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Innate and adaptive immunity
to SARS-CoV-2 and
predisposing factors
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Zheyun Niu1, Zihan Zhang1 and Guangwen Cao1,2*

1Tongji University School of Medicine, Tongji University, Shanghai, China, 2Department of
Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological
Defense, Ministry of Education, Second Military Medical University, Shanghai, China
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute

respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries

worldwide. Although some symptoms are relatively mild, others are still

associated with severe and even fatal clinical outcomes. Innate and adaptive

immunity are important for the control of SARS-CoV-2 infections, whereas a

comprehensive characterization of the innate and adaptive immune response to

COVID-19 is still lacking and the mechanisms underlying immune pathogenesis

and host predisposing factors are still a matter of scientific debate. Here, the

specific functions and kinetics of innate and adaptive immunity involved in SARS-

CoV-2 recognition and resultant pathogenesis are discussed, as well as their

immune memory for vaccinations, viral-mediated immune evasion, and the

current and future immunotherapeutic agents. We also highlight host factors

that contribute to infection, which may deepen the understanding of viral

pathogenesis and help identify targeted therapies that attenuate severe disease

and infection.

KEYWORDS

COVID-19, SARS-CoV-2, immune response, viral immune evasion, susceptibility
Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), has been declared as a global health emergency, which is

characterized by fever, respiratory illness, and pneumonia and other symptoms. According

to the Johns Hopkins Coronavirus Resource Center (1), there have been more than 650

million confirmed positive cases worldwide, and 6 million deaths worldwide by December

2022. SARS-CoV-2 has a wide range of hosts and constantly increasing ability to transmit

and immune escape, thereby probably coexisting with humans for a long time. So far,

further studies are needed to elucidate mechanisms by which host immunity against SARS-

CoV-2. Which and to what extent factors may account for the predispositions of

individuals to contract infection remains unclear. Therefore, it is necessary for us to
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have an updated understanding of the interaction between SARS-

CoV-2 and host immunity and the susceptible factors to

viral infection.

SARS-CoV-2 is an enveloped, positive-sense, single-stranded

RNA virus with approximately 30kb in size (2). As a member of the

coronavirus family, SARS-CoV-2 has four structural proteins,

including spike (S), envelope (E), membrane (M), and

nucleocapsid (N) and non-structural proteins (NSP-1-16) (3).

The spike protein is composed of two functional subunits,

including the S1 and S2 unit. The function of S1 is to bind the

receptor on the host cell, while S2 is responsible for fusing the

membranes of the virus and the host cell. Additionally, angiotensin-

converting enzyme 2 (ACE2) is its major cellular receptor (4) and

the transmembrane protease serine protease-2 (TMPRSS-2) and

cathepsin L are used for S protein priming (5). The expression of

ACE2 and TMPRSS2 is heterogeneously expressed in different

organs (6) and tissues with more than 1% ACE2 expression

proportion are considered at higher risk of infection, including

lower respiratory tract (2%), lung (> 1%), heart (> 7.5%), ileum

(3%), esophagus (> 1%), kidney (4%), and bladder (2.4%) (7). ACE2

also regulate coagulation and inflammation during viral infection in

the renin angiotensin system (RAS) (8). TMPRSS2 expression

corresponds to ACE2 expression in many tissues, including

kidney, liver, testis, small intestine, and lung (9–12).

Like SARS-CoV and MERS-CoV, SARS-CoV-2 has been

investigated to clarify the characterization of innate and adaptive

immune response (13, 14). Innate immune cells can recognize

pathogen-associated molecular patterns (PAMPs) through

cytosolic pattern recognition receptors (PRRs) to limit SARS-

CoV-2 replication and promote viral clearance (15). Interleukin

(IL)-6 has been considered as a potential pathogenic factor in the

initiation of acute respiratory distress syndrome (ARDS) (16).

Adaptive immunity involves the co-ordination of T cells and B

cells to control SARS-CoV-2 (17). Adaptive immune responses to

SARS-CoV-2 occur within the first 7-10 days post-infection (17).

However, the nature of the B and T cell immune events and their

long immunity remain unclear, which is an important issue for

vaccine development. On the other hand, an over-activated or

aberrant immune response can lead to immunopathology and

more severe symptoms, such as tissue damage, acute respiratory

distress syndrome, thromboembolic complications, cardiac injury

and/or cytokine storm (15). Therefore, understanding the

underlying immune response is important for risk stratification

and clinical triage.

Currently, Omicron variants are becoming the dominant strain

of COVID-19. They have evolved into many sublines, such as BA.1,

BA.2, BA.2.12.1, BA.4, and BA.5. Unlike other variants of concern

(VOCs), it is characterized by a high proportion of asymptomatic

cases, and a low mortality rate (18). Nearly 7.9%-61.0% of infected

individuals remained asymptomatic and some showed no

symptoms in the early stage (19). A number of factors have been

identified to have a risk or protective impact on developing severe

clinical outcomes (20). However, studies on human factors

associated with the susceptibility to COVID-19 are relatively rare.

As the lethality and virulence of SARS-CoV-2 continue to decline

and more asymptomatic cases occur, the need to identify its
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predisposing factors to prevent infection or reinfection becomes

more urgent.

In this article, we update the contributions of major pattern

recognition receptors (PRRs) in innate immunity and T and B cells

in adaptive immunity and vaccination. An overview of

immunotherapy for COVID-19 is presented in this study. We

also highlight mechanisms by which viruses evade anti-COVID-

19 immunity. Moreover, we discuss host susceptible factors about

how they influence infection. Continuing to improve our

understanding of the immune system and host susceptibility is

critical to achieving translation from molecular mechanisms and

therapy to prevention strategies in the post-COVID-19

era (Figure 1).
Innate immune system

During the entry of SARS-CoV-2, viral binding to the ACE2

receptor induces conformational changes in the S1 subunit (21). S2’

cleavage then occurs in the presence of cellular proteases such as

TMPRSS2 or cathepsin L (22). This series of viral infection is

detected by a variety of host PRRs (15). The three major PRR

families include Toll-like receptors (TLRs), retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs), and nucleotide-binding

oligomerization domain (NOD)-like receptors (NLRs) (23). The

aberrant signaling pathways through these receptors over-activate

inflammatory cytokines and chemokines (24) (Figure 2). A better

understanding of pathophysiological mechanisms involved in

innate immunity is a prerequisite for developing curative and

preventive strategies against COVID-19.
TLRs and SARS-CoV-2

TLRs are the “gatekeepers” of the human immune system to

protect the host from invading pathogens. TLRs have ten family

members. Some are in the cell membrane, while the others are

situated in endosomes. Since SARS-CoV-2 is a single-stranded

RNA virus, at least six TLRs have been implicated in viral

recognition, namely TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9.

TLR2 and TLR4 can recognize viral structural and nonstructural

proteins outside the cell (25). SARS-CoV-2 spike protein S1 subunit

has been found to activate TLR4 signaling to induce pro-

inflammatory responses in human macrophages (26). TLR2 can

sense the SARS-CoV-2 envelope protein to produce inflammatory

cytokines (27). TLR3 can identify double-stranded RNA during

viral replication. After SARS-CoV-2 is engulfed by macrophages,

the genomic RNAs released from the virions are recognized by

TLR7/TLR8, thereby stimulating downstream signaling pathways.

TLR7 is mainly involved in the control of innate immunity during

pulmonary SARS-CoV-2 infection, activating the NF-kB

transduction and leading to pro-inflammatory cytokine secretion

(28, 29). In contrast, relevant research on TLR9 is still rare. When

SARS-CoV-2 infects endothelial cells, mitochondrial dysfunction

elevates mtDNA levels and induces TLR9 signaling (30). Myeloid

differentiation primary response 88 (MyD88) and TIR domain-
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containing adapter-inducing interferon-b (TRIF) are two major

pathways for the transduction of TLR’s signals. MyD88-dependent

pathway culminates in the activation of both nuclear factor kappa-B

(NF-kB) and mitogen-activated protein kinase (MAPK) to

stimulate pro-inflammatory cytokines, while the TRIF-

independent pathway culminates in the activation of NF-kB and

interferon regulatory factor (IRF) to produce type I IFN and pro-

inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, tumor

necrosis factor‐a (TNF-a), and IL-12. On the other hand, TLRs can

also harm the host by causing persistent inflammation and tissue

destruction. The interaction of TLRs with viral particles leads to the

production of 1L-1b which is positively associated with the

immunopathological consequences, including death. TLR4 may

contribute significantly to the pathogenesis of SARS-CoV-2 by

inducing aberrant hyperinflammation (31, 32).
RLRs and SARS-CoV-2

RLRs encompass three homologous members, including RIG-I

(or DEAD box polypeptide 58, DDX58), melanoma differentiation-

associated gene 5 (MDA5), and laboratory of genetics and

physiology 2 (LGP2) (33). During SARS-CoV-2 infection, RIG-1

and MDA5 are mainly involved in identifying viral RNA and

inhibiting viral replication by recognizing viral intermediate

dsRNA. Usual ly , act ivated RLRs are interacted with

mitochondrial antiviral-signaling protein (MAVS) to regulate IFN

I and III pathways (34). The activity of subsequent ISGs including

LY6E, AXIN2, CH25H, EPST1I, GBP5, IFIH1, IFITM2 and IFITM3

has been found to inhibit replication and entry of SARS-CoV-2

(35). However, SARS-CoV-2 can inhibit RLR signaling in a

deubiquitination-dependent and deubiquitination-independent

manner through its papain-like protease to interfere immune
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response (36). Noticeably, children have higher basal expression

of RIG-1 and MDA5 in upper airway epithelial cells (37), resulting

in a stronger and earlier initial antiviral response to SARS-CoV-2

than adults.

On the other hand, the conclusions of current studies are

inconsistent in the role of RLRs signaling in the viral recognition

and activity. RIG-1 is found able to recognize the 3’ untranslated

region of the SARS-CoV-2 RNA genome through the helicase

domains, rather than the canonical C-terminal domain of RIG-I,

and directly abrogate viral RNA-dependent RNA polymerase

mediation of the first step of replication in a type I/II interferon

(IFN)-independent way (38). In contrast, another study has

concluded that RIG-1 and MDA5 can initiate an antiviral state by

increasing the expression of cytokines and interferon (IFN)-

stimulated genes (ISGs), such as CCL5 and IFN-b (39). However,

the IFN-b expression is not found to be affected in another study

when RIG-I is silenced in Calu-3 cells. MDA5 and LGP2 are found

to primarily regulate IFN induction in response to viral infection by

screening 16 related sensors (34).
NLRs and SARS-CoV-2

There are four main types of NLRs: NLRP1, NLRP3, NLRC4

and AIM2. The present studies are organized around their roles in

SARS-CoV-2 infection. The elevated NLRC4 in zebrafish could

promote the antiviral response and regulate the MDA5-MAVS and

TRAF3-MAVS complexes, thereby modulating the transcription of

type I IFNs and interferon-stimulated genes (ISGs) (40). In contrast,

when blood monocytes are infected, NLRP3 and AIM2 should be

activated, leading to pyroptosis and cytokine induction (41). Highly

expressed NLRP1 often leads to more complications of systemic

cardiovascular diseases compared with MERS and SARS (42).
FIGURE 1

Innate and adaptive immunity and predisposing factors. In this review, we discuss the three major PRRs signaling response including TLRs signaling,
RLR signaling and NLR signaling of innate immunity and T and B cells of adaptive immunity. We then highlight the role of age, sex, micronutrients
and comorbidities in the predispositions to SARS-CoV-2.
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Among them, NLRP3 is the best studied inflammasome, which

consists of a leucine-rich repeat (LRR), a central nucleotide-binding

domain (NACHT), a pyrin domain (PYD) and a caspase

recruitment domain (CARD). Normally, the formation of the

NLRP3 inflammasome requires two steps. The first step is the

induction of NF-kB, activated by various PAMPs and DAMPs,

resulting in the elevated pro-IL-1b, pro-IL-18 and NLRP3. The

subsequent signals are derived from various inducers, among which

potassium (K+) efflux is the necessary trigger for NLRP3

inflammasome assembly (43). Once activated by these signals,

NLRP3 is oligomerized and assembled with apoptosis-associated

speck-like protein containing a CARD (PYCARD, also known as

ASC) and pro-caspase-1 (44).

Several SARS-CoV PAMPs derived from ORF3a, ORF8b, E

protein and viral RNA, can activate the NLRP3 inflammasome (45).

In human very small embryonic-like stem cells (VSELs) and

hematopoietic stem cells (HSCs), NLRP3 inflammasome assembly

can also be initiated by the interaction of ACE2 with S protein and
Frontiers in Immunology 04
N protein of SARS-CoV-2. DEAD-box helicase 3X (DDX3X),

vimentin, and macrophage migration inhibitory factor (MIF) play

a significant role in activating NLRP3 formation during SARS-CoV-

2 infection (44). A co-immunoprecipitation analysis suggested that

DDX3X might integrate the central NACHT domain of NLRP3 to

promote its assembly, although more direct evidence is required.

Vimentin has been suggested to bind the LRR domain of NLRP3 to

interact with signaling molecules. Less IL-1b and IL-18 are secreted

in the MIF -/- mice and cells, but the MIF inhibitors were found in

some studies to have no effect on NLRP3 production (46).

However, uncontrolled NLRP3 inflammasome can trigger

excessive IL-1b and other inflammatory cytokines, leading to the

cell death by pyroptosis (47, 48). Excessive mature IL-1b can

stimulate systemic inflammatory responses, resulting in the

release of large amounts of cytokines, including IL-6, tumor

necrosis factor-a (TNFa), interferon (IFN)-a, IFN-b. NLRP3
inflammasome genetic variants are associated with severe

COVID-19-related disease (49). NLRP3 inflammasome aggregates
B

C

A

FIGURE 2

Main pathogenesis mechanisms underlying TLRs (A), RLRs (B), NLRs (C) signaling. PRRs on the cell surface and endosomal membranes and in the
cytosol detect SARS-CoV-2 antigens to activate innate immunity signaling pathways. TLR2 and TLR4 can signal through MyD88 to activate NF-kB
and MAPK signaling pathways to generate proinflammatory cytokines. TLR4 and TLR3 can signal TRIF to activate IRF3 and induce type I IFN
expression. TLR7/8 and TLR9 can signal through MyD88 to activate NF-kB and IRF to induce IFN I production and inflammasomes.
Hyperinflammation leads to pathogenesis. RLRs sense viral RNA and engages IRF3 to produce IFNs. The NLRP3 inflammasome is assembled
following sensing of spike (S) and nucleocapsid (N) proteins, viral RNA, and open reading frame 3A (ORF3A). This assembly leads to the production of
interleukin (IL)‐1b. Overall, the delay or overactivation of these three signaling can drive COVID‐19 pathology.
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pulmonary injury in ARDS-related patients. This hyper-expression

of NLRP3 inflammasome may be due to the impaired

mitochondrial function and over-generation of reactive oxygen

species (mtROS), especially in elderly population, leading to the

over-activation of classical activated macrophage (M1) (50). In

SARS-CoV-2 infected hACE2 mouse models, those orally

administered the NLRP3 inhibitor had significantly decreased

microglial inflammasome activation and higher survival rate,

compared with those in untreated groups (51). Therefore,

blocking NLRP3 pathway is considered feasible in drug therapy

to attenuate cytokine release in patients (52). Probiotics can also be

suppressed the NLRP3 inflammasome without affecting normal

immune function (53).
Adaptive immune system

Abundant evidence reveals that B cells (antibody producing

cells), CD4+ T cells (helper T cells), and CD8+T cells (killer cells) all

contribute to the control of SARS-CoV-2 (54, 55) (Figure 3). As the

intricate interplay between the host background and key molecules

in the adaptive immunity can influence the magnitude, longevity

and the protective and/or pathological disposition of host immune

response, we discuss the T and B cell immune events and span of

long-lasting immunity after SARS-CoV-2 infection here.
Response of B cells to
SARS-CoV-2 infection

Humoral immune responses to SARS-CoV-2 appears to be

induced at the onset of COVID-19. Formulation of immunologic

memory requires two steps. The initial exposure to a viral pathogen

elicits a plasmablast response to induce low-affinity antigen-specific

B cells (56). Then, the CD4+ follicular helper T (Tfh) cells and B

cells in the secondary lymphoid tissues facilitate antibody affinity

maturation and isotype switching in a complex manner that

generates long-term immune protection (57). It is noteworthy
Frontiers in Immunology 05
that the production of neutralizing antibodies by B cells is

relatively fast and easy, as these antibodies are present in both

heavy and light chain forms and almost no somatic hypermutation

occurs. Unlike previous viral infections, including Dengue and Zika

virus, serum IgG responses to SARS-CoV-2 occur at approximately

the same time as serum IgM and IgA, usually within 7-10 days

following the infection (55). IgG antibodies to the RBD domain are

positively associated with anti-S neutralizing antibody titers, which

have demonstrated little to no decline over 75 days after symptom

onset (58). IgG antibody titers are relatively robust for at least 5

months after infection (59), which is associated with a significantly

reduced risk of reinfection (60). IgG antibodies are also found to

decline from 5–7 to 34–42 weeks, while 16.7% of patients are

seronegative for IgM antibodies after 8-11 weeks (61). Circulating

antibody levels may be related to many elements, such as the decline

in response, the magnitude of the peak response, the subtypes of

antibodies, and the relative contribution of short-lived and long-

lived plasma cells (13, 55). Besides, patients with more severe

symptoms often have higher peak neutralizing antibody titers

(62), as high levels of viral antigen in patients tend to induce

higher antibody titers. However, antibody titers in some patients are

incredibly low, implying that there may be other ways for the virus

to respond in adaptive immunity. Another study has found that

symptomatic patients tend to become negative for antibody earlier

than asymptomatic patients (63). More studies are needed to

characterize the duration of antibody response between

symptomatic and asymptomatic patients for the long-lasting

immune response.

Given the high homology of SARS-CoV-2 with other human

coronaviruses (HCoVs), it is hypothesized that these viruses may

induce cross-reactive immunity, including HCOV-HKU1, HCOV-

OC43, HCOV-NL63, HCOV-299E, Middle East respiratory

syndrome coronavirus (MERS-CoV), and SARS-CoV. This pre-

existing immunity may affect COVID-19 disease outcome (64).

Understanding this immune process can allow us to identify

conserved immune epitopes and facilitate vaccine development

against SARS-CoV-2 and even future novel pandemic

coronaviruses (65). Cross-reactive antibodies are evident in
FIGURE 3

The primary components of adaptive immunity during and after infection. The ongoing adaptive immunity to viral infections consists of three main
parts: virus-specific CD4+T cells, CD8+T cells and antibodies. After infection, the immune memory is subsequently made up of memory B cells,
antibodies, virus-specific CD4+T cells and CD8+T cells.
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samples from SARS-CoV-2-unexposed individuals, including

cross-reactivity of SARS-CoV-2 IgG antibodies with all four spike

proteins of SARS-CoV, MERS-CoV, HCoV-OC43, and HCoV-

HKU1 (66). Similarly, an analysis of 350 SARS-CoV-2-uninfected

individuals displayed that the neutralizing antibody from

uninfected donors might target the S2 subunit, rather than the

RBD and the S1 subunit (67). Memory B cell populations of HCoVs

have also been reported to possess cross-reactive immunity. Nine

monoclonal antibodies isolated from the memory B repertoire of

SARS-CoV samples showed potent cross-neutralization to SARS-

CoV-2, eight of which targeted the domain that binds to ACE2 (68).

Another cross-reactive neutralizing antibody specific to the S2

subunit of the S protein has also been identified from the pre-

pandemic period (69). However, sera from recovered SARS patients

are found to have the modest neutralizing activity against SARS-

CoV-2 (70). Therefore, the cross-reactivity of antibodies from past

coronaviruses (CoVs) to SARS-CoV-2 warrants further study.
Response of T cells to
SARS-CoV-2 infection

SARS-CoV-2 triggers the stimulation and recruitment of CD4+

and CD8+ T-cells which can control intracellular pathogens and

eliminate virions. T cells mainly target S protein, M protein, N

protein and non-structural protein (including NSP3 and NSP4),

and ORF3a protein (71). SARS-CoV-2-specific CD4+ T cells usually

differentiate into a series of helper cells and effector cells, including

type1 helper T cells (Th1), Th17, follicular helper T cells (Tfh),

regulatory T cells (Treg), and CD4+ cytotoxic T cells (CD4+ CTL)

(72), which can be detected 2 - 4 days after the onset of the disease.

Early cytotoxic CD8+T cells usually appear within 7 days and then

kill infected cells. It is crucial to have a deeper understanding of

their functions in the immune response to SARS-CoV-2, which will

provide information for future studies of cellular immunity.

Delayed or overactivated T cell immune response can cause the

severity of COVID-19. Deceased COVID-19 patients are

manifested by impaired Tfh function and germinal center

development, implying a significant role of Tfh cells in the

recovery from COVID-19 (73). In macaques treated with a

vaccine or natural virus, the absence of T cells delays virus

clearance (74). CD4+PD-1CD57+ exhausted T cells are found in

COVID-19 patients (75). On the other hand, the expression

difference of CD4+T cells and CD8+T cells may be observed

between severe and mild patients. The levels of IFN-gand TNF-

ain CD4+T cells are lower in the severe group than in the mild

group, where the levels of granzyme B and perforin in CD8+T cells

are higher in the severe group than in the mild group (76), implying

that SARS-CoV-2 infection may impair CD4+T cells and over-

activate CD8+T cells in different COVID-19 status. However,

CD4+T cells are observed to be high in the lungs of some severe

COVID-19 patients, and CD4+ T cells expressing CD25 secrete the

protease furin and facilitate the entry of SARS-CoV-2 (77). Overall,

T cell immune response is found to be stronger in patients with

more severe infection (78). In the last stages of severe COVID-19, T

cells has a higher degree of proliferation, activation, and cytotoxicity
Frontiers in Immunology 06
(79). The overstimulation of combined CD8+ T, Th1, Th17 and NK

cells also induce additional cytokines to target virus-infected cells,

which lead to tissue damage (22).

There are six HCoVs that have relative amino acid conservation

with SARS-CoV-2, including SARS-CoV-1, MERS-CoV, HCoV-

OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, and

therefore their T cell epitopes may cause relative clinical

protection from SARS-CoV-2. Most studies have found this

cross-reactivity response (71, 80, 81), displaying that SARS-CoV-

2-reactive T cells, which originate from previous exposure to the

other coronaviruses have been found in unexposed individuals.

Besides, a stronger cross-reactivity is positively associated with

superior cellular immunity and better clinical outcomes (82). The

contributions of these four coronaviruses to T-cell cross-reactivity

remain undefined and the molecular mechanisms for cross-reactive

recognition of SARS-CoV-2 is still unclear (83). Among HCoVs,

SARS-CoV-1 andMERS-CoV are more homologous to SARS-CoV-

2 but less prevalent, while the other four coronavirus diseases,

HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E, are

less similar to SARS-CoV-2 but more widely spread (84). The

phenomenon of this cross-reactivity has been suggested to result

from exposure to these four more common human coronaviruses,

as they circulate more widely in humans, which helps us better

understand the clinical types and manifestations of COVID-19 (85,

86). Noticeably, children without previous SARS-CoV-2 infection

mount higher levels of cross-reactive antibodies to subunit S2 of

spike protein than adults (87), implying that children may have a

stronger cross-reactivity response to promote viral clearance.

Although the reason why the cross-reactivity is related to age

remains unclear, these findings may help guide the design of

pediatric vaccination regimens (88).
Response of B and T cells following
COVID-19 vaccination

The waning of humoral immunity over time suggests that mass

vaccination may be a key strategy to control the COVID-19

epidemic. The current vaccines include Pfizer BNT162b2,

Moderna mRNA-1273 and ChAdOx1 nCoV-19. After second

dose of BNT162b2, the vaccine efficacy retains 95% at 7 days to 2

months, decreasing to 90% at 2-4 months and 84% at 4-6 months

(89). The efficacy of the third dose of the BNT162b2 vaccine has

been reported to be 95.3% (90). The two-dose regimen of Moderna

mRNA-1273 is 94.1% effective in preventing symptomatic SARS-

CoV-2 infection (91). After seven months, a neutralizing effect of

Omicron has been detected in only 55% of participants (92). An

efficacy of 93.2% against COVID-19 has been observed in people

vaccinated with the booster after 5.3 months of follow-up (93). The

effectiveness of ChAdOx1 nCoV-19 is about 72.8% in subjects aged

18-64 years and 82.5% in subjects aged 64 years and older (93).

Specific-CD4+ cells and CD8+T cells are commonly used to evaluate

the effectiveness of vaccines as a durable antibody response requires

coordinated T and B lymphocyte interactions within lymphoid

tissue germinal centers to produce long-lived plasma cells and

switched memory B cells (55).
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A vaccine can facilitate the immune response of B cells through

the following pathways (94): (1) ongoing antibody somatic

mutation; (2) clonal turnover of memory B cells; (3) development

of monoclonal antibodies targeting RBD mutations. mRNA

vaccines can trigger a stable class-switched memory B cell (MBC)

response, which is significant in inducing a memory recall upon re-

exposure to SARS-CoV-2. The MBC response can be further

enhanced by administration of the second dose (95). A single

dose of the BNT162b2 or the mRNA-1273 vaccine in seropositive

patients induces the same IgG titers as seronegative individuals

receiving two doses of vaccine (96). Subjects receiving three doses of

an mRNA vaccine have a more effective memory B cell repertoire

(97). Therefore, the booster may be required to prolong antibody

response time (55). However, there is no increase in antibodies or

the B cell memory response after the second dose in those

previously infected individuals (98). On the other hand, there is

concern that neutralizing antibodies (Nabs) to SARS-CoV-2 may

decline over time and that some Nabs may paradoxically enhance

SARS-CoV-2 infection by promoting syncytium formation (57).

Vaccine recipients have been shown to recover fewer high affinity

mature MBCs and to respond less efficiently to variants of concern

(VOCs) than recovered patients (99). Therefore, more longitudinal

studies are required to investigate the duration of vaccine-induced

antibody titers.

The vaccine-induced immune response can induce relatively

robust and durable T cell responses against the virus, manifested by

activated CD4+ T cells and antigen-specific CD4+T cells (100). After

booster vaccination, S1-specific T cell responses are generated and

increase in one month, begin to decrease slightly after four months,

but remain stable for seven months (101). The S-specific Tfh cells

peak after the second dose and persist for at least six months (102).

Vaccinated individuals have also been reported to develop higher

levels of CD4+T cell activation than recovered COVID-19 patients

(103). Spike-specific CD4+ and CD8+ T cells are elevated by 5.9 and

2.7 times, respectively, after the third dose (104). Notably, patients

treated with CD20 B-cell-depleting therapy have a significantly

reduced T cell immune response after the third booster, compared

with healthy controls (105). Although the T cell response has been

considered independent, there remains a gap in the knowledge of

the association among the B cells, neutralizing antibodies, and T

cells in the vaccine-induced immune response. A recent related

study has found that previously infected people with a single dose of

vaccination produce more specific memory B cells and distinct

types of SARS-CoV-2 spike-specific CD4+T cells expressing IFN-g
and IL-10, compared with the uninfected individuals (106). It is

hypothesized that T cell activation may be delayed and terminated

in the absence of B cells.
Immunotherapy against COVID-19

Isolation and close observation may be preferred treatment for

asymptomatic SARS-CoV-2 carriers, as antiviral drugs are not

found effective in improving viral clearance on asymptomatic

infections (107), and even have side effects, such as liver

impairment (108). For some severe patients, numerous
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immunotherapeutic interventions are under investigated to

identify the most efficacious regimen (109).

In addition to antiviral drugs (remdesivir, molnupiravir, PF-

07304814, ribavirin, favipravir, nafamostat, camostat, and

aprotinin) (110–112), mAbs are therapeutic options, which can

disrupt the interaction of the RBD of the S1 subunit in the Spike

protein with ACE2 (113), resulting in reduced viral load and

hospitalization rates. Typically, mAbs isolated from the B cells of

recovered COVID-19 patients are potential therapeutic agents. For

instance, S230 (114), CR3014 (115), and 80R (116) are three SARS-

CoV neutralizing monoclonal antibodies that can also bind to the

SARS-CoV-2 RBD. Currently, the FDA has granted emergency

approval for the mAb combinations bamlanivimab with etesevimab

and casirivimab with imdevimab (117). Treatment with the

subcutaneous casirivimab and imdevimab antibody combination

significantly reduces the incidence of symptomatic infection in

asymptomatic respondents (118).

Increased proinflammatory cytokines such as IL-1, IL-2, IL-6,

IL-7, IL-10, are frequently observed in many COVID-19 patients

(119), which is closely related to the acute respiratory distress

syndrome (ARDS), multiorgan failure and other severe

symptoms. Recombinant IL-1 receptor antagonist (rIL-1Ra,

Anakinra) is used to dampen IL-1 induction in severely ill

patients (120). Other potential therapeutic targets (121) are IFN-g
(emapalumab, anti-IFN-g monoclonal antibody) and granulocyte–

macrophage colony-stimulating factor (GM-CSF) [TJ003234 and

gimsilumab, Anti-GM-CSF monoclonal antibodies (122)], IL-6

[siltuximab, chimeric monoclonal antibody (123)]. Colchicine

may also be appropriate in the treatment of COVID-19, as it can

inhibit neutrophils, IL-1b and the inflammation/thrombosis

interface (124). The application of these anti-inflammatory

therapies is helpful in preventing severe outcome.

Other immunotherapies, such as convalescent plasma therapy

(125), intravenous immunoglobulin (IVIG) therapy (126),

mesenchymal stem cells (MSCs) therapy, are also under

investigation for the treatment of COVID-19 (127). Moreover, the

efficacy of these therapies against Omicron has not yet been proven

and more clinical results are required to draw conclusions. Future

immunotherapy may also focus on the ACE2-targeting antibody

which has been reported to suppress Omicron (128).
Virus immune evasion strategies

Insight into viral immune evasion is critical to understanding

the pathogenesis of the virus and the challenges facing the immune

system and vaccines. SARS-CoV-2 has evolved countermeasures

against innate defenses and employed a combination of evasion

strategies. Emerging evidence suggests that SARS-CoV-2 infection

leads to dysregulation of several types of IFNs which may enhance

viral infection. ORF9b downregulates the type I IFN response by

inhibiting the IkB kinase alpha (IKKa)/b/g-NF-kB signaling

pathway (129). Age-related IFN dysregulation is also observed in

COVID-19 patients, which may explain the susceptibility of elderly

patients to SARS-CoV-2 (130). The more proportion of M1-like

alveolar macrophages (AMs) may facilitate viral spread and pro-
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inflammatory responses (131–133). Besides, AMs are even

incapable of detecting SARS-CoV-2 and producing IFN response

compared to Influenza A virus and Sendai virus (134). SARS-CoV-2

also targets pathways for NK cell receptors, and the signaling of

their ligands, apoptosis to escape NK cell-mediated clearance (135).

However, there is still controversy about the expression of NK cells

in the severe patients. NK cells are found to be decreased in

COVID-19 patients (136, 137), while another study detects

adaptive NK phenotypes in patients with severe disease (138). In

COVID-19 infection, increasing neutrophil numbers and

recruitment to lungs are commonly considered to be related to

the severity and poor prognosis (139). However, the research on

how neutrophils respond to the SARS-CoV-2 is relatively scarce.

Different VOCs may differ in the activation intensify of neutrophils,

which may be explained by the various severity degree of VOCs

(140). Moreover, ORF8 can bind monocytes to decrease the

capacity of antibody-dependent cellular cytotoxicity (ADCC)

(141). These evidences imply that the aberrant activation and

concentration of neutrophils may dysfunction immune system

and promote the virus immune escape.

T and B cells normally target viral antigens via the major

histocompatibility complex (MHC) on antigen presenting cells

(APCs), thereby activating the adaptive immunity (142).

However, this immunity is somewhat fragile, as even a single

mutation in the epitopes of CD8+ and CD4+T cells is sufficient to

induce cellular immune escape (54, 143). SARS-CoV-2 has

developed several strategies to impair T cell participation: (1)

accelerating disruption or downregulation of MHC-1 via ORF8

mutant proteins (144); (2) weakening cytotoxic T lymphocyte

(CTL) response via mutations of the CD8+ T-cell epitope (145,

146). (3) destructing T-cells and lymphoid organs and causing

lymphopenia (147). Mutated epitopes may no longer be recognized

by pre-existing CD8+ T cell immunity, as mutations in SARS-CoV-

2 mainly impaired CD8+ T cell recognition (148). As for B cells,

mutations in the spike protein can significantly affect the efficacy of

antibodies, but studies on how the virus escapes B cell antibodies

need to be further explored.
Cytokine storm syndrome

Some COVID-19 patients experience sudden and rapid

deterioration due to cytokine storm syndrome (CSS). CSS

includes lude familial/primary and secondary hemophagocytic

lymphohistiocytosis (HLH), macrophage activation syndrome

(MAS), infection-associated hemophagocytic syndrome, cytokine

release syndrome (CRS), and cytokine storm (CS) (149). Innate and

adaptive immune cells are involved in the genesis of CSS and IFN-g,
IL-1, IL-6, TNFa, and IL-18 are considered to be the major elevated

cytokines (150). HLH is a potentially life-threatening disorder

characterized by uncontrolled activation of cytotoxic T cells, NK

cells and macrophages (151). The pathogenesis of MAS is attributed

to elevated pro-inflammatory cytokines, most particularly IL-6, IL-

1b and IL-18 (152). Over-activated macrophages induce pro-
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inflammatory cytokines, such as TNF a, IL-1, IL-6, and IL-18,

and trigger the cytokine storm. Lung macrophages in severe

COVID-19 patients may cause local inflammation by recruiting

monocytic cells and neutrophils (153). Subsequently, the

macrophage activation leads to the expansion and activation of T

cells, particularly CD8+ cytotoxic T cells, which in turn promote

further macrophages activation (154). Excessive IL-6 can

downregulate NK cells, which lowers the level of perforin, impairs

the immunomodulatory effect of CD8+ T cell IFN-g expression and

the ability to eliminate viral triggers (155, 156). Neutrophils

produce neutrophil extracellular traps, which facilitates the

cytokine storm (150). Mast cells, neurons, glial cells, and

endothelial cells are also involved in the induction of

inflammatory cytokines (157). Lymphopenia is related to reduced

total T cells, CD4+ T cells, CD8+ T cells, NK cells, and elevated Th17

cells (158, 159). Increased IL-6 can promote the differentiation of

Th17 cells and amplify cytokine storm during viral infection

(160).Th1 cells also participate in the cytokine storm by

producing large amount of IFN-g (161). It is noteworthy that

multisystem inflammatory syndrome in children (MIS-C) is a

unique challenge of this pandemic (162), characterized by

overwhelming systemic inflammation, fever, hypotension, cardiac

dysfunction and neurological complications (163). The incidence of

MIS-C in Omicron is less frequent (162), possibly due to enhanced

host immunity after COVID-19 vaccination (162). However, the

cause of this postinfectious syndrome remains unclear. This

possible mechanism is due to a poor antibody response upon first

exposure to SARS-CoV-2 (164) and circulating low levels of SARS-

CoV-2 replication (165).
Asymptomatic infection

About 7.9% -61.0% persons remain asymptomatic when

receiving positive PCR tests (166), possibly due to the evolution

of SARS-CoV-2 (167) and increased coverage of vaccines (168). A

single cell RNA sequencing (scRNA-seq) has revealed the enhanced

epithelium barrier function, mild inflammation and local CD8+ T

cell response in asymptomatic carriers, which may also be the

reason for the clearance of SARS-CoV-2 without causing disease

(169). Children and females are found to be more likely to be

asymptomatic and act as unknown carriers (170). Usually, early

development of a cytotoxic CD8+ T cell response is associated with

milder disease (171) and early moderate type I IFN response may

control SARS-CoV-2 earlier (172). Therefore, a stronger initial

immune response may be positively related to asymptomatic

status. It is noteworthy that asymptomatic individuals are not

characterized by weak antiviral immunity; on the contrary, they

have similar frequencies of SARS-CoV-2-specific T cells as

symptomatic individuals (173). SARS-CoV-2-specific T cell

responses also generate a higher level of IFN-g and IL-2, implying

the important role of IFN-g in the early stage of antiviral infection

(173). Asymptomatic patients with increased levels of XCL1, XCL2

and IFN-g have a significant increase in CD56briCD16- NK cells
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than do moderate and severe subjects. In contrast, the SARS-CoV-2

RBD-specific memory B response in asymptomatic patients is less

frequent than that in symptomatic individuals (174). In some cases,

the viral load of asymptomatic persons is similar to that of

symptomatic persons, implying similar viral transmission ability

(175, 176).
Main predisposing factors of the host

Host factors, including age, gender, genetics, and comorbidities,

play a significant role in susceptibility to viral infection and disease

pathogenesis. Understanding factors that make host susceptible to

SARS-CoV-2 can provide new ideas for its pathogenesis and

precision treatment. As fewer studies focus on the effect of

susceptible factors on COVID-19, we select factors with more

literature for discussion.
Age and sex

The effect of age and susceptibility to COVID-19 is still

insufficient. The relationship between age and ACE2 expression

is controversial in several studies (177–179). Age-related

immunosenescence is thought to be the main cause of

increased susceptibility to infection, such as age-related decline

of de novo T cell responsiveness (180–182). Infant and young

children usually have milder clinical courses, but more

vulnerable to bacterial and viral infections (183). Other

elements, such as age-related physiological and anatomical

changes in the respiratory tract with the manifestation of

ciliary dysfunction and weakened respiratory muscle strength,

may also make the elderly more susceptible to SARS-CoV-2

infection (178).
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Recent studies have reported that men are more affected by

COVID-19 than are women (184). Outbreaks of SARS and MERS

have also shown a male predominance in disease susceptibility

(185). Male mice were also found to be more susceptible to SARS-

CoV-2 infection without the confounding effects of smoking (186).

Sex differences occur in immune response due to distinct genes and

hormones (187). Testosterone in men has been shown to inhibit the

expression of pro-inflammatory factors, including IL-1-b, IL-6, C-
reactive protein (CRP), and TNF-a (188–192), which delays an

effective immune response. The SRY gene may increase male

susceptibility to COVID-19 (193). The upregulation of TMPRSS2

by androgens may also explain the increased susceptibility of males

to COVID-19 (194). On the other hand, several studies have

supported the immunologic protective effects of estrogen in

females (195–200), which may be explain why females are less

susceptible to SARS-CoV-2 infection. There are several pathways by

which estrogen may impact the immune response: (1) induce

pulmonary vasodilation by attenuating the vasoconstrictor

response to various stimuli, such as hypoxia (200). (2) lower

ACE2 and TMPRSS2 levels to alleviate infection (201). Overall,

the sex differences in the susceptibility to COVID-19 need larger

cohorts to reduce sample selection bias.
Micronutrients

Moderate vitamins and minerals usually play a protective factor

in biochemical processes and have anti-inflammatory, antioxidant,

antiviral and antibacterial activities, while malnutrition and

undernourishment can impair immunity and increase

susceptibility to infection (Table 1).

Vitamin A may help clear SARS-CoV-2 by maintaining the

optimal immune functions and prevent lung infection by

maintaining the integrity of the mucosal barrier (202, 203).
TABLE 1 Role of micronutrients in COVID-19 susceptibility.

Nutrient Function against COVID-19 Deficiency effect on
COVID-19 susceptibility References

Vitamin A
Maintains the structural barrier of mucosal cells in the skin, respiratory tract, and

digestive tract
Maintains the optimal function of immune cells in innate and adaptive immunity

Increases susceptibility (202, 203)

Vitamin C

Stimulates oxygen free radical scavenging activity in the skin
Enhances epithelial barrier function

Inhibits the expression of ACE2 Limits the entry of SARS-CoV-2 in human small
alveolar epithelial cells

Increases susceptibility (204, 205)

Vitamin D
Inhibits SARS-CoV-2 replication in the host

Affects the synthesis of cytokines
Lowers ACE2 receptor expression

Increases susceptibility (206, 207)

Vitamin
B12

Inhibits NSP12 polymerase activity of SARS-CoV-2 Increases susceptibility (208)

Zn
Inhibits the enzyme RNA polymerase

Maintains the integrity of the immune barrier
Improves the cytotoxic activity of NK cells

Increases susceptibility, particularly in children
and the elderly

(209, 210)

Fe Participates in the activation of immune cells Increases susceptibility (211, 212)
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Vitamin C may protect humans from SARS-CoV-2 by limiting viral

entry into human small alveolar epithelial cells, stimulating oxygen

free radical scavenging activity in the skin, and improving epithelial

barrier function (204, 205). Vitamin B12 can suppress the NSP12

polymerase activity of SARS-CoV-2 (208). Vitamin D can limit

SARS-CoV-2 replication and prevent respiratory viral infections, by

down-regulating the ACE2 receptor, reducing cytokine storm

symptoms and lung inflammatory response (206, 207). Zinc

supplementation has been reported to reduce infection, while its

deficiency lead to humoral and cell-mediated immune dysfunction

and increase susceptibility (209, 213). Iron is an important

component of enzymes involved in immune cell activation, and

its deficiency cause increased susceptibility to infection, especially

with intracellular pathogens (211, 212).
Comorbidities and associated diseases

Obesity, a global epidemic, is positively associated with SARS-

CoV-2 infection (214). Virions may interact with the excessive

renin-angiotensin-aldosterone system (RAAS) and insulin

resistance (IR) in obese patients, leading to increased infection via

ACE2 (215). The elevated adipose tissue in obese people also results

in increased ACE2 expression, facilitating viral entry and spread to

host cells (216). Other studies have suggested that obesity may delay

the immune response and increase the likelihood of the

infection (217).

As a leading chronic disease (218), diabetic patients are more

likely to be infected with SARS-CoV-2 (219, 220). ACE2 is highly

expressed in patients with diabetes, especially those taking either

ACE inhibitors or angiotensin II type-1 receptor blockers (ARBs)

(221). Studies have shown that the diabetes status impairs the

chemotactic function of neutrophils and causes the respiratory

microangiopathy to increase susceptibility to lower respiratory

tract infections (222, 223). Elevated plasmin levels are also a

common feature in patients with diabetes, which may enhance

the infectivity of SARS-CoV-2 by accelerating the entry, fusion,

replication, and release of SARS-CoV-2 in respiratory cells (224,

225). Diabetes also impairs the immune system by premature

recruitment of neutrophils and macrophages, reduced NK cell

activity, Th1 cell-mediated immune activation delay and

hyperinflammatory response, leading to delayed virus clearance

(226–232).

Patients with asthma are susceptible to SARS-CoV-2, resulting

in severe asthma exacerbation (233, 234). One possible reason is the

depressed type-II IFN immune activity, characterized by reduced

interferon synthesis (235–237). In contrast, the expression of ACE2

and TMPRSS2 shows no difference between asthmatic patients and

healthy donors, which may not be identified as an influencing factor

(238). More researchers are focusing on the outcome of patients

with chronic obstructive pulmonary disease (COPD). SARS-CoV-2

infection may also exacerbate COPD, which is characterized by

severely reduced ciliary function and worsening symptoms (239).
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Interestingly, smokers with COPD patients had higher ACE2 levels

(240). However, smoking may be a confounding factor in this study,

so further studies are needed.

Patients with systemic autoimmune diseases are susceptible to

severe infection with COVID-19 (241), mainly due to attenuated

adaptive and innate immune responses and continuous use of

immunomodulatory drugs. Patients with multiple sclerosis are

twice more likely to be infected with SARS-CoV-2 and require

hospitalization as those without the disease, which may be due to

the associated etiology and drug therapy management (241–243).

Treatment with these immunomodulatory drugs, including IFN-b,
g l a t i ramer ace ta te , and ter iflunomide , can improve

immunosuppression and reduce predisposition to viral infection,

while the use of dimethyl should be used with caution as it may

cause lymphopenia, and increase the potential threat (244).
Summary and outlook

We have attempted to discuss the core issues of innate and

adaptive immune responses to the novel SARS-CoV-2. The current

mechanisms of PRRs, including TLRs, RLRs and NLRs in viral

recognition and effective innate immunity mediation against

COVID-19 and their immunopathology towards COVID-19 are

comprehensively concluded in this paper. Further mechanistic

insights into the associations between the magnitude of clinical

manifestations and innate immunity are a high priority.

Meanwhile, T and B cells are elicited by SARS-CoV-2 antigens to

eliminate the virus and generate protective antibodies. The majority

of studies have shown that the limited level of antibody titers after a

long period. The T and B cell immune events and their span of

durable immunity following vaccination are unified in different

findings and therefore studies of SARS-CoV-2-specific CD4+T cells,

CD8+ T cells and antibodies together in larger cohort of patients at

different disease phases are needed to be further carried out. Age

differences concerning adaptive immunity in COVID-19 also need to

be further investigated. Both cross-reactivity of antibody and T cell

immune responses have been demonstrated in many studies, and the

further research about cross-reactivity of children against COVID-19

may support pediatric vaccination regimens. We then highlight the

possible mechanisms by which SARS-CoV-2 evades the immunity to

gain a deeper understanding of the viral pathogenesis and to discover

early therapeutic interventions. We also summarize the clinical

symptoms of cytokine storm syndrome and the possible

mechanisms of asymptomatic infection. Much more research is

needed to understand the long-term effects of COVID-19 in

children. What is more, we review the current understanding of the

major host predisposing factors to COVID-19 in the limited articles.

The factors, including sex, age, micronutrients, and comorbidities

may make the host more susceptible to the virus and these

complicated interactions further expand the understanding of the

disease pathogenesis. Identification of these factors is crucial to

classify susceptible populations and carry out interventions.
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