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INJECTIVITY OF OPERATOR SPACES

ZHONG-JIN RUAN

Abstract. We study the structure of injective operator spaces and the existence
and uniqueness of the injective envelopes of operator spaces. We give an easy
example of an injective operator space which is not completely isometric to any
C*-algebra. This answers a question of Wittstock [23]. Furthermore, we show
that an operator space E is injective if and only if there exists an injective
C*-algebra A and two projections p and q in A such that E is completely
isometric to pAq .

1. Introduction

Let E be a vector space over the complex numbers C and Mn(E) the space
of n x n matrices with entries in E. We write

x®y £Mn+JE)

and

QX =

7 = 1

and   xa = eMn(E)

for x = [x,..] e Mn(E), y = [y..] e MJE) and a = [a,.] G Mn(C).
An m.n. space (matricially normed space) is a vector space E together with

a norm || ||n on each Mn(E), which satisfies:
(i) \\x®0\\n+m = \\x\\n,
(ii) ||ax||n<|H|||x||n and \\xa\\H < \\x\\n\\a\\

for all a e Mn(C), x e Mn(E) and the zero element 0 G Mm(E). We use the
notation (£\ {|| ||n}), or simply E. An m.n. space is L°° if it satisfies

= max{(O    \\x®y\\
An m.n. space is Lp   (1 < p < 00) if it satisfies

(£')   II*©*!!,

,}■

xf +x\\„ ^
»P \1/P

Remark. Notice that our definition of m.n. spaces is different from that in Effros
[5] and that in Wittstock [23]. According to our notation, the matricially normed

Received by the editors October 1, 1987 and, in revised form, March 2, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 46L05.
The author was supported by the Sloan Foundation.

©1989 American Mathematical Society
0002-9947/89 $1.00+ $.25 per page

89

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 ZHONG-JIN RÚAN

space defined in [5] is a vector space with a norm || ||n on each M (E), and
the matricial normed space defined in [23] is an L°°-m.n. space.

Let E and F be m.n. spaces and (¡>: E —» F a linear map. We can define a
linear map cpn: Mn(E) —> Mn(F) by letting

<f>„([xu]) = VKxu)]
for [xu]eMn(E). Write

IHU = sup{||^||;«G7V}.
We call <f> a completely bounded map if \\4>\\cb < oo, a complete contraction if
\\4>\\cb < 1 and a complete isometry if each </>n is an isometry.

Let B(H) be the space of all bounded linear operators on a Hubert space H
with the operator norm defined by

||x|| = sup{||x¿||;¿G//,||¿||<l}.

Identifying Mn(B(H)) with B(H") where H" = H ® ■ ■ ■ ® H, we obtain a
natural operator norm on each Mn(B(H)). This family of norms {|| ||n} over
B(H) is called an operator matricial norm on B(H). A linear subspace of B(H)
with the above operator matricial norm is called a concrete operator space. An
m.n. space E is called an abstract operator space, or simply an operator space
if E is completely isometric to a concrete operator space.

It is obvious that operator spaces are L°°-m.n. spaces. Ruan [18] showed
that an m.n. space E is an operator space iff E is an L°°-m.n. space. This
gives a matricial norm characterization of operator spaces. For our convenience,
we will regard the words "operator spaces" and " L°°-m.n. space" as the same
notation.

In classical functional analysis, we are interested in studying the properties
of normed (Banach) spaces and bounded linear maps between these spaces. It
is known that every normed (Banach) space can be canonically embedded into
C(Q), where Í2 is a compact Hausdorff space and C(Q) is the space of all
continuous functions on Q. If Q is a stonean space (cf. [2, §7]), then C(Q)
is an injective Banach space. Furthermore, Nachbin [14], Goodner [7] and
Kelley [12] (Hasumi [10]) have proved that a real (complex) Banach space is
injective if and only if it is linearly isometric to C(Q) for some stonean space
Q. The existence and uniqueness of the injective envelopes of Banach spaces
were studied by Cohen [4].

In quantized functional analysis, we consider operator spaces and completely
bounded maps between these spaces. The Arveson-Wittstock Hahn-Banach The-
orem has shown that B(H) is an injective object in the category of operator
spaces and complete contractions, i.e. B(H) is an injective operator space. Thus
every injective C*-algebra is an injective operator space. Choi and Effros [3]
showed that an operator system is injective in the category of operator systems
and completely positive maps if and only if it is completely order isomorphic
to an injective C*-algebra.  In [23], Wittstock asked a question: "Does there
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INJECTIVITY OF OPERATOR SPACES 91

exist an injective operator space (i.e. an injective L°°-m.n. space), which is not
completely isometric to an injective C* -algebra?"

In this paper, we study the structure of injective operator spaces and the
unique existence of the injective envelopes of operator spaces. We give an
example of an injective operator space which is not completely isometric to
any C*-algebra (Theorem 4.3). This gives a negative answer to Wittstock's
question. In general, an injective operator space is a triple subsystem of a C*-
algebra (cf.,Youngson [24]). Indeed, we show in Theorem 4.5 that an operator
space E is injective if and only if there exists an injective C*-algebra A and
two projections p and q such that E is completely isometric to pAq . Finally
we show in §5 that for every operator space E, there exists an essentially unique
injective envelope of E. Our proof of this result is inspired by Hamana [9].

This paper is a part of my Ph.D dissertation at UCLA. I wish to express my
deepest gratitude to my advisor, Professor Edward G. Effros, for his guidance
and encouragement throughout this work. I also wish to thank the referee for
his many valuable suggestions. Finally, I want to acknowledge that this research
was supported by the Alfred P. Sloan Foundation, Grant DD-100.

2. Matricially seminormed spaces

Definition 2.1. Let E be a vector space and pn a seminorm on Mn(E) (n e
N). (E ,{pn}) is called an m.s.n. space (matricially seminormed space) if it
satisfies the conditions (i) and (ii) in §1, i.e.

(i) Pn+m(x®0)=pn(x),
(ii) pn(ax) < \\a\\pn(x) and pn(xa) < ||a||pB(x)

for all a e Mn(C), x G Mn(E) and 0 the zero element in Mm(E). The family
of seminorms {pn} is called a matricial seminorm on E. An m.s.n. space is
called an Lp-m.s.n. space (1 <p < oo) if it satisfies the ¿^-condition.

Proposition 2.2. Let (E,{pn}) be an m.s.n. space and Kn = kerpn , the kernel
of pn . Then Kn = Mn(Kx ) for each neN.
Proof. Let [x/7] G Kn . Then

/ ro-|\

P\(xu)=Px [0-l-0][x;7]

V

<Pn([xu]) = 0.

Hence px(xt,.) = 0 and x. G Kx .
Conversely if x¡, G AT, , we have pn([x¡j]) < ]£",=i Pi (■*,•,•) = 0 and tnus

[x,..] G *„ . Therefore Kn = Mn(Kx).   u

Identifying Mn(E/Kx) with Mn(E)/Kn, we may define a norm
each Mn(E/Kx) by letting

"Pn
on
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92 ZHONG-JIN RÚAN

where x(¡ is the corresponding equivalence class in E/Kx . It is easy to see
that the quotient space E/Kx with the matricial norm defined above is an m.n.
space. Furthermore if (E,{pn}) is an Lp-m.s.n. space, then (E/Kx,{\\ || })
is an Lp-m.n. space.

Suppose that E and F are two m.n. spaces and q> : E —► F is a complete
contraction.

Example 2.3. For each n e N, we define a seminorm p^ on Mn(E) by

P^x) = Un(x)\\n

for x G Mn(E). Then (E,{pf¡}) is an m.s.n. space with p„(x) < \\x\\n for all
x G Mn(E). If F is an Lp-m.n. space, then (E,{p„}) is an Lp-m.s.n. space.

Proof. It follows easily from the definition.

Example 2.4. Suppose that F is an m.n. subspace of E. For each n e N, we
define a seminorm qn on Mn(E) by

<7„ (x) = lim sup
k—»oo

for x G Mn(E). Then (E,{q*}) is an m.s.n. space with q„(x) < \\x\\n for all
x G Mn(E). If E is an L°°-m.n. space, then (E, {q„}) is an L°°-m.s.n. space.

Proof. Given x G Mn(E) and 0 the zero element in Mm(E), we have

<7„+m(x©0)=  lim sup
k—>oo

=  lim sup
k—»oo

0 + . .. + ¿K (x©0)

'é  + ... + /X            /</,   + ... + /n      .      y"    (x) ©    -^-j--^

=  lim sup
fc—»OO

(X) *:w-
For x G Mn(E) and a G Mn(C), we have

?„(ax) = lim sup 9"      ,.      9"    {«X)

< ||a|| lim sup
k—*oo

= h\K(x).

< + ■■■ + <
(X)

(0)

Similarly, we have qn(xa) < ||a||^(x). Hence (£\ {<?„}) is an m.s.n. space.
If E is an L°°-m.n. space, then F is also an L°°-m.n. space. For x G M (E)
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INJECTIVITY OF OPERATOR SPACES 93

and y e M'(E), we have

Qn+m(x ® y) = lim^sup
+ ■■+ *l

lim sup < max

k (x®y)

+ </> (x)

0   + + 4> 00

= max lim sup
A:—»oo

*. + - + «
(X)

lim sup
k—»oo

+ 0 00

= max{qn(x),qjy)}.

Hence (E,{q„}) is an L°°-m.s.n. space.   D

Now we consider the Arveson-Wittstock Hahn-Banach Theorem for L°°-
m.s.n. spaces.

Theorem 2.5. Let (E,{pn)) bean Lx'-m.s.n. space, (F,{pn}) an L°°-m.s.n.
subspace of E and <t>: F -► B(H) a linear map such that \\<t>n(x)\\n < Pn(x)
for all x e Mn(F) and n e N. Then there exists a linear map </>: E —► B(H)
which extends </> and \\<¡>n(x)\\n < Pn(x) for all x e Mn(E).

Proof. Let Kx = kerp, . Then (E/Kx ,{|| || }) is an L°°-m.n. space. By linear
algebra, we may identify F/(Ff)Kx) with (F + Kx)/Kx. Hence (F/(FnKx),
{Il IIn }) can De regarded as an L°°-m.n. subspace of E/Kx . We define a map
yi: F/(F n Kx) - B(H) by y/(x) = <p(x) for x G F/(F n Kx). The map
y/ is well-defined since the kernel of 4> contains F n Kx .
M\(FI'(FnKx)), we have

IIV„([*-,7])II„ = ll^([^])ll„ </>„([*„■]) = IP

For each [xj..] G

UJIIPn

Hence y/: F/(F n Kx) —► B(H) is a complete contraction. By the Arveson-
Wittstock Hahn-Banach Theorem (cf. Theorem 4.2), there exists a completely
contractive map y/: E/Kx —► B(H), which extends y/ and preserves the cb-
norm. Let n : E —» E/Kx be the natural quotient map and let <f> — y/ o n : E —»
B(H). Then 0 extends </> and we have

II0„([*„.])||„ = ll(F„ o ̂ )([x,.,])||n < ||[x,,.]||pn = pH{[xtJ])

for all [xu]eMn(E).   u
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94 ZHONG-JIN RÚAN

3. Minimal ¿-projection of B(H)

The main result (Theorem 3.4) of this section is to show that "For ev-
ery operator space E contained in B(H) and a minimal L°°-matricial ¿-
seminorm {pn} on B(H), there exists a minimal ¿'-projection cf> of B(H)
with {p^} = {pn} ". This result is motivated by Hamana [9] and will play a key
role in the study of the injective envelopes of operator spaces.

Definition 3.1. Let B(H) be the space of all bounded operators on a Hubert
space H. A linear map </>: B(H) —» B(H) is called a completely contractive
projection if \\(¡>\\cb < 1 and 4> = <f>. Let E be an operator space contained
in B(H). An E-projection of B(H) is a completely contractive projection
4>: B(H) -» B(H) such that <f>(x) = x for all xeE.

Let Hi(//) be the set of all ¿-projections of B(H). Then S^(//) is nonempty.
Define a partial ordering on HB(//) by saying

y/ ~ 4>   if and only if   y/o(p — (j)oy/=y/.

A minimal E-projection of B(H) is an ¿-projection of B(H) which is minimal
under this partial ordering.

Definition 3.2. Let E be an L°°-m.n. space and F an L°°-m.n. subspace of E .
An L°°-matricial seminorm {pn} on E is called a« L°°-matricial F-seminorm
if it satisfies:

(I) Pn(x)<\\x\\n   for a\\ xeMn(E),

(II) Pn(x)=\\x\\n    for all x e Mn(F).

Let TE be the set of all L°° -matricial ¿-seminorms on E. Then TE is
nonempty. Define a partial ordering on TE by saying

{/>„}-{"?„}    if and only if   pn(x) < qn(x)

for all x G Mn(E) and « G A/.
Let E be an operator space contained in B(H) and (¡>: B(H) —» 5(//) a

complete contraction such that <j>(x) = x for all x e E. Then the matricial
seminorms {p*} and {q*} in Example 2.3 and Example 2.4 are L°°-matricial
¿-seminorms on B(H) and it is easy to see that {q^} < {pn} .

Proposition 3.3. The partially ordered set TFE must have at least one minimal
element.
Proof. Suppose that {{/On^iheA 's an arrjitrary chain in YE. Consider a
function pn on Mn(E) defined by

pn(x) = inf{p7n(x);yeh}
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INJECTIVITY OF OPERATOR SPACES 95

for x G Mn(E). It is easy to see that for each n e N, pn is a seminorm
on Mn(E) which satisfies (I) and (II) in Definition 3.2. For x G Mn(E) and
y e Mm(E), we have

Pn+m (x®y) = mf{p7n+m (x ® y) ; y e A}

= mf{max{pyn(x) ,pyJy)} ; y e A}
= max{inf{//(x) ; y G A}, inf{p^f» ; y G A}}
= max{/>n(x),/?m0;)}.

For a e M„ and x G MÍE), we have

p„(ax) = inf{/^(ax) ;y G A}

<N|inf{//(x);yGA}
= IMIp„(*).

Similarly, we have pn(xa) < \\a\\pn(x). Hence {pn} is an ¿°°-matricial F-
seminorm on E such that {pn) < {pyn) for all y G A. By Zorn's lemma, the
partially ordered set YE must have a minimal element.   G

A minimal element in the partially ordered set I¿ is called a minimal L°°-
matricial F-seminorm on E.

Theorem 3.4. Let E be an operator space contained in B(H). For every mini-
mal L°°-matricial E-seminorm {pn} on B(H), there is a minimal E-projection
0 ofB(H) with {pt) = {pn}-
Proof. Let id: ¿ —► B(H) be the inclusion map. Then we have

l|id„WII„ = IWI„ =/>„(*)
for all x G Mn(E) and n e N. By Theorem 2.5, there is a linear map
</>: B(H) -» B(H) which extends id such that

||<Mx)||n<p„(x)<||x||„

for all x G Mn(B(H)) and n e N. Then {//} and {q*} are ¿^-matricial
¿-seminorms on B(H) such that

This implies that {q^} = {p^} = {pn)  since {pn}  is a minimal element in

B(H) ■
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96 ZHONG-JIN RÚAN

Next we want to show that <f> is a minimal ¿-projection of B(H). Since

\\<t>(x)-<l>2(x)\\x = \\<t>(x-<P(x))\\x
= p*(x - <p(x)) = q\(x - <p(x))

— lim sup
k—»oo

for all x G B(H) we get 0 = <j> and <j> is an ¿-projection of B(H). Let y/ be
an arbitrary ¿-projection of B(H) with y/ < </>. We have {#J} = {p^} = {pn} .
Then

||0(x) - ^(x)||, = ||0(x) - <p o ̂ (x)||, = U(x - y/(x))\\x
= p\{x - y/(x)) = qvx(x - y/(x)) = 0

for all x G B(H). Therefore y/ - <j) and 4> is a minimal ¿-projection of B(H)
with {pt) = {Pn}.    □

4. Injective operator spaces
Definition 4.1. Let ¿ be an operator space. E is called an injective operator
space if for every operator space F, every operator subspace ¿0 of F and every
completely bounded map 4>: ¿0 —► E, there exists a linear map </>: F -* E such
that £|fo = ¿ and |HU = |MU .

The following theorem is due to Wittstock [22 and 23]. It is called the
Arveson-Wittstock Hahn-Banach Theorem. Haagerup [8], Paulsen [15 and 16],
and recently Effros-Ruan [6] have given different proofs of this result.

Theorem 4.2. Let E be an operator space contained in a unital C*-algebra
A and <f>: E —* B(H) a complete contraction. Then there exists a complete
contraction </>: A —► B(H) such that <j>\E = <j> and \\<j)\\cb = \\<t>\\cb ■
Remark. The Arveson-Wittstock Hahn-Banach Theorem fails for general m.n.
spaces. We have shown in [6] that there exist ¿'-m.n. spaces F ç ¿ and a
completely bounded map </>: F —> M2(C) so that 0 cannot be extended to a
completely bounded map <j>: E -* M2(C) with \\<f>\\cb = \\4>\\cb ■

From the Arveson-Wittstock Hahn-Banach Theorem, we know that B(H) is
an injective operator space for arbitrary Hubert space H. Then an operator
space E contained in B(H) is injective if and only if there exists a completely
contractive projection (p from B(H) onto E. This implies that injective op-
erator spaces must be norm closed. Obviously, every injective C*-algebra is
an injective operator space. Furthermore if A is an injective C*-algebra and
p, q are projections in A , then pAq is again an injective operator space. In
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injectivity of operator spaces 97

particular, we know that B(H ,K) is an injective operator space, where H and
K are Hilbert spaces. Our next theorem gives a negative answer to Wittstock's
question [23, Problem 5.1].

Theorem 4.3. There exists an injective operator space E which is not completely
isometric to any C*-algebra.
Proof. Let E — {[g *] ,a,b e C}. It is easy to see that E is an injective
operator space contained in M2(C). Consider F = {[£ °] ,a,b e C} . Then
F is also an operator space. Let 6 : F —» E be the transpose map defined by•([: "I)
Then 6 is an isometry. On the other hand, for

¿,
0

we have

but

¿2.
0

'11

eM2(M2(Q),

^21

0

([Eo   Eo})

= 1

i    E
0
12 = 21/2

Therefore we get ||0||c6 = ||02|| > 21/2 (cf. Smith [19]).
Suppose that E is completely isometric to a C*-algebra A. Since dim,4 =

2, we must have that A is *-isomorphic to C ® C. Thus A is a commuta-
tive C*-algebra and we have ||0||ci = ||0|| = 1 (cf. Loebl [13, Lemma 1]), a
contradiction. Thus E cannot be completely isometric to any C*-algebra.   D

If E is an operator space contained in B(H), then there exists a minimal
¿-projection of B(H) (Theorem 3.4). The following lemma shows that if we
choose such a minimal ¿-projection carefully, we can find two other unital
completely positive projections \fft: B(H) —» B(H)   (i =1,2) so that the map

<D = ¥xIf ¥2
M2(B(H)) -, M2(B(H))

is a unital completely positive projection.

Lemma 4.4. Let E be an operator space contained in B(H). Then there exists a
minimal E-projection <f> of B(H) and two unital completely positive projections
y/i  (i = 1,2) so that the map

<D = y/x     <p
4>*   v2

is a unital completely positive projection.
Proof. Let LE = {(¿. *) ;X,p e C, x,y G ¿}.   Then LE is an operator
system contained in MJB(H)). We have an L^-matricial L£-seminorm on
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98 ZHONG-JIN RÚAN

LM2(B(H)) which is minimal in the partially ordered set rM,B,H). (Proposition
3.3). Fixing such a minimal L^-matricial L -seminorm {pn} on M2(B(H)),
there exists a minimal L -projection O of M2(B(H)) such that {pn } = {pn)
(Theorem 3.4). We know from Arveson [1] that <P must be completely positive
since O is a complete contraction with <I>(12) = 12. By Stinespring's Theorem
[20], there exists a Hubert space K, a *-representation n: M2(B(H)) —► B(K)
with n(\2) = ljf and an isometry V: H® H —>■ K such that

*([xij]) = V*ñ([xiJ])V
for all [xtJ] e M2(B(H)).

Let {¿, } be the usual matrix units in M2(B(H)). Then {ïï(El•)} are matrix
units in B(K) which give a decomposition of K into K ® K.  If we write

7i(Eij), then e,, is the projection onto K ® 0. Consider

'x   0'
0   07l(x) = 71 e,,7r(x©x)e.

for all x G B(H). Then n: B(H) —» B(K) isa *-representation with 7r( 1 ) = 1^
and we have tt = n ® id2 . Following the proof in [16, Theorem 2.7], we have
V(ÇX ©f2) = VXÇX ® V2£,2 for some isometries F: H -» K  (/ =1,2) and

*([xu]) = V (n®xd2)([xu])V
V*     0
0     V*

7t(xxx)   n(xX2) 0
0 V2

<D

1,2) are

7T(X21)     ^(X22)

Vx*n(xlx)Vx    Vxy(xl2)V2
V*n(x2x)Vx    V27i(x22)V2_

for all [X(j] G M2(B(H)). Therefore, we have

<f>*    y/2
where <f> = V*nV2 is an ¿-projection of B(H) and ^ = V*nVi  (i
unital completely positive projections from B(H) into #(//).

We need to show that 0 is a minimal ¿-projection of B(H). Let E =
4>(B(H)). Then ¿* is an injective operator space contained in B(H). Suppose
that 4>0 is another ¿-projection of B(H) such that </>0°<?!> = 4>°4>q = 4>q • Then
the injective operator space E is contained in E . Assume that <j>Q ^ <j>.
Then ¿*° is a proper subspace of ¿^ . The identity map id : E
be extended to a complete contraction T: E
element x0 ^ 0 g ker T.

011 can
Hence there exists an

£"' /•;"Let L    = {( . *) ;X,p G C, x,y G ¿^} . Then L     is an operator system

contained in M2(B(H)) and we consider a map *F: L
by

e* MJB(H)) defined

*( * /I
(TO)'

r(x)
^ J
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INJECTIVITY OF OPERATOR SPACES 99

Then 4* is a unital completely positive map since T is a complete contraction
(Paulsen [17, Lemma 7.1]). Therefore we have

Hn([uu])\\„ < \\[uu]\\n = \\%([ui}])\\n=pn([ut}])

■ E\ MJB(H))for all  [uu] e Mn(LT ).   We can extend ¥ to V: M2(B(H))
such that

ll^(K,])||„<^(K7])
for all [uu] e Mn(M2(B(H))) and n e N.  Then {pj} is an L°°-matricial

L -seminorm on M2(B(H)) such that {pn }
sumption that

{pn} . It follows from the as-

Pi
0* 0

and

(l$*])-KL$*D
o =  xn 7^0.

Then {pn} / {Pn} ■ This contradicts the minimality of {pn}. Therefore we
must have 0O = 0 and tp is a minimal ¿-projection.   D

In the following theorem, we study the structures of injective operator spaces.

Theorem 4.5. Let E be an operator space. Then TFAE :
( 1 ) E is an injective operator space;
(2) there exists an injective C*-algebra A and two projections p,q e A such

that E is completely isometric to pAq.
Proof. (2) =¡> (1) is trivial.

( 1 ) =-> (2) We may assume that E is an injective operator space contained
in B(H). Using the same notations as in Lemma 4.4, we have a minimal E-
projection 0 of B(H) and two unital completely contractive projections y/¡
(i =1,2) from B(H) into B(H) such that the map

*=[li    I ] : Mi{B{H)) -* M2^H))
is a unital completely positive projection. Then

A = <t>(M2(B(H)))CM2(B(H))
with the multiplication defined by x-y = <P(xy) for all x,y e A is an injective
C* -algebra (cf. Choi and Effros [4]).

Consider p = <&(£,,) and q = <P(¿22). Obviously, p and q are two pro-
jections in A. Since E is an injective operator space and 0 is a minimal
¿-projection, we must have E = E   . Define a map T: E —> pAq by

T(x)=p
"0

0
x
0 Q =

0
0

x
0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



100 ZHONG-JIN RÚAN

for all x G ¿ ç B(H). Thus T is a well-defined complete isometry. Notice
that

p.A.q = *(ExxM2(B(H))E22) = <!>(\^   ^rf])^   f
This implies that T is onto. Deleting the dot notation for the product in A,
we are done.   D

5. Injective envelopes of operator spaces

Definition 5.1. Let E be an operator space. An extension of E is a pair (Z, /c)
of an operator space Z and a completely isometric embedding k: E —» Z . An
extension (Z ,k) of E is called injective if Z is an injective operator space.
An extension (Z ,/c) of E is called an injective envelope of E if (Z ,tc) is an
injective extension of E and idz is the only complete contraction (from Z
into Z ) which extends idK{£., : k(E) —► Z from /c(¿) to Z .
Remark. In the category of Banach spaces and contractive linear maps, the
existence and uniqueness of injective envelopes of Banach spaces were studied
by Cohen [4]. The original definition of injective envelopes of Banach spaces is
as follows:

Let E be a Banach space. An injective envelope of E is a pair (Z ,/c) of an
injective Banach space Z and an isometric embedding k: E —» Z such that
the only injective subspace of Z containing k(E) is Z itself.

Isbell [10] pointed out that this definition is equivalent to the following one:
Let E be a Banach space. An injective envelope of E is a pair (Z ,/c) of an

injective Banach space Z and an isometric embedding /c: E —» Z such that
idz is the only contractive extension of idK(£) : k(E) —> Z from k(E) to Z .

Our definition of injective envelopes of operator spaces is an analogue of the
second one (see, however, Theorem 5.6). Most of this section is inspired by
Hamana [8], where he studied the injective envelopes of unital C*-algebras.

Theorem 5.2. Every operator space has an injective envelope.
Proof. Assume that E is an operator space contained in B(H). Then there
exists a minimal L^-matricial ¿-seminorm {pn} on B(H) and a minimal
¿-projection 0 of B(H) such that {p*} = {pn}. Then E* = <j>(B(H)) is an
injective operator space containing E as a subspace. The pair (E , \dE) is an
injective extension of E, where id£ : E —» ¿* is the natural embedding map.
Let y/ : E —► E be a completely contractive extension of id£ . Then

\Wn{x)\\n<\\x\\n = \\<pn(x)\\n=pn(x)

for all x G Mn(E^). We can extend y/ again to a complete contraction
y/: B(H) -» ¿0 such that ||F„MII < />„(*) for all x G Mn(B(H)). Then
{q%} is an L°°-matricial ¿-seminorm on B(H) suchthat
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Hence we must have {q%} = {pn} since {pn} is a minimal L^-matricial ¿-
projection. Now for every x G ¿  , we have

||x - ^(x)||, = px(x - y/(x)) = qvx(x - y/(x)) = 0.

Therefore y/ = id£<1 and (¿^,/c) is an injective envelope of E.   D

Proposition 5.3. Let EX,E2 be two operator spaces and (Zx,kx) and (Z2,k2)
injective envelopes of EX,E2, respectively. Then for every complete isometry X
from ¿j onto ¿2, there exists a unique complete isometry X from Z, onto Z2
such that

Xokx = zc2 oX .

Proof. Let X: ¿, —» ¿2 be a complete isometry from ¿, onto ¿2. Then

p = k2 oAo/c~ : zc,(¿,) —► k2(E2)

is a complete isometry from kx(E{) onto k2(E2) . p can be extended to a
complete contraction X: Z, —» Z2. Since p~ : /c2(¿2) —► /c,(¿,) is also a
complete isometry, /¿-    can be extended to a complete contraction p: Z2 -*

Then /iol: Z, —» Z, is a complete contraction such that p°X\K ,E )-idK,Ey
Hence p o X = idz . Similarly we have X o p = idZi. This implies that X is a
complete isometry from Z,  onto Z2 and A o kx = k2 o X .

If we have another complete isometry X* from Z, onto Z2 such that X* o
/c, = /c2 o X, it follows easily from the above arguments that X* = X.   D

Theorem 5.4. Let E be an operator space. If (Z, ,/c,) and (Z2,k2) are two
injective envelopes of E, then there exists a unique complete isometry X from Z,
onto Z2 such that 1ok{ = k2. Hence every operator space E has an essentially
unique injective envelope.

Proof. Let X = k2 o/c~ : /c,(¿) —► k2(E) . Then A is a complete isometry from
/c,(¿) onto k2(E) and X can be extended uniquely to a complete isometry X
from Z,  onto Z2.    D

Lemma 5.5. Let E ç Z ç /?(//) a«í/ (Z, id£) an injective extension of E.
Then (Z,id£) is an injective envelope of E if and only if there exists a minimal
E-projec-
tion 0 of B(H) such that Z = ¿0 = <t>(B(H)).
Proof. => Since Z is an injective subspace of B(H), there exists a Z-projec-
tion 0 of B(H) suchthat ¿^ = <p(B(H)) - Z. Then 0 is also an ¿-projection
of B(H).

Let y/ be a minimal ¿-projection of 5(//) such that y/ < 0, i.e. <po y/ =
yio<p — yi. Then Ev ç. E and ¿^ is an injective operator space containing ¿
as a subspace. The identity map \dEv : Ev -+ Ev can be extended to a complete
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contraction X: E, —► Ev . Thus X: E^ —> Ev ç E0 is a complete contraction
such that X\E = id£. Hence we have X = id£0 and Ev = E . This implies
that y/ = 0 and 0 is a minimal ¿-projection of B(H).

<= Suppose that 0 is a minimal ¿-projection of B(H) such that Z =
4>(B(H)). Let X: Z —> Z be a complete contraction such that X\E = id£ . We
want to show that X = idz . Obviously, {qn) is an L°°-matricial ¿-seminorm
on Z such that

{qXn}Z{pt) = {\\\\n}.

Following the proofs of Proposition 3.3 and Theorem 3.4, we can show that
there exists a minimal L°°-matricial ¿-seminorm {pn} on Z suchthat {p } <
{qn} and a minimal ¿-projection yi of Z such that {p^} = {p„}.

Let "$7 = y/ o(f). Then ^7 is an ¿-projection of B(H) and y/ <<f>. Thus we
have y7 = (p since 0 is a minimal ¿-projection of 5(.f7). This implies that
px(x) = px(x) = ||x||, and then ||x||, = qx(x) for all x e Z . Therefore we
have X = idz since ||x - A(x)||, = qx (x - X(x)) = 0 for all x g Z .   D
Remark. Let E be an operator space containing 1 in B(H) and (Z ,k) an
injective envelope of E. Then Z is completely isometric to a injective C*-
algebra. To see this, we assume that 1 e E ç B(H) and 0: B(H) —> 5(//)
is a minimal ¿-projection of B(H). Then (E , id£) is completely isometric
to (Z ,k) and E is an injective operator system, which is completely order
isomorphic to a unital injective C*-algebra (cf. Choi and Effros [4]). In par-
ticular, if A is a unital C*-algebra and (B,k) is an injective envelope of A
with /c(l) = 1, then (B,/c) is also an injective envelope of A in the category
of unital C*-algebras and unital completely positive maps (cf. Hamana [8]).

The following theorem will show that the injective envelopes of operator
spaces are the smallest injective extensions of E .

Theorem 5.6. Let (Z ,k) be an injective extension of E. Then (Z ,/c) is an
injective envelope of E if and only if the only injective subspace of Z containing
k(E) is Z itself, i.e. if there exists an injective subspace Zx of Z containing
k(E) then Zx= Z .
Proof. =>■ Without loss of generality, we may assume that E is a subspace of
Z and k = id£ is the inclusion map from E into Z . If Z, is an injective
operator subspace of Z and E is contained in Zx, then the identity map
idz : Z, —> Z, can be extended to a complete contraction X: Z —► Zx ç Z
such that X\E = id£ . Hence we must have that X — idz and Zx = Z .

<= Assume that E ç Z ç B(H). The identity map idz: Z ^ Z can be
extended to a complete contraction 0: B(H) —> Z ç B(H). Then 0 is an E-
projection of B(H) such that Z = E* . If we have another ¿-projection y/ of
B(H) such that v/o0 = 0o^ = y/, we have ¿ ç ¿^ ç E and ¿*" is injective.
Then we have Ev = ¿^ and y/ = 0. Hence 0 is a minimal ¿-projection of
B(H) and (Z ,/c) is an injective envelope of E by Lemma 5.5.   a
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Definition 5.7. Let E be an operator space. An extension (Z ,/c) of E is called
an essential extension if for any operator space F and a complete contraction
0 : Z —► ¿, 0 is a complete isometry if 0 o /c is a complete isometry.

Lemma 5.8. Lei (Z ,/c) èe a« injective envelope of an operator space E. Then
(Z ,/c) /5 a« essential extension of E.
Proof. Assume that E is contained in Z and /c = id£ . Suppose that F is an
operator space and 0: Z —► ¿ is a complete contraction such that 0 o id£ is
a complete isometry. Then 0_1: 0(¿) -»Z isa complete isometry which can
be extended to a complete contraction y/: F —» Z . Then yi o <p: Z —» Z is a
complete contraction such that yo0|£ = id£ . Hence y/o(f> = idz since Z is an
injective envelope of ¿. This implies that 0 must be a complete isometry.   D

Theorem 5.9. Let (Z, k) be an extension of an operator space E. Then (Z , k)
is an injective envelope of E if and only if it is an injective and essential extension
ofE.
Proof.  => follows from Lemma 5.8.

<= Let (Z ,k) be an injective envelope of E and X: Z -* Z a completely
contractive extension of k o k~ : k(E) —► Z . Then A is a complete isometry
since Z is an essential extension of E with A o /c = /c. This implies that
(X(Z),k) is an injective extension of ¿ which is contained in the injective
envelope of (Z ,k). From Theorem 5.6, we have that X(Z) = Z and then
(Z, k) is an injective envelope of ¿.   D

Corollary 5.10. Let (Z, k) be an injective envelope of an operator space E.
Then for every essential extension (Z ,/c) of E, there exists a complete isometry
X: Z -* Z such that Ao/c = k. Hence the injective envelope of an operator space
E is a "maximal" essential extension of E.
Proof. The first statement of this corollary follows easily from the proof of
Theorem 5.9. The proof of the second statement is trivial.   D

Remark. Masamichi Hamana has kindly informed the author that he has inde-
pendently obtained Theorem 4.5 and Theorem 5.4 of this paper in connection
to his earlier work: Injective envelopes of operator systems, Publ. Res. Inst.
Math. Sei. 15 (1979), 773-785.
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