
InkKit: A Generic Design Tool for the Tablet PC
Ronald Chung1, Petrut Mirica2, Beryl Plimmer3

University of Auckland
Private Bag 92019, Auckland

New Zealand
Phone: +64 9 3033670

ronaldc83@hotmail.com1, p_m_82@hotmail.com2, beryl@cs.auckland.ac.nz3
ABSTRACT
In this paper, we describe the design philosophy, implementation
and evaluation of InkKit, an informal design platform that uses
pen input on a tablet PC to imitate the informality of a low
fidelity tool. The aim is for this toolkit to provide a foundation for
further research into domain specific sketch support.
Designers initially hand-sketch their ideas [3, 6] because informal
tools, such as pen and paper, offer the freedom to work with
partly formed or ambiguous designs. The emergence of electronic
pen input systems has seen a number of exploratory projects
applying pen-based sketch software to the design process. Even
though these projects differ, most of them use the same general
framework. Thus a significant part of the implementation
incorporates the same basic functionalities.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input devices and strategies D.2.2
[Design Tools and Techniques] User Interfaces

Keywords
Sketch tools, toolkits

1. INTRODUCTION
InkKit intends to act as a starting point for other projects by
providing an intuitive, generic and extensible sketch space. It
provides the basic functionalities expected in computer aided
design software with a user-friendly interface. InkKit also
implements commonly used techniques such as recognition and
beautification. In addition, it is designed to be extensible in the
sense that it is capable of accommodating various types of designs
(such as UML diagrams, ERDs and interface designs) that can
integrate with different formal design environments.

2. RELATED WORK
FreeForm2 [6] is a design tool specifically implemented to
convert hand-drawn sketches into Visual Basic 6 forms with input
recognition and beautification. It also provides a storyboard mode
that allows users to create connections between sketches.
Leszynski InTegrate [4] is another sketching tool that converts
user input into strictly defined form components. DENIM [5] is
particularly developed for use in the early stage of website or

form design. It allows storyboarding with zooming capabilities.
SUMLOW [6] allows various UML diagrams to be sketched and
it incrementally formalises the diagram, recognizing UML
notational symbols as they are drawn. A similar project called
Ideogramic UML [2] was created to transpose user gestures into
solid UML objects.

3. REQUIREMENTS
In order to accomplish the goal of being intuitive, generic and
extensible InkKit should meet the following requirements. First, it
should provide an effective user interface which is easy to use so
that the designer can freely create and manipulate sketches
without interruption to the creative process. Second, InkKit
should perform basic reliable text and drawing recognition. Third,
it is required to handle multiple designs simultaneously and
provide a way to create links between those designs. Lastly
InkKit should be able to beautify abstract, informal designs in
preparation for formalisation.

4. DESIGN AND IMPLEMENTATION
InkKit is implemented using Microsoft Visual Studio.NET for
Windows XP Tablet PC. It runs on all Microsoft platforms that
support electronic ink input, but requires the Tablet OS for
recognition.
In order to satisfy the requirements presented above InkKit
incorporates the following functionalities. First, it allows inking
whilst supporting all the necessary functions usually contained in
an editing environment such as undo & redo and save & load.

Figure 1 Recognising a use case diagram

Second, the program incorporates modeless recognition;
distinguishing between words and characters, and typical simple
shapes (figure 1). This is achieved by pre-processing ink to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHINZ’05, July 6–8, 2005, Auckland, NZ
Copyright 2005 ACM 1-59593-036-1/04/10

29

separate it into writing and drawing. The Microsoft text
recogniser is then used to recognise writing and Rubine’s [7]
algorithm is employed for the shape recognition. We have
included an interface to the gesture library so that the user can
customise the gesture sets; thus InkKit can dynamically learn how
to recognize new components. The last step of recognition is to
apply adjacency rules to collect recognised elements into complex
shapes.
Third, InkKit also supports a storyboard mode with zooming
capability that allows users to easily create relationships between
existing sketches (figure 2). To handle multiple designs we
implemented MDI forms. While in storyboard mode the MDI
forms can be linked with connectors that act as an electronic
rubber band between components on the same or a different form
thus allowing for complex diagram creation.
To meet the last requirement, beautification, InkKit standardises
recognised components to predefined sizes based on the
taxonomies specified by the user [1]. Components are snapped to
the grid; and groups aligned horizontally and vertically; any
overlapping that might occur during the process is automatically
resolved.
To offer more flexibility, the beautification process has been
divided into different steps. Thus the user can, for example,
prevent overlapping of objects on a sketch without aligning them.
By default all components on a sketch are recognized and
beautified as a whole. This can also happen at the selection level
with slight adjustments to the algorithm.

Figure 2 designing a user interface in relationship mode

5. EVALUATION
Evaluation of InkKit is divided into user interface, recognition,
and beautification.
General user interface design guidelines and the experiences of
others [5, 6] are followed to ensure intuitiveness. However, due to
the inherent problems of pen input technologies, additional steps
were taken such as addressing the parallax problem by increasing
the area allowed for selecting components.

In general modeless recognition performs successfully in the
sense that the strokes are reliably grouped and differentiated in
most of the cases. To achieve higher accuracy user-specific
training is required at the basic level, such as handwriting size.
Text recognition is generally reliable since we utilised the built-in
recogniser of the tablet OS. The accuracy of the recognition result
for shapes relies on Rubine’s [7] Algorithm, which was tested for
implementation correctness.
The beautification process has been tested by considering each
technique individually. Snapping to grid and standardisation of
components achieved satisfactory results. Alignment and
overlapping perform as expected in most situations, however may
fail with complex diagrams unless more restrictive rules are
imposed.

6. CONCLUSION & FUTURE WORK
Although the program can still be refined in many ways, InkKit,
in its current state is meeting the requirements presented above
and is ready to be used as a generic toolkit to provide the
foundation for further research into domain specific sketch
support.
Further improvements can be made especially to modeless
recognition and beautification in order to increase accuracy.
Extensive research is currently being performed in these fields
and more reliable techniques can be added as they are found.
InkKit can now be extended to accommodate various design
techniques. Rules can be applied to a sketch so that it can be
converted into application or language specific formal design
such as a webpage with automatic HTML conversion, an ERD in
ERWin or a use case diagram in Rational Rose.

7. REFERENCES
[1] Blackwell, A.F. and Y. Engelhardt, A Meta-Taxonomy for

Diagram Research, in Diagrammatic Representation and
Reasoning, M. Anderson, B. Meyer, and P. Olivier, Editors.
2002, Springer.

[2] Damm, C.H. and H.R. Hansen, Ideogramic. 2002.
http://www.ideogramic.com/ Accessed 10 Jan 2005

[3] Gross, M., The proverbial back of an envelope, in IEEE
Intelligent Systems. 1998. 10-13.

[4] Leszynski Group, InTegrate. 2005,
http://www.leszynski.com/ Accessed 10 Jan 2005.

[5] Newman, M.W., et al., DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice. in
Human-Computer Interaction, 2003. 18(3): 259-324.

[6] Plimmer, B.E. and J. Grundy. Beautifying sketch-based
design tool content: issues and experiences. in proc AUIC.
2005. Newcastle: ACM: 31-38.

[7] Rubine, D. Specifying gestures by example. in proc
Proceedings of Siggraph '91. 1991: ACM: 329-337.

30

