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Abstract: This paper presents an inkjet printed textile antenna realised using a novel 

fabrication methodology. Conventionally, it is very difficult to inkjet print onto textiles due to 

surface roughness. This paper demonstrates how this can be overcome by developing an 

interface coated layer which bonds to a standard polyester cotton fabric, creating a smooth 

surface. A planar dipole antenna has been fabricated, simulated and measured. This paper 

includes DC resistance, RF reflection coefficient results and antenna radiation patterns. 

Efficiencies of greater than 60% have been achieved with only one layer of conducting ink. 

The paper demonstrates that the interface layer saves considerable time and cost in terms 

of the number of inkjet layers needed whilst also improving the printing resolution. 

 

1. Introduction 

 

The worldwide wearable technology market is expected to exceed £3.75 billion by 2016 

(www.computerworld.com). This is simultaneously driven by advancing technology and 

emerging applications. Smart fabrics are traditional fabrics with integrated active 

functionality, that can sense and react to environmental stimuli, such as mechanical, 
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thermal, chemical or magnetic [1]. In parallel with this, wireless connectivity is already 

essential to everyday life and is expected to become even more ubiquitous. Therefore 

incorporating flexible fabric antennas could have many potential applications. Flexible 

materials improve comfort and the integration of antennas into clothing means that they do 

not need to be hand-held [2]. This technology has various wearable applications including 

medical, sports training, military and emergency services [3]. For example, soldiers can 

communicate together by means of fabric antennas integrated in their uniforms or carry 

jamming devices to counter improvised explosive devices. Wearable Electrocardiography 

(ECG) systems can send the signal wirelessly from the patient, thus improving patient 

comfort [4]. Furthermore, telemedicine will become a vital tool in dealing with the aging 

population – where ten million people alive in the UK today are expected to live to 100. 

Radio-Frequency Identification (RFID) tagging on clothes is another important area as it 

enables efficient product and person tracking.  

 

Many papers have been published about wearable antennas, including these three papers 

that have reviewed the area [5–7]. Body-centric communications between multiple wearable 

antennas on the same person has been investigated in detail [8], [9]. When antennas are 

placed in close proximity to the human body, the specific absorption rate (SAR) must comply 

with International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits [10]. The 

flexibility of the textiles means that an additional margin of performance must be included in 

the design to allow for crumpling [11], stretching and bending [12]. Integration into clothing 

means that the washability of the antennas has been considered [13]. The antennas must 

also function in harsh environments [14] and in humid conditions [15].  

 

Various manufacturing techniques considered for wearable antennas include conducting 

paint, conducting metal coated nylon, screen printing and liquid crystal polymer [16]. 
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Wearable antennas can also be fabricated by depositing a conductive layer on top of the 

fabric by either metal plating [17], [18] or by sticking-on metalized adhesive tape [19]. 

The first knitted copper-yarn based fabric antenna was reported by Salonen et al in 2003 

[20]. The entire antenna was constructed in fabric with a fleece substrate and the radiation 

element and ground plane were made of knitted copper. A woven textile antenna was 

announced by Tanaka et al in 2003 [21]. The material of the antenna patch and the ground 

plane were made of woven conductive fabric and then sewn into clothing. Embroidered 

antennas made with conducting threads have recently been considered [22]. 

 

Printing is another method to deposit a conductive layer on flexible substrates. Screen 

printing is the most widely used printing technique to realize textile antennas as it can easily 

pattern conductive paste onto fabric to form a flexible strong and suitably thick functional 

layer [13], [23]. Antennas have been screen printed on paper [24] and PET [25]. 

Transmission lines for RF and microwave systems have been screen printed on cotton [26]. 

The technique of inkjet printing antenna structures can be an advantageous manufacturing 

technique as: the antenna can be created within minutes of finalising the design; the finish is 

aesthetic; it requires minimal material consumption and as no mask is required there is the 

flexibility to change the design regularly. Inkjet printing uses silver or copper nanoparticles in 

solution to create conducting lines. The process is an additive process which does not 

require environmentally harmful etching chemicals. Carbon nanotube inks are also used but 

typically have lower conductivities than metallic inks. The conducting layers are very thin, on 

the order of one micron, and hence it is very difficult to print on rough, uneven or porous 

surfaces such as fabrics [27]. Inkjet printed antennas have been printed on paper [28–32]; 

PET [33], [34]; Kapton [35–37] and a flexible ceramic composite [38]. Inkjet printing has the 

following inherent technical challenges when fabrics are the substrate: i) it is difficult 

achieving a highly conductive continuous track on the rough fabric with a thin inkjet printed 

layer; ii) the majority of fabrics cannot withstand curing temperatures above 150oC; iii) 
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resilience to stretching and bending and iv) achieving high antenna efficiency. The majority 

of papers in the literature do not include efficiency values for inkjet printed antennas as these 

are typically low. The performance can be improved by printing multiple layers (but this adds 

to increased manufacturing times and costs). Sintering the ink or laser melting the silver 

particles together has also been used to improve the conductivity of lines containing 

conducting metallic flakes [39]. The authors have recently presented some preliminary 

results of an inkjet printed antenna on a textile substrate [40]. Previous research has 

indicated that small gaps and cracks in conducting sections can capacitively couple [41]. 

 

This paper is structured as follows: Section 2 will provide more details of the inkjet printing 

process and the novel interface layer. Sections 3 and 4 will summarise the DC resistance 

and RF results respectively. Finally conclusions will be drawn in Section 5. 

 

2. Printing on Textiles 

 
Direct write printing is defined as an additive manufacturing method in which the deposited 

patterns directly follow a pre-designed computer layout without utilising masks or 

subsequent etching processes [42] as shown in Figure 1. Direct write can deposit and 

pattern different thin film materials necessary for the fabrication of components and systems 

such as those found in electronic devices, sensors and microelectromechanical systems 

(MEMS) [43]. Inkjet printing is a widely used direct write deposition tool which has been 

rapidly migrated to electronics fabrication in recent years. It is a key printing technique which 

has not been widely applied to wearable textile antenna fabrication. 
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Printer cartridge
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Active paste
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Figure 1. A comparison of the processing steps involved in subtractive 
microfabrication, screen printing and additive direct write printing. 

 

 

It is possible to print directly on to the fabric but due to the high solvent content (~85%) of 

the inks required to ensure inkjet printability, the pattern would dissipate into the textile and 

cannot produce a continuous conducting track without many layers being printed. 

 

2.1 Inkjet printing  
 

 

A Dimatix DMP-2831 inkjet printer was used in this research. This printer uses a disposable 

piezoelectric head print cartridge with an ink capacity of 1.5 ml. It has sixteen nozzles each 

capable of producing a droplet volume of 10 pL. The printed pattern resolution is controlled 

by adjusting the angle of the print head in the printer to provide a drop spacing of between 5 

and 254 μm (5080 to 100 dpi). When printing inks with electronic functionality, the resolution 

is critical to the performance of the printed ink. If the droplet spacing is too small, the volume 

of printed ink per unit area will be too high which often results in pattern bleeding. If the 

droplet spacing is too large, then the pattern definition will be poor and the electrical 

characteristics, such as conductivity, will be reduced or lost entirely. Suitable printable inks 



Final author version. Paper published in IET Microwaves, Antennas & Propagation, Volume 7, Issue 9, 18 June 

2013, p. 760 – 767, DOI: 10.1049/iet-map.2013.0076, Print ISSN 1751-8725, Online ISSN 1751-8733 

 

6 

 

have a narrow acceptable range of rheological properties which ensure that the droplets fire 

continuously in the required landing location. An ideal ink for printing with the DMP-2831 

should have a stable suspension with low evaporation, a viscosity of 10 to 12 mPa.s and a 

surface tension of 28 to 33 mN/m. Increasing the temperature improves the fluidity of the ink 

but can also increase the ink’s evaporation rate leading to additional clogging. The drive 

waveform and voltage were adjusted to produce a spherical droplet with no tail, known as a 

ligand, with a drop velocity of ~7-9 m/s. After printing, the inks must be cured to remove the 

solvents. 

 

2.2 Ink selection 
 

SunChemical’s thermally-cured inkjet printable conductive silver ink (U5714) was selected 

for printing the conductor because the surface tension and viscosity are suitable for the 

DMP-2831 printer. In addition, the silver ink can be cured at 150°C for 10 minutes making it 

more compatible with fabric applications than other commercial inks which typically require 

higher temperatures (>200°C) which will damage the fabric. The 10 pL print heads for the 

DMP-2831 have a nozzle diameter of ~21.5 μm which produce a droplet of 60 μm diameter. 

 

The drop spacing was set to 15 µm for printing the conductive pattern to provide good 

conductivity and line edge definition combined with acceptable ink usage. The ink showed 

good jetting properties with a droplet velocity of 8 m/s so additional print head heating was 

not required. 

 

 

2.3 Substrate selection 
 

 

Four substrates were selected as a comparison: i) Kapton; ii) a stretchable fabric; iii) 

polyester/cotton fabric and iv) polyester/cotton fabric with a printed interface layer.  
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100 μm thick Kapton which was selected for the initial flat, smooth substrate material 

exhibited few uneven dents and bulges (< 5µm). Kapton is a polyimide film developed by 

DuPont which has very good flexibility over a wide temperature range (normally from -273°C 

to +400°C) and is resistant to many chemical solvents 

(http://www2.dupont.com/Kapton/en_US/). Because of its chemical and physical properties, 

it is widely used in flexible electronics as a substrate or an insulating layer.  

 

A commercial polyurethane coated stretchable fabric supplied from Plastibert Ltd. 

(www.plastibert.be) was also selected; this is a lycra fabric that is typically used in medical 

applications. This coated fabric substrate was chosen as the second stage substrate 

because it provides an intermediate step between the smooth Kapton film and the rough 

fabric. However, the laminated polyurethane layer on top of the stretchable fabric is not as 

smooth as the Kapton film. Its roughness is around 10-20µm continuously across the whole 

laminated layer. The manufacturer datasheet states that the maximum temperature it can 

sustain continuously is 80°C. Therefore, before printing, the fabric was subjected to one 

curing cycle of 150°C for 10 minutes, representing the curing condition of the silver ink, 

which showed no observable damage to the fabric. A scanning electron microscope (SEM) 

image of the Plastibert polyurethane coated stretchable fabric is shown in Figure 2 which 

shows the higher surface roughness (10-20µm) continuously across the whole coated area. 
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Figure 2. Cross sectional view SEM images of Plastibert polyurethane coated 
stretchable fabric 

 

The 65/35 polyester cotton fabric is the most commonly used fabric for standard clothing. 

However, it has a number of physical properties that make inkjet printing based deposition 

difficult. The temperature which it can withstand is a challenge meaning a sufficiently low 

curing temperature for inks is required. The standard 65/35 polyester cotton fabric was 

supplied by Klopman International (www.klopman.com) and their characterization data 

shows that the fabric can be thermally cured at 150°C for 45 minutes, 175°C for 15 minutes, 

200°C for 10 minutes or 225°C for 3 minutes without noticeable fabric colour changing or 

degradation. Therefore, a 150°C curing temperature provides a suitable compromise 

between sufficient conductivity and compatibility with fabrics. Furthermore, its surface 

roughness is much higher than the other two substrates selected. Manufacture datasheet 

reports its arithmetic mean deviation of the surface roughness is 143.3 µm. 



Final author version. Paper published in IET Microwaves, Antennas & Propagation, Volume 7, Issue 9, 18 June 

2013, p. 760 – 767, DOI: 10.1049/iet-map.2013.0076, Print ISSN 1751-8725, Online ISSN 1751-8733 

 

9 

 

2.4 Interface layer 

To reduce the standard 65/35 polyester cotton fabric surface roughness, the fabric is pre-

treated using a screen printed interface layer (Fabink-UV-IF1 from Smart Fabric Inks Ltd.) 

before further inkjet printing. Fabink-UV-IF1 is a UV curable polyurethane acrylate based 

interface paste. It can be applied on various textiles, including cotton, polyester/cotton, 

Lycra® etc as well as materials such as alumina and Kapton. It has been designed as a 

screen printable paste and cured films show good adhesion to textiles, good flexibility and 

surface smoothness. The screen printed interface layer is only applied in the area 

surrounding the future inkjet printed design so that, unlike the commercial coated fabric, the 

properties of the fabric such as breathability and flexibility are maintained. This is a 

significant advantage when compared to the commercial coated fabric shown in Figure 2 or 

fabrics with an attached Kapton film, both of which lack breathability since the film covers the 

entire fabric. The screen printed interface layer has an average thickness of 200µm. The 

interface coated standard (ICS) fabric had a surface roughness of less than 5µm An SEM 

image of the interface layer is shown in Figure 3. 
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Figure 3. Cross sectional view SEM images of standard 65/35 polyester cotton fabric 
with interface layer 

 

 

 

 

2.5 Inkjet printing on substrates 

 

This section outlines the process to inkjet print the conducting fabrics. The first step is to 

wipe the substrate surface with lint free cleanroom wipes dipped in deionised water. This 

step removes any contamination on the substrate surface and ensures a homogenous 

surface energy across the printing area. This ensures the contact angle for each printed 

droplet is the same which results in a sharper patterned layer. The next step is to inkjet print 

the conductive silver ink. After printing, the conductive pattern is cured for 10 minutes at 

150°C.  
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Due to the surface roughness of the stretchable fabric (10-20µm), the inkjet printer is set to 

print two layers with 15µm resolution on Plastibert. When two silver layers are printed, they 

are deposited one layer after another, with the subsequent curing process carried out after 

both layers were inkjet printed. One and two conductive silver layers were chosen to inkjet 

print on to interface-treated polyester cotton fabric. In general, an additional printed layer is 

required for the textile substrates compared to Kapton to ensure sufficient conductivity and 

good pattern definition as a result of the increased surface roughness and relatively poor 

chemical resistance. Two inkjet printed layer are printed resulting in a thickness of 3 microns 

as shown in Figure 4 (b). 

 

 

  

Figure 4. SEM images of printed layers: (a) The interface layer and (b) the inkjet 
printed layer 

 

 

3. DC Resistance Measurements 

 

The printed dipole arms were 31.3mm long and 2mm wide. The configuration of the inkjet 

printed dipole prototype structure, along with its dimensions, is shown in Figure 5 (a). A 

digital microscope image of the dipole on Kapton and the Interface Coated Substrate (ICS) 

are shown in Figure 5 (b - c). 
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Figure 5. Dipole: (a) Geometry and dimensions; digital microscope image of dipole on 
(b) Kapton film and (c) ICS 2L and (d) printed dipole in an anechoic chamber  

 

Table 1, shows the measurements of DC resistance of several inkjet printed dipole arms on 

Kapton film, Polyurethane coated fabric (PCF) Stretchable fabric and polyester cotton 

with/without an Interface Coated Substrate (ICS) with varying number of ink layers. The DC 

resistance was measured using a Solartron Schlumberger Digital Multimeter. Results with 

multiple samples give an indication as to the repeatability of the fabrication method. These 

results confirm that it is very difficult to print directly onto fabrics and the resulting DC 

resistance is very large unless many layers are printed at the expense of time, cost and 

edge resolution. The ICS layer demonstrates significant improvement in this regard and a 2nd 

ink jet layer further reduces the resistance. Although the Kapton film in not textile, it has 

been included as to allow comparison of the surface roughness of the different textiles. A 

closer inspection using SEM images and digital microscope of the dipole printed tracks on 
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stretchable fabric revealed micro cracks along the tracks. These micro cracks are likely to be 

caused by the elasticity of the fabric. Albeit, the existence of these deformations, we have 

successfully demonstrated the possibility to realise conducting ink jet printed circuits on such 

fabrics with reasonable DC resistances. Additional layers of conductive ink tend to distort the 

edges of the antenna – this was particularly true without the interface layer. 

 

Table 1. DC Resistance (ohms) of 31.3mm long inkjet printed dipole arms. 

Substrate 
material 

Inkjet 
layers 

Dipole 
1 

Dipole 2 Dipole 
3 

Dipole 
4 

Dipole 
5 

Mean  

Polyester Cotton 1 864; 
1012  

910; 955 1251; 
1124 

970; 
920 

754; 
784 

954.4 

Polyester Cotton 2 126; 
101 

108; 101 104; 
119 

152; 
105 

151; 
115 

118.2 

Polyester Cotton  3 55; 42 43; 49 52; 50 64; 59 57; 59 53.0 

Polyester Cotton  5 23; 14 15; 14 19; 15 15; 15 17; 13 16.0 

Kapton  1 3.7; 3.6 3.9; 3.8 3.6; 3.3 3.6; 3.3 3.5; 3.5 3.6 

PCF Stretchable 
Fabric  

2 13.5; 
15.4 

20.1; 
11.2 

13.5; 
20.9 

12.5; 
13.3 

12.1; 
14.8 

14.7 

Polyester Cotton 
with interface layer 

1 28.5; 
18.5 

27.2; 
20.2 

27.6; 
29.2 

Only 3 
samples 
created

Only 3 
samples 
created 

25.2 

Polyester Cotton 
with interface layer 

2 2.7; 3.5 2.8; 2.8 3.0; 4.0 3.5; 2.8 Only 4 
samples 
created 

3.1 

 

 

4. Antenna Design and Results 

 
 

4.1 Prototype fabrication 
 

One of the major challenges in the realisations of fabric antennas prototypes is how a 

transmission line or cable can be robustly connected to the antenna’s input terminals 

ensuring that a match load of 50Ω is achieved. In order to validate the performance of the 

inkjet printed dipoles discussed in this paper, a simple unbalanced feed was adopted. This 

consisted of a 50Ω semi rigid cable having the inner and outer parts connected separately to 

the dipole arms. It is to be noted that for the dipoles on Kapton film, silver epoxy was used to 

connect the terminals together, whilst for the dipoles on ICS it was possible to use low 
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temperature solder. This is advantageous in terms of reliable fabrication and matching as 

solder typically has a higher conductivity than epoxy.  

 

To ensure repeatable results, the dipole antennas were physically supported by a 10mm 

thick Rohacell slab measuring 85.5mm X 41mm. This platform enabled us to carry out 

measurements in an anechoic chamber; see Figure 5 (d). In this set-up, the antenna under 

test was placed at distance of 225mm away from the positioner in order to minimise any 

reflections from the positioner.  

 

4.2 Electromagnetic simulations 

 

3-D finite-difference time-domain (FDTD) using EMPIRE XCcel™ commercial software has 

been used to simulate the λ/2 dipoles. The inkjet printed dipole was placed 225mm away 

from the cylindrical positioner post which has a radius of 36mm, see Figure 5 (d). The post is 

made of Acrylonitrile Butadiene Syrene (ABS), and has a relative permittivity and loss 

tangent (tan δ) of 2.91 and 0.025 respectively. The permittivity of the substrate and the 

conductivity of the ink were adjusted to match the resonant frequencies and efficiencies to 

the measured results. 

 

 

4.3 Simulated and measured results 

 

Simulated and measured return loss results are shown in Figure 6. All the antennas were 

well matched. The differences in the antenna resonance frequencies were due to the 

dielectric loading of the ICS and Kapton film. The simulated frequency matched the 

measured results when εr = 3.5 (‘Simulated Sample 1’) was used for the ICS substrate and εr 

= 1.88 (‘Simulated Sample 2’) for the Kapton substrate. 
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Figure 6. The comparison between simulated and measured return loss.  

 

The performance of the antennas is summarised in  

 

Table 2. The simulated antenna efficiency was 92% with a highly conducting layer (σ = 5.88 

x 107 S/m). To replicate the measured efficiency (~80%), the conductivity of the simulated 

uniform metallic tracks was reduced to 5.6 x 106 S/m which gives an indication to the 

conductivity of the ink tracks. The measured printed track on the interface layer had an 

efficiency of 60% which is reasonable for many applications. This was increased to 74% with 

two layers of inkjet printing. The efficiency for the dipole on the stretchable fabric was 31.6% 

with two layers of printed ink. The cotton/polyester with the interface layer antenna had a 

higher efficiency than the Plastibert stretchable fabric version – this is assumed to be due to 

two factors: i) the reduced surface roughness of the interface layer (5μm compared to 10-

20μm for the Plastibert) which is essential for printing continuous tracks and secondly ii) the 

inadvertent flexing of the stretchable fabric caused cracks in the printed conducted layer.  
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To demonstrate the effect of the interface layer, a dipole was fabricated with 5 layers of 

inkjet printing directly onto the fabric without the interface layer. Without the interface, the 

inkjet printed layers spread into the fabric causing ill-defined dipole arms shorting out the 

gap between the two arms. The problems caused by poorly-defined lines become more 

severe at higher frequencies. This indicates the practical difficulties of printing directly onto 

fabric. It is worthy of note that the dipole with only one inkjet layer on the interface layer had 

a better efficiency than with 5 layers of conducting ink on the polyester cotton. Therefore, the 

interface layer saves time, reduces costs, improves the printing resolution and enhances the 

RF performance. Note, that the positioner in the measurement system is also included in the 

simulations which affected the gain and increased it above the expected value for a dipole of 

2.2dBi. Therefore the efficiency is a more reliable measure of the antenna performance. The 

measured and simulated radiation patterns with the positioner are considered in the next 

section. 

 

 

Table 2. Simulated and measured antenna parameters of inkjet printed dipoles at 
resonance frequency. 

Substrate Inkjet 
layers 

Freq 
(MHz) 

S11 
(dB) 

Gain 
(dBi) 

10dB BW 
(MHz) 

Efficiency 
(%) 

Simulated sample 1 - 1890 14.9 2.64 180 78.1 

Simulated sample 2 - 2005 13.3 2.94 168 79.9 

Meas: Polyester cotton 
with interface layer 

1 1875 15.2 2.24 205 60.2 

Meas: Polyester cotton 
with interface layer 

2 1897 27.1 3.60 205 74.1 

Meas: Kapton 1 2040 19.1 3.16 255 85.1 

Meas: PCF stretchable 
fabric 

2 2128 9.4 0.68 N/A - Not 
matched to 

10dB 

31.6 

Meas: Polyester cotton 5 1840 21.1 1.92 283 56.6 

Meas: Etched on low 
loss laminate 

- 1778 17.1 3.45 180 77.5 
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4.4 Measured radiation patterns 

 
 

Figure 7 shows the measured patterns at resonance of the inkjet printed dipoles. These 

measured radiation patterns show that the printed antennas have dipole-like patterns. The 

patterns were reasonably isotropic in the azimuth plane – however the effect of the 

positioner can be seen. However, pattern squinting is noticeable in the elevation plane which 

is attributed to the arms not being exactly straight and asymmetries in the printed arms. 

 
   
 

 
Figure 7. Measured radiation patterns of inkjet printed dipoles at resonance 
frequency: (a) ICS 1L at 1875MHz, Φ = 0°;  (b) ICS 2L at 1897.5MHz Φ = 0°;  (c) Kapton 
at 2040MHz Φ = 0°;  (d) ICS 1L at 1875MHz, Φ = 90°;  (e) ICS 2L at 1897.5MHz Φ = 90°;  
(f) Kapton at 2040MHz Φ = 90°. Note EΦ is blue and Eθ is red 
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The positioner in the anechoic chamber (see Figure 5 (d)) was included in the simulations 

(see Figure 8 inset). Note the vertical tower was covered with radar absorbing material and 

therefore was not included in the simulations. Figure 8 shows the 2-D simulated antenna 

pattern with the positioner results at 1890MHz. The positioner affects the radiation patterns, 

particularly noticeable at about 2250 and 3150 in the 2-D polar plot. This shows that for 

antennas without a ground plane, it is important to consider the effect of the positioner. The 

radiation plots at 1.89GHz show that the positioner can enhance the directivity of the dipole– 

this explains the gain values above 2.2dBi in Table 2. Simulations verified that the effect of 

the positioner was minimised by increasing the separation of the dipole from the positioner in 

the measurements. 

 

 
Figure 8. Simulated radiation patterns at 1.89GHz with the positioner and 3D view 

(inset). 
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5. Conclusions 

 
 
This paper has demonstrated a new manufacturing technique for wearable antennas by 

using inkjet printing in conjunction with an interface layer. The surface of textiles is inherently 

rough and is therefore not naturally suitable for thin film inkjet printing – this has been 

confirmed with DC measurements. This has been overcome by first screen printing an 

interface layer which converts the fabric into a smooth surface. DC measurements of the 

resistance have been compared with efficiency results of printed antennas and have been 

shown to be a reasonable estimate of the RF antenna performance. This can be useful for 

fast quality control in the manufacturing process. Efficiencies of more than 70% have been 

achieved. The efficiency was increased by using two layers of printing. The antenna 

efficiency with one inkjet printed layer on the interface layer was greater than using 5 inkjet 

layers without the interface layer. Therefore, the interface layer saves time, cost and results 

in improved edge definition. The radiation patterns were not exactly symmetric – this was 

thought to be due to asymmetries in the printing process and the arms not being perfectly 

aligned. However, as the application is for wearable antennas – this is acceptable as the 

human body will inherently affect the patterns. 
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