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Over the past few decades, we have witnessed a decline in the rates of acute rejection

without significant improvement in chronic rejection. Current treatment strategies

principally target the adaptive immune response and not the innate response. Therefore,

better understanding of innate immunity in transplantation and how to target it is highly

desirable. Here, we review the latest advances in innate immunity in transplantation

focusing on the roles and mechanisms of innate allorecognition and memory in myeloid

cells. These novel concepts could explain why alloimmune response do not abate over

time and shed light on new molecular pathways that can be interrupted to prevent or

treat chronic rejection.
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Activation of the innate immune system is necessary for driving adaptive immune responses
(1, 2). In infection, pathogen-associated, non-self, molecules trigger host innate defenses and
induce maturation of antigen-presenting cells (APCs) by binding to germline-encoded pattern
recognition receptors [e.g., Toll-like receptors (TLRs)]. Mature APCs then initiate and sustain
adaptive immunity by presenting antigen and providing co-stimulation to T cells.

How transplanted organs (allografts) induce APC maturation is less clear. Initial, landmark
experiments suggested a role for TLRs by demonstrating that deletion of Myd88 downstream
of TLRs blocks dendritic cell (DC) maturation and prevents rejection of single minor
histocompatibility antigen-mismatched grafts (3). Later studies however showed that the rejection
of MHC- or multiple minor antigen-mismatched allografts can still proceed in the absence of TLR
signaling (4, 5). Moreover, deletion of additional microbial sensing pathways failed to completely
prevent rejection (6–8). Similarly, the alternate hypothesis that “danger” molecules released at time
of transplantation due to tissue injury trigger APC maturation could not account for alloimmune
responses initiated after injury has subsided (9, 10). For example, allografts parked for a long time
in T cell-deficient hosts were promptly rejected when T cells were replenished despite absence
of discernible inflammation or injury in the graft at the time of T cell transfer (11–15). These
observations raise the possibility that innate receptor systems, other than those involved in sensing
microbes and danger, sense allogeneic non-self on transplanted tissues and cause APC activation.
Here, we will summarize evidence that monocytes and macrophages distinguish between self and
allogeneic non-self and review the mechanisms and functional consequences of this form of innate
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allorecognition. We also touch on the allospecific memory in
these innate immune cells and discuss the translation of the
findings into clinical situations.

EVIDENCE FOR INNATE
ALLORECOGNITION

An early study by Zecher et al. demonstrated that RAG-/-
mice, which lack T and B cells, mount a DTH-like response to
allogeneic but not syngeneic RAG-/- splenocytes (16). In the same
study, it was established that the response is mediated by host
monocytes, not NK cells, and is elicited by non-MHC disparities
between donor and recipient. A subsequent publication by Liu
et al. independently reported thatmacrophages in alloimmunized
hosts engage in allorecognition, acquiring with the help of CD4+
T cells the ability to kill allogeneic cells (17). CD4+ T cell
help to macrophages was mediated by CD40 such that the
same macrophage allocytotoxic response could be elicited in
lymphocyte-deficient mice injected with an anti-CD40 agonistic
antibody at the time of alloimmunization.

Prompted by these observations, Oberbarnscheidt et al.
studied the innate response of RAG-/-γ c-/- mice (which lack
T, B, NK, as well as all other innate lymphoid cells) to heart,
kidney, and bone marrow plug grafts (18). They found that
allografts elicit an innate response distinct from syngeneic grafts.
Allografts were persistently infiltrated with host-derived mature
(MHC-IIhiCD80hi), IL-12+ monocyte-derived DCs (mo-DCs),
even several weeks after transplantation, while syngeneic grafts
harbored five-fold less mo-DCs, which were transient (present
only during the 1st week), less mature, and IL-12neg. Similar
differences were observed between allogeneic and syngeneic
grafts transplanted to wild-type (WT) recipients and analyzed
within 1 day after transplantation (18). Consistent with their
IL-12 phenotype, mo-DCs from allografts but not those from
syngeneic grafts drove a canonical Th1 (IFNγ+) response in
vitro and in vivo. As in the previous study (16), the innate
alloresponse was not dependent on MHC disparities between
donor and recipient, or on lymphoid cells in either donor or
recipient. Instead, a mismatch in the non-MHC was necessary.
Chow et al. made similar observations by injecting allogeneic cells
intravenously, to avoid inflammatory reactions, into RAG-/-γ c-/-
mice (19). Therefore, monocytes and macrophages are activated
by allogeneic stimuli to become mature DCs that drive the Th1
response and to acquire allocytotoxic functions, respectively.

MECHANISM OF INNATE
ALLORECOGNITION: RECOGNITION OF
NON-MHC ALLODETERMINANTS

A genetic mapping study was undertaken to identify non-
MHC allodeterminants that trigger the innate alloresponse (20).
The study was based on the observation that allografts from
NOD donors elicit a strong monocyte response in B6. RAG-
/-γ c-/- recipients, while grafts from NOR mice, which share
∼88% of their genome (including the MHC) with NOD, do
not (20). Using NOD.NOR congenics, Dai et al. mapped the

difference to the gene that encodes SIRPα (signal regulatory
protein alpha), a polymorphic IgSF (immunoglobulin super
family) protein expressed on neurons and myeloid cells but
also present or induced on myocytes, epithelial cells, and
endothelial cells (21). They showed that SIRPα triggers monocyte
activation via CD47 and that amino acid polymorphisms in
SIRPα determine the strength of the innate alloresponse by
modulating binding to CD47 (20). The greater binding to its
ligand CD47 by NOD variant of SIRPα than other mouse
strains of SIRPα was also studied by other groups (22, 23).
The allorecognition model (Figure 1) that emerged is that non-
self SIRPα on donor cells causes host monocyte activation by
disturbing the balance between activating and inhibitory signals
mediated by CD47 and SIRPα, respectively. Under steady-state
conditions, or upon transplanting a syngeneic graft, bidirectional
interactions between CD47 and self-SIRPα are of equal affinity
and thus prevent monocyte activation. In contrast, transplanting
an allograft expressing a mismatched (non-self) SIRPα variant
upsets the balance and causes monocyte differentiation to DC
(20, 24). This model echoes NK cell allorecognition (25). At
the same time, it does not exclude the possibility that other
polymorphic ligands/receptors could still participate in fine-
tuning the innate alloresponse.

ALLOSPECIFIC MEMORY IN INNATE
IMMUNE CELLS: RECOGNITION OF MHC-I
MOLECULES

Immunological memory—the ability of immune cells to respond
rapidly and provide enhanced protection of the host against
previously encountered antigen—is a critical driver of transplant
rejection and outcomes (26–28). Although originally confined to
T & B lymphocytes, the memory concept has been expanded
by discoveries that innate lymphoid and myeloid cells (NK
cells and macrophages) (29–35), DCs (36), as well as non-
immune cells (epithelial stem cells) (37) acquire memory to
prior microbial, phagocytosis of apoptotic cells, or allogeneic
exposures. As shown in Table 1, immunological memory is
not a one-size-fits-all phenomenon but falls on a spectrum
of varying biological mechanisms, ranging from epigenetic
reprogramming in epithelial stem cells, macrophages, and
DCs to clonal expansion and differentiation (with or without
gene rearrangement) in NK cells and lymphocytes (36–42).
Irrespective of mechanism, all memory enhances protection of
the host. Epithelial stem cell memory hastens wound healing,
macrophage or DC memory protects against pathogens, and
lymphoid cell memory accelerates rejection of microbial and
allogeneic non-self (31, 33–37, 43, 44). The lasting state
of enhanced innate immunity, innate memory, had been
termed “trained immunity” and usually confined to unspecific
immunological memory in innate immune cells or does not have
to be specific (45–49). Recent studies also revealed extensive
changes in cellular metabolism during trained macrophage
immunity, such as a switch from oxidative phosphorylation
toward the preferential use of aerobic glycolysis through an
Akt/mTOR/HIF-1α-dependent pathway induced by C. albicans
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FIGURE 1 | Innate allorecognition model. SIRPα mismatch between donor and recipient (bottom panel) causes imbalance between stimulatory and inhibitory signals

in monocytes due to differential affinity of SIRPα to CD47. The mismatch generates mature DCs. If monocytes encounter self (top panel), then no response ensues.

Mo-DC, monocyte-derived dendritic cell.

and β-glutan (47). Strategies to regulate trained immunity had
shown promise to achieve therapeutic benefits in a range of
immune-related diseases (50).

In a series of experiments recently completed by our groups
(51), we established that monocytes and macrophages mount
an anamnestic memory response to previously encountered
allogeneic donor cells but not to third-party cells. This donor
specific feature was different from previous concept of “trained
immunity,” suggesting it is similar to the well-characterized
concept of antigen-specific immunological memory in adaptive
immune cells (26–28). Memory arose independently of lymphoid
cells in either the donor or recipient, underscoring its innate
nature. It lasted between 4 and 7 weeks after immunization,
which is significantly longer than the average lifespan of
a monocyte (∼3 days) (52, 53). Further, we established
that memory specificity was to donor MHC-I antigens that
were recognized by paired immunoglobulin-like receptor A
(PIR-A) molecules expressed on monocytes and macrophages.
PIR-A-/- mice or mice treated with PIR-A-blocking agents failed
to mount monocyte or macrophage memory. Mouse PIRs
are IgSF orthologs of human leukocyte immunoglobulin-like
receptors (LILRs) (54). Six linked PIR-A and one PIR-B gene
have been identified (55–57). PIR-B contains an ITIM motif and
is inhibitory. It binds a wide spectrum of MHC-I molecules
(58). PIR-As do not contain ITIM motifs and are stimulatory
through association with the Fc receptor common γ (FcRγc)
chain, also required for their surface expression (54, 59). PIR-
A and PIR-B ectodomains share >92% identity, suggesting that
PIR-As also bind MHC-I (58). In fact, PIR-A diversity leads to
differential binding of individual PIR-A molecules to distinct
MHC-I molecules.

As to themechanisms by whichmonocytes acquire allospecific
memory, the PIR molecules were preferentially expressed on
Ly6Chi monocytes, which significantly expanded after allogeneic
antigen exposure. Specific memory independent of lymphoid
cells can be transferred to an unimmunized recipient by

transferring sorted Ly6Chi monocytes expanded from an
immunized recipient, suggesting that clonal expansion of
monocytes that express the particular PIR-A molecule that
recognizes the particular MHC-I molecule in the immunogen
underlies memory (51). This resembles the mechanism
established in the case of allospecific NK cell memory (34).
We also observed that initial activation of monocytes via the
SIRPα-CD47 pathway, which plays an important role in the
primary innate allorecognition response (20), is necessary for
priming cells toward the memory path (51) (Figure 2).

ROLE OF INNATE ALLORECOGNITION IN
REJECTION

Evidence that innate allorecognition described above plays
an important role in rejection derives from three lines of
investigation. In the first (18), OVA-specific OT-II T cells
transferred to B6. RAG-/- hosts did not reject B6.OVA grafts but
rejected (BALB/c x B6)F1.OVA grafts despite similar expression
of the antigen, ovalbumin (OVA), recognized by the T cells.
Only F1.OVA grafts induced mature mo-DCs and significant
proliferation and IFNγ production by OT-II cells, underscoring
the importance of monocyte recognition of allogeneic non-
self in F1 donors in driving the T cell response. Moreover,
short-term mo-DC depletion using the CD11b-DTR transgenic
system completely abrogated histological acute rejection at 7
days in lymphocyte-replete mice (18). In contrast, eliminating
neutrophils (also CD11b+) with a neutrophil-specific mAb did
not affect rejection (18).

In the second study (60), the origin and function of DCs
in heart and kidney allografts after transplantation to WT
recipients were investigated. It was established that donor-
derivedDCswere quickly replaced byDCs derived from recipient
monocytes and that they closely resembled mo-DCs generated by
innate allorecognition. They were mature, IL-12+, and induced
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TABLE 1 | Spectrum of immunological memory.

Longevity Recall Specificity Mechanisms Enhanced

protections

Lymphocyte Memory ++++

(years)

++++ ++++ Clonal Expansion

Cell Differentiation

Gene Rearrangement

Epigenetic reprogramming

PATHOGENS: Yes

ALLOANTIGENS: Yes

NK Cell Memory ++ (months) ++ ++ Clonal expansion

Cell differentiation

Epigenetic reprogramming

PATHOGENS: Yes

ALLOANTIGENS: Yes

Monocyte memory + (weeks) + ++ Clonal expansion

Cell differentiation

Epigenetic reprogramming

PATHOGENS: Yes

ALLOANTIGENS: Yes

Macrophage memory + (weeks) + +/- Epigenetic reprogramming PATHOGENS: Yes

ALLOANTIGENS: Yes

DC memory + (weeks) + + Epigenetic reprogramming PATHOGENS: Yes

ALLOANTIGENS: Yes

Epithelial stem cell

memory

++ (months) + - Epigenetic reprogramming ENHANCED

WOUND HEALING

FIGURE 2 | Allospecific innate memory mechanism. Mismatches of both MHC I and SIRPα between donor and recipient and expressions of both PIR-A and CD47

molecules on recipient monocytes are required for establishing monocyte allospecific memory.

Th1 differentiation. In the graft, they made stable, cognate
interactions with effector T cells and increased T cell proliferation
and survival. DC depletion starting on day 5 delayed heart
allograft rejection by >30 days in WT recipients (60) and
completely prevented rejection in mice that lacked 2◦ lymphoid
organs (splenectomized LTβR-/-mice) after transfer of effector T
cells. Therefore, host mo-DCs that persistently infiltrate allografts
sustain T cell-mediated rejection locally.

In the third set of experiments (51, 61), innate allorecognition
and memory molecular pathways were interrupted. We observed
that mouse renal allografts transplanted to recipients that lack
either CD47 or PIR-A develop significantly less manifestations
of chronic rejection. Similarly, blocking the PIR-A pathway led
to long-term heart allograft survival with minimal pathology in
recipients simultaneously treated with co-stimulation blockade
(CTL4Ig). Acute rejection, however, was either not delayed

or only modestly improved if either CD47 or PIR-A was
absent. Therefore, the major influence of the SIRPα-CD47 and
MHC-I-PIR-A pathways is on chronic allograft rejection and
on preventing allograft acceptance. In contrast, rejection was
accelerated in the absence of PIR-B signaling in the recipient.

CLINICAL TRANSLATION IN
TRANSPLANTATION

In humans, interactions through similar signaling pathways
mediated by SIRPα and PIRs’ homolog LILRs engaging with
CD47 and MHC-I molecules, respectively, also exist (62, 63).
By x-ray crystallography, Hatherley D et al. showed that the
polymorphism in human SIRPα did not affect binding to
its ligand CD47 (64). This suggested the possibility, although
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requiring further exploration, that human SIRPα differed in
binding features from mouse SIRPα, whose binding affinity to its
ligand CD47 was recognized to be dependent on its polymorphic
IgV domain (20, 24). Our preliminary data also validated that
the amino-terminal ligand binding domain of human SIRPα

is highly polymorphic (65). Human LILRs family comprises a
set of PIRs (A and B) expressed on myeloid innate immune
cells. Similar to PIRs in mice, LILR-Bs contain ITIM motifs
and are inhibitory while LILR-As do not contain ITIM motifs
but contain ITAM motifs and are stimulatory. Six LILR-As and
five LILR-Bs have been identified. Both LILR-As and LILR-Bs
bind a wide spectrum of MHC-I molecules (63, 66). Human
SIRPα-CD47 interaction has been reported to be implicated
in the phagocytosis of red blood cells and leukemia cells by
macrophages in vivo or in vitro (62, 67). There are data suggesting
a link between LILR polymorphism and control of HIV infection
and autoimmunity in humans (63, 66). However, published
human studies on the roles of SIRPα and LILRs in transplantation
are not available yet. The similarities in these two pathways
(SIRPα-CD47 and MHC-I-PIR-A/LILR-A) between human and
mice should trigger investigations into the roles of these pathways
in clinical transplantation.

CONCLUDING REMARKS

We have presented evidence that the innate immune cells,
namely, monocytes and macrophages, respond to allogeneic

non-self independently of T, B, and NK cells. This form of
allorecognition initiates or sustains the responses of recipient
T cells to allografts by inducing the maturation of APCs.
It also provides phagocytic cells with the means to kill
allogeneic targets without inflicting damage on self-tissues.
One mechanism of innate allorecognition is the differential
binding of CD47 on monocytes to polymorphic SIRPα

on donor cells. We also summarized data showing that
monocytes and macrophages acquire memory specific to
allogeneic MHC-I molecules that is dependent on MHC-I
sensing by polymorphic PIR-A molecules. Blocking SIRPα-
CD47 or MHC-I-PIR-A interaction shows promise in preventing
chronic rejection or promoting allograft acceptance. Future
studies are expected to establish translation of these findings into
clinical transplantation.
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