INJECTIVE REPRESENTATIONS OF QUIVERS

SANGWON PARK AND DERA SHIN

ABSTRACT. We prove that $M_1 \xrightarrow{f} M_2$ is an injective representation of a quiver $Q = \bullet \to \bullet$ if and only if M_1 and M_2 are injective left R-modules, $M_1 \xrightarrow{f} M_2$ is isomorphic to a direct sum of representation of the types $E_1 \to 0$ and $E_2 \xrightarrow{id} E_2$ where E_1 and E_2 are injective left R-modules. Then, we generalize the result so that a representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} M_n$ of a quiver $Q = \bullet \to \bullet \to \cdots \to \bullet$ is an injective representation if and only if each M_i is an injective left R-module and the representation is a direct sum of injective representations.

1. Introduction

A quiver is just a directed graph. We allow multiple edges and edges going from a vertex back to the same vertex. Originally a representation of quiver assigned a vector space to each vertex - and a linear map to each edge (or arrow) - with the linear map going from the vector space assigned to the initial vertex to the one assigned to the terminal vertex. For example, a representation of the quiver $Q = \bullet \rightarrow \bullet$ is $M_1 \xrightarrow{f} M_2$. Then we can define a morphism of two representations of the same quiver. Now, instead of vector spaces we can use left R-modules and also instead of linear maps we can use R-linear maps. Representations of quivers were studied in ([1], [2]) and recently in [3] noetherian quivers were studied and in [4] projective representations of quivers were studied.

A left R-module E is injective if, for every left R-module B and every submodule A of B, every R-linear map $f:A\to E$ can be extended to an R-linear map $g:B\to E$. The diagram is

Received May 25, 2005. Revised November 16, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 16E30, 13C11, 16D80.

Key words and phrases: module, quiver, representation of quiver, injective representation of quiver.

This paper was supported by Dong-A University Research Fund in 2005.

DEFINITION 1.1. A representation $M_1 \xrightarrow{f} M_2$ of a quiver $Q = \bullet \to \bullet$ is called an injective representation if for any representation $N_1 \xrightarrow{g} N_2$ with a subrepresentation $S_1 \xrightarrow{s_2 |g|_{S_1}} S_2$ and morphisms

$$S_1 \xrightarrow{S_2|g|S_1} S_2$$

$$\downarrow k$$

$$M_1 \xrightarrow{f} M_2$$

there exist $H \in Hom_R(N_1, M_1)$ and $K \in Hom_R(N_2, M_2)$ such that the following diagram

$$\begin{array}{c|c}
N_1 & \xrightarrow{g} & N_2 \\
H \downarrow & & \downarrow K \\
M_1 & \xrightarrow{f} & M_2
\end{array}$$

commutes and $H|_{S_1}=$ h and $K|_{S_2}=k$. In other words, every diagram of representations

$$(0 \longrightarrow 0) \longrightarrow (S_1 \xrightarrow{S_2|g|_{S_1}} S_2) \longrightarrow (N_1 \xrightarrow{g} N_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

can be completed to a commutative diagram as follows:

LEMMA 1.2. If $M_1 \xrightarrow{f} M_2$ is an injective representation of a quiver $Q = \bullet \to \bullet$, then M_1 and M_2 are injective left R-modules.

PROOF. Let N be a left R-module, S be a submodule of N and $\alpha: S \to M_1$ be an R-linear map. Then, since $M_1 \xrightarrow{f} M_2$ is an injective representation, we can complete the diagram

$$(0 \longrightarrow 0) \longrightarrow (S \xrightarrow{id} S) \longrightarrow (N \xrightarrow{id} N)$$

$$\alpha \downarrow \qquad \qquad f \circ \alpha \downarrow \qquad \qquad (M_1 \xrightarrow{f} M_2)$$

as a commutative diagram. Thus, M_1 is an injective left R-module.

Let $g: S \to M_2$ be an R-linear map. Then, since $M_1 \xrightarrow{f} M_2$ is an injective representation, we can complete the diagram

as a commutative diagram. Thus, M_2 is an injective left R-module. \square

LEMMA 1.3. If E is an injective left R-module, then a representation $E \to 0$ of a quiver $Q = \bullet \to \bullet$ is an injective representation.

PROOF. The lemma follows by completing the diagram

as a commutative diagram.

Remark 1.4. A representation $0 \to E$ of a quiver $Q = \bullet \to \bullet$ is not an injective representation if $E \neq 0$, because we cannot complete the diagram

$$(0 \longrightarrow 0) \longrightarrow (0 \longrightarrow E) \longrightarrow (E \xrightarrow{id} E)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

as a commutative diagram.

LEMMA 1.5. If E is an injective left R-module, then a representation $E \xrightarrow{id} E$ of a quiver $Q = \bullet \to \bullet$ is an injective representation.

PROOF. Let M_1 , M_2 , E, S_1 ($\subset M_1$) and S_2 ($\subset M_2$) be an left R-modules and let $f: M_1 \to M_2$ be R-linear map. Let $g: S_2 \to E$ be an R-linear map and choose $g \circ f: S_1 \to E$ as an R-linear map. And consider the following diagram:

Then, since E is an injective left R-module, there exists a map $h: M_2 \to E$. Now choose $h \circ f: M_1 \to E$ as an R-linear map. Then h and $h \circ f$ complete the above diagram as a commutative diagram. Therefore, $E \xrightarrow{id} E$ is an injective representation.

2. Direct sum of injective representations

THEOREM 2.1. A representation $M_1 \xrightarrow{f} M_2$ is an injective representation of a quiver $Q = \bullet \to \bullet$ if and only if M_1, M_2 are injective left R-modules and $M_1 \xrightarrow{f} M_2$ is isomorphic to a direct sum of representations of the types $E_1 \to 0$ and $E_2 \xrightarrow{id} E_2$ where E_1 and E_2 are injective left R-modules.

PROOF. Consider the following diagram:

$$(0 \longrightarrow 0) \longrightarrow (0 \longrightarrow M_2) \longrightarrow (M_2 \xrightarrow{id} M_2)$$

$$\downarrow \qquad \qquad \downarrow id$$

$$(M_1 \xrightarrow{f} M_2)$$

Since $M_1 \xrightarrow{f} M_2$ is an injective representation, we can complete the above diagram as a commutative diagram as follows:

Thus,
$$f \circ g = id_{M_2}$$
. Therefore, $M_1 \cong M_2 \oplus ker(f)$ and $(M_1 \xrightarrow{f} M_2) \cong (M_2 \xrightarrow{id} M_2) \oplus (ker(f) \longrightarrow 0)$.

Now let $Q = \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet$ be a quiver with n vertices and n-1 arrows. Then, we can easily generalize the results of Lemmas 1.3 and 1.5 as follows: the representations

$$E \to 0 \to 0 \to \cdots \to 0 \to 0$$

$$E \xrightarrow{id} E \to 0 \to \cdots \to 0 \to 0$$

$$\vdots$$

$$E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} \cdots \to E \xrightarrow{id} E \to 0$$

$$E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} \cdots \to E \xrightarrow{id} E \xrightarrow{id} E$$

are all injective representations of a quiver $Q = \bullet \to \bullet \to \bullet \to \cdots \to \bullet \to \bullet$, if each E_i is an injective left R-module. We can also generalize Lemma 1.2 so that if $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} M_n$ of a quiver $Q = \bullet \to \bullet \to \bullet \to \cdots \to \bullet \to \bullet$ is an injective representation, then each M_i is an injective left R-module.

THEOREM 2.2. A representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ is an injective representation of a quiver $Q = \bullet \to \bullet \to \bullet$ if and only if M_1 , M_2 and M_3 are injective left R-modules,

$$(M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3)$$

$$\cong (E_1 \xrightarrow{id} E_1 \xrightarrow{id} E_1) \oplus (E_2 \xrightarrow{id} E_2 \to 0) \oplus (E_3 \to 0 \to 0).$$

PROOF. The diagram

can be completed to a commutative diagram by $g_{21}: M_2 \to M_1$, $id: M_2 \to M_2$ and $g_{23}: M_2 \to M_3$. Then we can get $f_1 \circ g_{21} = id_{M_2}$ so that $M_1 \cong M_2 \oplus ker(f_1)$. Now the diagram

$$(0 \longrightarrow 0 \longrightarrow 0) \longrightarrow (0 \longrightarrow 0 \longrightarrow M_3) \longrightarrow (0 \longrightarrow M_3 \xrightarrow{id} M_3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow id \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow M_3 \xrightarrow{id} M_3)$$

$$(M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3)$$

can be completed to a commutative diagram by $i: 0 \to M_1$, $g_{32}: M_3 \to M_2$, $id: M_3 \to M_3$. Then, we can get $f_2 \circ g_{32} = id_{M_3}$ so that $M_2 \cong M_3 \oplus ker(f_2)$. Therefore, $M_1 \cong M_3 \oplus ker(f_2) \oplus ker(f_1)$. Hence,

$$(M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3)$$

$$\cong (E_1 \xrightarrow{id} E_1 \xrightarrow{id} E_1) \oplus (E_2 \xrightarrow{id} E_2 \to 0) \oplus (E_3 \to 0 \to 0).$$

This completes the proof.

Now, we can easily generalize Theorem 2.2 so that a representation $M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} M_n$ of a quiver $Q = \bullet \to \bullet \to \bullet \to \cdots \to \bullet \to \bullet$

is an injective representation if and only if each M_i is an injective left Rmodule and the representation is the direct sum of the following injective
representations:

$$E \to 0 \to 0 \to \cdots \to 0 \to 0$$

$$E \xrightarrow{id} E \to 0 \to \cdots \to 0 \to 0$$

$$\vdots$$

$$E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} \cdots \to E \xrightarrow{id} E \to 0$$

$$E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E$$

Remark 2.3. The representations of a quiver $Q = \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet$:

$$0 \to 0 \to \cdots \to 0 \to E$$

$$0 \to 0 \to \cdots \to 0 \to E \xrightarrow{id} E$$

$$\vdots$$

$$0 \to 0 \to \cdots \to 0 \to E \xrightarrow{id} E \xrightarrow{id} E$$

$$0 \to E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E \xrightarrow{id} E$$

are not injective representations if $E \neq 0$.

References

- [1] E. Enochs, I. Herzog, and S. Park, Cyclic quiver ring and polycyclic-by-finite group ring, Houston J. Math. 25 (1999), no. 1, 1–13.
- [2] E. Enochs and I. Herzog, A homotopy of quiver morphism with applications to representations, Canad. J. Math. 51 (1999), no. 2, 294–308.
- [3] E. Enochs, J. R. Rozas, L. Oyonarte, and S. Park, Noetherian quivers, Quaestiones Mathematicae 25 (2002), no. 4, 531–538.
- [4] S. Park, *Projective representations of quivers*, Internart. J. Math. Math. Sci. **31** (2002), no. 2, 97–101.

Department of Mathematics Dong-A University Pusan 604-714, Korea E-mail: swpark@donga.ac.kr drshin@donga.ac.kr