will prove by induec-
tion on ¢ that if fe H, then for each integer ¢ there exists an element
p; € R such that f= p, (mod H,). Since A, = R/P, there exists ye A4,
such that A, = Ry. Letfe H; then there exists p, ¢ B such that

fy = py. Thus f= p, (mod H;). We assume the assertion has bheen
proved for ¢ = 1.

Let PP** =Q, N --- NQ, be an irredundant decomposition of P**' by
irreducible, P-primary ideals @;. By Lemma 3.2 (1) we can find ele-
ments x; € A;., such that O(z,) = @, for s =4, ---,n. By the irredun-
dancy of the decomposition we can find ¢, € @, N --- N QJ N -+ @, (where
Q, means Q, is left out) such that ¢, € Q,, Thus g, = 0 and g, =0
for 5 + k.

By induction there exists p, € B such that ¢ = f — p, € H,. Since
Pz, c A;,, Plgx;,) =gPzx,)=0; and thus gx;e A,. Therefore, by
Proposition 2.2 there exists r,e R such that r,(¢,x,) = gx,. Let
g=mr¢q + -+ + 7,4, Then gr,=qx, for j=1,.--,n.

Let @ € 4,,;; then O(x) D P** = O(z,)) N --- N O(x,). Hence by Propo-
sition 2.8 there exist fi, ---,f, € H such that z = fiz, + -+« + fu2n.
By the induction hypothesis f, =s, + #,, where s, B and %, ¢ H,.
Since

Py, c A, Plh)) = h(Px)) =0;

hence hx; € A, and g(hm;) = 0. Since gz, e A;, qlhx;) = h(qx,) = 0.
Thus

9(@) = sgw) + « -+ + 8, (92n) = 8:(q@) + -+ + s.(qx,) = ().

Therefore, ¢ — ¢ € H,.,. We let p.; = p; + ¢; then f = p,, (mod H,.),
and we have verified the induction.

Thus we have associated with f a sequence {p;} of elements of R.
If n<m, then p, — P = (0, — ) + (f— pn) € H, + H, = H,. Therefore,
(n — Pw)A, = 0, and so by Theorem 3.4 (2) p, — v, € P*. Thus {p;} is
a Cauchy sequence in R; and since R is complete, p, —» p € R. Since
PcH, p,»>p in H But p,—»f in H, and s0 f=pe R. Thus
H = R and the theorem is proved.

COROLLARY 3.8.

(1) Lety, 2, ,x,€ E. Then N O(z,) C O(y) iof and only if there
exist vy, <+, 1, € R, such that y = ra, -+ +++ + r,2,.

(2) Every R-homomorphism from one submodule of E into another
can be realized by multiplication by an element of I—Bp.

Proof.
(1) This is an immediate consequence of Proposition 2.8, Theorem
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3.7, and the definition of the operation of E, on E.
(2) Since E is injective, every R-homomorphism from one sub-
module of K to another can be extended to an endomorphism of E.

DEFINITION. T.et P be a prime ideal of R, and let P® =
QN---NQNK..NEK, be an irredundant decomposition of the
symbolic prime power P® by irreducible ideals @, such that @, 2 P¢-V
for m=1,---,% and Q,, D P4V for m=¢t+1,.---,n. We say that
this is a minimal decomposition of P® and that P® belongs to t, if ¢ is
the smallest integer for which we can obtain such a decomposition.
Clearly for 4 > 0 P® has a minimal decomposition; and ¢ >0 if and
only if P® % pPG-b,

THEOREM 3.9. Let P be a prime ideal of R, E = E(R|P), and assume
that P9 belongs to t. Then the dimension of A;.JA; as a vector space
over the quotient field of E|P is equal to t.

Proof. We can assume without loss of generality that B is a local
ring with maximal ideal P. Then P® = P* for every ¢. Let F*'=
QN+ NN, N+« Q, be a mnimal decomposition of Pi*', where
Q.2 P form=1---,tand @, D PPform=¢t+1,.--,n. By Lemma
3.2 (1) we can find «, € A,,; such that O(z,) =@, for m =1, .--, n.
Let z,, = z,, + A;; we will show that &, ---, Z, form a basis for A,..,/A;
over R/P. ‘

(1) &#,---,Z, are linearly independent over R/P. Suppose that
& 4 ee- + 7@ = 0. where s <t and 7, = r, + P for some ;¢ B. We
can assume that 7, =0 forj =1, ---,s. Now rx, + -+ +rx, =y € 4,
and 80 1@, = —1r@, — -+ — r& + . Applying Lemma 3.2 (2) we have
O(x) D O(@) N+« N O(x,) N O(y). Hence P+ = O(x,) N -+ N Ox,) N Oy).
We can refine this irreducible decomposition of FPi*! to an irredundant
one ; but since O(y) D P, we will then have ¢ — 1, or fewer, components
not containing P!. This contradicts the minimal nature of ¢; and there-
fore, Z;, .-+, &, are linearly independent over R/P.

(2) &,-++,%, span A,.JA, over R/P. For let we A,.; then
O(x) D P'** = N O(x,). Therefore, by Corollary 8.7 (1) there exist
ri, e+, ", € R such that z=ra + -+ + r2,. Since @, > P for
m=t+1,.++,n, it follows that =, e 4, form = ¢t+1,.-.,n. Thus »z + A4,
is a linear combination of %, --., Z, with coefficients in R/P.

The main part of the following theorem was communicated to me
by A. Rosenberg and D. Zelinsky.

THEOREM 3.10. With the notation of Theorem 3.9 let K be the
quotient fleld of R{P. Then A,.[/A, is isomorphic as a vector spuce over
K to the dual space of PP Q) pp K.
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Proof. By Lemma 3.5 and Theorem 3.6 we can assume that R is
a local ring with maximal ideal P; and then we must prove that A4,../A4,
is isomorphic as a vector space over RE/P to the dual space of P!/P!*,
By [9, Lemma 1] we know that A,.,/A, is isomorphic over R/P to
Homg(P!/ P+, E). It is clear that any R-homomorphism of P!/ P!*! into
E has its range in A4, (which is isomorphic to R/P), and is actually an
R/P-homomorphism. Thus we can identify Homg(P/Pi*', E) with
Homyg, (P P+, B/P). Since the latter is the dual space of F¢{/P'*! as a
vector space over R/P, this concludes the proof.

Theorem 3.10 provides a second proof that A4,../4, is a finite dimen-
sional vector space over K; and in addition shows that this dimension
is equal to the dimension over K of P{P'*' ., K. Combining this
result with Theorem 3.9 we see that P¢*" belongs to ¢ if and only if
Pi|P Q) pp K has dimension ¢ over K.

THEOREM 3.11.

(1) If P is a maximal ideal of R, then A; C E(R|/P) ts a finitely
generated R-module for every integer ©; and thus E(R[P) is a countably
generated R-module.

(2) R has the minimum condition on ideals if and only if every
ndecomposable, injective R-module is finitely generated.

Proof.

(1) The proof is by induction on ¢. Since the case ¢ = 0 is trivial,
assume that A, , is finitely generated. By Theorem 3.9 we can find
Z, +v, &, € A, such that if xe A, then there exists be R — P such
that bz is in the module generated by «, ---, 2, and A4,_,. Since P ig
maximal and Pr < A4,_,, z is in the module generated by A4,_; and «,,-- -, 2,.
Thus A4, is finitely generated.

(2) Suppose that R has the minimum condition on ideals. Let P
be a prime ideal of R ; then P is a maximal ideal, and there exists an
integer ¢ such that P' = P'*' = Fi** = ..., Therefore, E(R/P)=A,;;
and by (1) E(R/P) is finitely generated over R. Since E(R/P) is typical,
all indecomposable, injective R-modules are finitely generated.

Conversely, assume that every indecomposable, injective R-module
is finitely generated. Let P be a prime ideal of E. Then A; C E(R/P)
is finitely generated over R/P. But A, is isomorphic to the quotient
field of B/P, and hence R/P is a field. Thus prime ideals of R are
maximal ; and since R is a Noetherian ring, this implies that R has the
minimum condition on ideals.

4. Duality

DEFINITION. Let R be any ring and M an E-module. Then we say
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that M has ACC (Ascending Chain Condition) if every ascending chain
of submodules of M terminates, and we say that M has DCC (Descend-
ing Chain Condition) if every descending chain of submodules of M
terminates,

PRrROPOSITION 4.1. Let R be a left-Noetherian ring, and M an R-
module having DCC. Then E(M) is a direct sum of a finite number of
wndecomposable injective E-modules.

Proof. By Theorem 2.5 E(M)= > @ E.(a € 4), where the E,’s are
indecomposable, injective R-modules. Assume that the index set A4 is
infinite. Then A has a properly descending chain of subsets:
ADA DA, D--- . Define the submodule C; of E(M) by C,=SPE, (e A,).
Then M > (C,N M) D (C,N M) D --- is a descending chain of submodules
of M. Sinece M NE, + 0 for all a € A4, the chain is properly descending.
This contradiction shows that A is finite.

DEFINITION. Let R be any ring and M an R-module. For any
positive integer » let M” denote a direct sum of » copies of M. If
x=(xy, -, x,) € M", where », € M, we will denote z by (x;). For a
fixed pair E", M® we make the following definitions: let S be a subset
of B* and B a subset of M"; then define S = {(x;) ¢ M"| Srix, = 0 for
all (r)e S} and B = {(r,)e B*|>Xrax; =0 for all (z)e B}. If R is
commutative, then S is a submodule of M" and B’ is a submodule of E».

THEOREM 4.2. Let R be a commutative, Noetherian, complete, local
ring, P its maximal ideal, and E = E(R|P). Take o fixed pair R, E*;
let S be a submodule of B* and B o submodule of E*. Then :

(1) S = HomgR"S, E), and E"S = Homg(S, E), and S” = S.

(2) B = Homy(E"B, E), and E*|B’ = HomgB, E), and B’ = B.

Thus iof A is a submodule or factor module of either E* or E®, then
Homg(Homg(A, E), E) = A. The operation ' is a lattice anti-isomorphism
of the submodules of R* and E". Therefore, E* has DCC.

Proof.

(1) R®S is generated by elements u;,,¢2=1,-.--,n, such that
(r;) € S X 7ru;=0. Let f'e Homg(E"/S, E) and define ¢: Homy(E"/S, E)—S’
by ¢(f) = (fu,). Clearly ¢ is a well-defined R-homomorphism. If
¢(f) =0, then fu, =0 for all 4, and so f=10. Thus ¢ is one-to-one.
If (x;) € S, define f': E"/S~ E by fu, = x;; and then ¢(f) = (z;). Thus
¢ is onto, and so Hom,(R"*/S, E) = S'.

From the exact sequence :

0-8S—>ER'—- RS>0
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we derive the commutative diagram :

0 - Homy(R*/S, E) — Hom,(R", E) - Homg(S, E) — 0

S ¥
0— N - B - ErS = 0.

Since E is injective, the top row is exact. Of course the bottom row is
exact, and the vertical maps are isomorphisms. Thus Hom,(S, E) =
E7S .

Clearly S < §” < E*. Suppose that (s;) e S”, but (s;,) ¢ S. Then
y = >,su; = 0e R*S. Now O(y) © P, and so by Proposition 2.8 there
exists an R-homomorphism ¢: E"/S — E such that g(y) + 0. However,
9(y) = S si9(w,) = 0, since (gu;) € S'. This is a contradiction, and so
S =8".

(2) Let (r)e B and (y) e E". Define ¢: B'— Hom,y(E"/B, E) by
O(r)(y)) + Bl = >, vy, Then @ is a well defined R-homomorphism. If
@(r;) =0, then > 7y, =0 for all (y,) e E”. Thus & =0 for all 4.
Since E is a faithful R-module by Theorem 3.7. #, = 0 for all <. Thus
@ is one-to-one. Let fe Homg(E"/B, E), and for each ¢ =1, --., n let
E, be the ith component of E”. Then the composite mapping : £ - E, —
E* - E"/B’ — E induces an R-endomorphism of E, and so by Theorem
3.7 can be realized by multiplication by an element », € B. Thus if
(y;) € B, fl(y)) + Bl = X\ rws. If (@) € B, then > ra; = fl(x;) + B] =0;
and thus (r;) € B'. Clearly @(r;) = f, and thus @ is onto. Therefore,
B’ = Homu(E"/B, E).

From the exact sequence :

0—->B—->E'—FE/B—0
we derive the commutative diagram :

0— B’ — R - RYB -0
\ \
0 —» Hom(£"/B, E) - Homg(£", £} — Hom (B, E) - 0

The top row is exact, the vertical maps are isomorphisms ; and since FE
is injective, the bottom row is exact. Thus E*/B = Homy(B, E).

Clearly B < B’ < E*. Suppose that (z,) € B”, but (z) ¢ B. Since
O((z;) + B) c P, we can find by Proposition 2.8 an R-homomorphism
f: E"/B— E such that f((z) + B) +#0. However, [ = @(r;), where
(r) € B'; and thus f((z,) + B)= @(r)(2) + B) = 3., r2; =0, since (z,) € B”.
This contradiction shows that B = B”.

REMARKS.
(1) It follows easily from Proposition 2.8 that if R is any ring,
C an injective R-module which contains a copy of every simple
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R-module, and M any R-module, then M is imbedded in a natural way in
Hom (Homy(M, C), C). G. Azumaya has also obtained this result [2,
Prop. 6]. However, his other duality statements concern non-commuta-
tive rings with minimum conditions on both left and right ideals.

(2) It is easily seen that if R is a commutative, Noetherian ring,
and C an injective R-module such Hom,(Homg(4, C), C) = A for every
cyclic R-module A, then R is a finite direct sum of complete, local rings
R, And if C; is the R,-component of C, and P, the maximal ideal of
R;, then C, = E(R,/P,).

COROLLARY 4.3. Let R be a commutative, Noetherian, complete, local
ring ; P its maximal ideal ; and E = E(R[P). Then:

(1) An R-module M has ACC if and only if it is a homomorphic
wmage of E* for some n.

(2) An R-module M has DCC if and only if it is a submodule of
E™ for some n.

(8) If X, Y are the categories of R-modules with ACC and DCC,
respectively, then the contravariant, exact functor Homg( , E) establishes
o one-to-one correspondence X <> Y. In particular, Homz(Hom,(M, E), E=M
for M in either category.

Proof.

(1) This is true for any left-Noetherian ring.

(2) By Theorem 4.2 every submodule of E” has DCC. On the
other hand let M be a module with DCC. By Proposition 4.1 E(M)=
C.@P---PC, where the C;’s are indecomposable, injective R-modules.
Let 2 # 0 e M. Then there exists an integer 7 such that Pz = P'*lg,
and so P! C O(x) + P/**. This implies that P’ < O(x) [8, Prop. 4.2.1];
and thus O(z) is a P-primary ideal. It follows from Lemma 3.2 (1) that
C,=zFKfori=1,---,m.

(8) This follows immediately from (1), (2), and Theorem 4.2.
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