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1. A recent note of D. J. Newman [3] shows that for polynomial

maps of the real plane into itself injectivity implies surjectivity. The

present note combines two independently obtained corrections and

generalizations of Newman's proof.

We need some preliminaries. Take the complex numbers as uni-

versal domain and define a real algebraic set to be the set of real points

of an algebraic set that is defined over the reals. A real algebraic set

V is Zariski-dense in its Zariski closure V, which is an algebraic set

defined over the reals, and V is the set of real points of V. Any

algebraic subset of V meets F in a real algebraic subset. V is irreduci-

ble (in its Zariski topology), i.e. F is a real algebraic variety, if and

only if V is irreducible (over the complex numbers), we define dim V

= dim V, and we call P£ V simple if P is a simple point of V; such

points P exist, and there exist uniformizing parameters that are de-

fined over the reals for V at such a point P, hence real local power

series expansions, so that at each of its simple points V, in its ordi-

nary topology, is locally a real analytic manifold of dimension dim V.

For real algebraic sets V, W define a rational map f: F—>IF to be the

restriction to VX W oî a rational map /: V—>W that is defined over

the reals; the rational map/: V^>W is a morphism ii J is defined at

each point of V. Supposing the morphism of real algebraic varieties

/: V—>W to be such that/(F) is Zariski-dense in W, a simple point

PEV may be found such that/(P) is simple on Wand df has the cor-

rect rank dim V — dim W at P, implying that, for the real analytic

structure of V, Wat P,f(P) respectively,/is locally a projection onto

a direct factor; in particular, if/is finite-to-one, then dim F = dim W

and / has a finite degree N.

Specific examples of real algebraic sets: The real part of a com-

plete nonsingular algebraic curve that is defined over the reals is the

disjoint union of a finite number of circles, each with a real analytic

structure. If F is a real algebraic set of dimension one then a Zariski-

open subset of V is isomorphic to a Zariski-open subset of a nonsingu-

lar projective model of V over the reals, hence the ordinary topology

of V is obtained by taking the topological sum of a finite number of

points and circles, effecting a finite number of identifications, and

deleting a finite number of points. If F is a real hypersurface in Rn,
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then V is the zero locus of a single real polynomial in « variables, say

/£P[Xi, • • • , X„]; since F has simple points and rank df= 1 at

these, / takes on both positive and negative values in Rn—thus F

separates Rn, in the ordinary topology.

2. The following is the main point of Newman's proof.

///: V-+W is an injective morphism of real algebraic sets and f(V)

is Zariski-dense in W, then dim F = dim Wandf(V) contains a Zariski-

dense Zariski-open subset of W.

To prove this, we may take V, W irreducible, in which case we al-

ready know that dim F=dim IF and that/ has finite degree N. Thus

there exists a Zariski-closed proper subset FEW such that ]~l(Q)

consists of precisely N points whenever QEW — F. For Q real,]~l(Q)

consists of real points plus pairs of complex conjugate points, so tak-

ing QEf(V)-F we deduce that N is odd and taking QEW-F that
J~l(Q) has at least one real point. Thus f~l(Q) is not empty if

QEW-Wr\F.
Note that if V, W are real algebraic varieties and the above condi-

tions hold, then / has odd degree. Conversely, if we delete the assump-

tion of injectiveness and merely assume the degree of / odd, then the

same conclusion follows.

3. We now prove the generalization of Newman's result.

If f: Rn—>J?" is an injective morphism (of real algebraic sets, e.g. a

real polynomial map), then f is also surjective.

First, injectivity and continuity in the ordinary topology imply

that/ is a homeomorphism between Rn and R" — X, where XCP"

is closed in the ordinary topology (invariance of domain). Consider

the real algebraic sets Fi= Xr\Rn, Vt—f~l(Vi).f is a homeomorphism

(in the ordinary topology) between Rn— V2 and Rn— Vi. If F3C V\ is

the Zariski-closure of f(V2), the previous section tells us that dim F3

= dim V2 and that/(F2) contains a Zariski-dense Zariski-open subset

of V3; in particular, V3—f(V2) is nowhere dense in V3. Since X =

Vi-f(V2) = (Vi-V3)VJ(V3-f(V2)) and X is Zariski-dense in \\, we
must have Fi— V3 Zariski-dense in V\, so that dim F3<dim V\ unless

Fi is empty (which is to be proved). We are reduced to proving the

following: if Vi, Vt are (closed) real algebraic subsets of Rn, then

Rn — Vi and R" — V2 are homeomorphic (in the ordinary topology) only

if dim Fi = dim Vt.
In proving the above statement we may assume dim Fi, dim F2<».

We wish first to remark that a quite elementary proof can be given

for the case «^3. As a matter of fact, we need only the following

statements (each of which is either obvious or a direct consequence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



202 A. BIAtYNICKI-BIRULA AND MAXWELL ROSENLICHT [April

of the last paragraph of §1) : If V is a proper real algebraic subset of

R", where n^3, then

(a) Rn is contractible,

(b) Rn—V is connected if and only if dim V<n — 1,

(c) if « = 2 and dim V= 0 then Rn — V is not simply connected,

(d) if 77 = 3 and dim V= 0 then Rn— V is simply connected, but con-

tains a 2-sphere not homotopic to a point,

(e) if 77 = 3 and dim F= 1 then the one-point compactification of Rn

contains that of V, which contains a topological circle, so Rn— V is

not simply connected.

To complete the proof in general we use the homology theory of

Borel and Haefliger [l], with integers modulo two as coefficients. To

each locally compact topological space X are associated ^-modules

Hi(X)=Hi(X; Z2), one for each integer i, vanishing for i > (topo-

logical dimension of X), reducing to the ordinary simplicial homology

groups if X is a finite simplicial complex and to the usual relative

homology groups if X is the complement of a subcomplex of a finite

simplicial complex. There is an exact sequence relating the ho-

mologies of a space, a closed subspace and its complement, and, most

essential, if X is a real algebraic set of dimension 777 there exists a

(unique) fundamental class, i.e. an element of Hm(X) which induces

at each simple point of X the generator of the local 777th homology

group. This being so, consider for any proper real algebraic subset V

of Rn the exact sequence

-► H(V) -* Hi(R-) -> Hi(R» - V) -► 77,-_i(F) ->•••.

We know that Hi(Rn) is Z2 or 0, depending on whether i = n or

»V«, and Hi(V)=0 if 7>dim V, Hdi¡aY(V)^0. Hence

Hn(R" -V) « Z2® 77n_i(F),

Hi(Rn - V) « Hi-i(V)       if * < ».

Thus the knowledge of the groups {77<(i?" — V)} determines dim V,

and we are done.

4. Here are some more, simpler, consequences of §2.

UI' V-^Wis an injective morphism of complete nonsingular irreduci-

ble real algebraic curves, then f is bijective. For the proof of the result

of §2 gives precise information in this case, since, taking V complete

and nonsingular, as we may, over each point of IF lies the same num-

ber of points of V, counting multiplicities.

Iff: V-+V is an injective morphism of the real algebraic curve V into

itself, then f is bijective. This follows from the following more general
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topological fact: If the topological space V is the complement of a

finite subset of a finite one-complex and if/: V—*V is a continuous

injection such that V—f(V) consists of a finite number of points,

then/ is a bijection. For the proof, note that the vertices of V (i.e.,

points adherent to more than two ends of open line segments) are

mapped by/into vertices. Since the vertices are finite in number, /is

bijective on the vertices, and we may delete these from V. V is now

the topological sum of a finite number of disjoint points, line segments

(open, half-open, or closed), and circles, and the proof here is straight-

forward.

If f: G—>77 is an injective homomorphism of real algebraic groups

thenf(G) is a real algebraic subgroup of H. Using the Zariski topology,

this reduces to showing that a dense abstract subgroup of a real alge-

braic group which contains a nonempty open subset is the whole group,

which is a consequence of the fact that the closure of its complement

is a proper closed subset invariant under a dense set of translations,

therefore invariant under all translations, therefore empty.

5. We remark finally the following easy proof that if f: &"—>•&" is

an injective polynomial map, where k is any algebraically closed field,

then fis also surjective: Here/must be birational or purely inseparable

and a result of Chevalley [2, p. 195] shows that/ is open, so f(kn)

= kn — X, with X closed. Whether or not/-1 is defined at a particular

point depends on the poles of rational functions, so either dim X

= 77 — 1 or X is empty. If X were nonempty a nonconstant polynomial

function on kn with zero locus contained in X would give a similar

function with no zero locus, which is impossible.
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