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Alphaherpesviruses are a large family of highly successful human and animal DNA viruses

that can establish lifelong latent infection in neurons. All alphaherpesviruses have a

protein-rich layer called the tegument that, connects the DNA-containing capsid to the

envelope. Tegument proteins have a variety of functions, playing roles in viral entry,

secondary envelopment, viral capsid nuclear transportation during infection, and immune

evasion. Recently, many studies have made substantial breakthroughs in characterizing

the innate immune evasion of tegument proteins. A wide range of antiviral tegument

protein factors that control incoming infectious pathogens are induced by the type I

interferon (IFN) signaling pathway and other innate immune responses. In this review,

we discuss the immune evasion of tegument proteins with a focus on herpes simplex

virus type I.
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INTRODUCTION

Herpesviruses are divided into three subfamilies, alpha-, beta- and gammaherpesviruses, all of
which share a common viral morphology and approximately 40 conserved genes that are important
for virus production. The alphaherpesvirus subfamily has a wide range of host (1). Herpes simplex
virus 1 (HSV)-1, HSV-2, and varicella-zoster virus (VZV) belong to the human alphaherpesvirus
subfamily, while veterinary alphaherpesviruses include bovine herpesvirus (BHV), pseudorabies
virus (PRV), and waterfowl duck enteritis virus (DEV) (2).

Herpesviruses undergo two forms of replication, lytic replication, and latent infection. In
the lytic replication cycle, the virus first enters a cell, and the viral DNA begins to replicate
after the capsid DNA is released into the nucleus. Subsequently, after assembly and genome
packaging, the capsid leaves the nucleus (3). The viral particles then undergo primary envelopment
and de-envelopment at the nuclear envelope, with tegumentation and secondary envelopment
occurring in the cytoplasm. Finally, the virions leave the host by exocytosis (Figure 2) (4–6).
After some alphaherpesviruses replicate at the infection site, the nervous system is invaded by
the fusion of some alphaherpesviruses with the neuronal membrane at the end of an axon. When
alphaherpesvirus DNA enters ganglion cell nuclei, some viral particles immediately assemble into
a chromatin structure, forming heterochromatin, and resulting in latent infection (7). Not all
neuronal infections lead to chromatinization, and in some cases, neuronal infection leads to lytic
replication. The occurrence of lytic replication may depend on both viral and cellular factors
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that are differentially expressed in distinct types of neurons.
Epithelial cells are the primary sites for alphaherpesvirus
infection and are typically asymptomatic. Infected humans
or animals become carriers without symptoms, with the
infection becoming detectable only when progeny viral particles
intermittently leave the host cells through germination,
exocytosis or induction of apoptosis, making herpesviruses
difficult to monitor and control (3, 8).

During latent infection, the viral genome remains in the
nucleus, wherein new viral particles accumulate due to periodic
reactivation of the lytic replication cycle and are transported
along axons into epithelial cells, resulting in symptomatic or
asymptomatic shedding (1, 9–12). Lytic replication releases
infectious particles that elicit a strong immune response, whereas
in latent infection, viruses use various strategies to weaken the
presentation of antigens and prolong the lifespans of host cells
(3, 13). This approach is highly beneficial to the survival of viruses
and the establishment of latent infections.

Alphaherpesviruses encode ∼8 capsid proteins, 23 tegument
proteins (Table 1), and 14 envelope proteins (14, 15). The
tegument is located between the capsid and the envelope
(Figure 1). The alphaherpesvirus tegument is a self-supporting
structure consisting of thousands of densely packaged protein
molecules. A proteomic analysis of extracellular HSV-1 by mass
spectrometry identified 23 types of virus-encoded tegument
proteins as well as some host cell enzymes, chaperones and
structural proteins, some of which may be incorporated into the
tegument (14). The density of the tegument at the icosahedral
vertices of the HSV-1 capsid has been observed by cryo-electron
microscopy (cryo-EM), which revealed C-capsid-specific and
capsid-apex-specific components (16). More generally, in
different subfamilies of herpesviruses, the components are
referred to the capsid-associated tegument complex (CATC) (17).
Tegument proteins are typically designated as internal or external
tegument components depending on whether they preferentially
bind to the capsid or viral membrane during entry and exit
or on their fractionation behavior after virus decomposition
with non-ionic detergents. Although the outer tegument appears
to be amorphous, the inner layer has a partial icosahedral
order because of its close relationship with the capsid (18).
Tegument proteins promote viral replication by regulating genes
transcription, halting cell protein synthesis, and destroying host
innate immune responses. They can also provide scaffolds for
viral particles assembly and create interaction networks to link
viral capsids and envelope proteins (1, 19). In addition to the
important role of some tegument proteins in viral particles for
immune evasion, some other viral proteins are also important for
their survival, as they prompte viral replication and participate

Abbreviations: HSV-1, Herpes simplex virus 1; BHV, Bovine herpesvirus; PRV,

Pseudorabies virus; DEV, Duck enteritis virus; PRRs, Pattern recognition receptors;

PAMPs, Pathogen-associated molecular patterns; IFN, Interferon; TLRs, Toll-

like receptors; VZV, Varicella zoster virus; RIG-I, Retinoic acid-inducible gene I;

MDA5, Melanoma differentiation-associated gene 5; TBK1, Tank-binding kinase

1; cGAS, cyclic GMP-AMP synthase; DDR, DNA damage response; ISGs, IFN-

stimulated genes; NF-κB, Nuclear factor kappa B; TNF-α, Tumor necrosis factor

alpha; ZAP, Zinc finger antiviral protein; SVV, Simian varicella virus; SOCS,

Suppressor of cytokine signaling; ATM, Ataxia telangiectasia mutated.

TABLE 1 | Alternative alphaherpesvirus tegument genes and their homologs.

HSV-1/2 VZV PRV

Tegument proteins involved in innate immune evasion

UL13 (VP18.8) ORF47 UL13 (VP18.8)

UL36 (VP1-2) ORF22 (p22) UL36

UL37 ORF21 UL37

UL41 (VHS) ORF17 UL41

UL48 (VP16) ORF10 UL48

UL49 (VP22) ORF9 UL49

UL50 (dUTPase) ORF8 UL50

US3 ORF66 US3

US10 ORF64/69 /

US11 / /

RL1 (ICP34.5) / /

RL2 (ICP0) ORF61 EP0 (ICP0)

RS1 (ICP4) ORF62/71 (IE62) IE180 (ICP4)

UL54 (ICP27) IE63 UL54 (ICP27)

Other tegument proteins

UL7 ORF53 UL7

UL11 ORF49 UL11

UL14 ORF46 UL14

UL16 ORF44 UL16

UL21 ORF38 UL21

UL23 ORF36 TK

UL47 (VP13-14) ORF11 UL47

UL51 ORF7 UL51

UL55 ORF3 /

US2 / /

in the viral immune process. For example, HSV-1 UL24 (20) has
key roles in modulating innate immunity. However, this review
focuses on the innate immune escape of tegument proteins. The
mechanism by which tegument proteins facilitate innate immune
evasion remains unclear.

Pattern recognition receptors (PRRs) are recognition
molecules that are primarily expressed on the surface and in the
intracellular compartments of innate immune cells. PRRs can
recognize one or more pathogen-associated molecular patterns
(PAMPs). The type I interferon (IFN) signaling pathway plays
an important role in the innate immune response and is the first
line of host defense against viruses (21). Among PRRs, Toll-like
receptors (TLRs) were the first PAMP-detecting receptors to be
discovered. Nucleic acids are detected by TLR3, TLR7, TLR8, and
TLR9, which locate on the endosomal membrane (22, 23). TLRs
detect PAMPs and subsequently recruit downstream binding
proteins, such as bone marrow differentiation primary response
protein 88 (MyD88), MyD88 binding protein-like protein (Mal),
Toll/interleukin (IL)-1 receptor domain-containing adapter
protein (TIRAP), and Toll/interleukin, which play important
roles in the immune processes of HSV-1 infection. TLR3 can
be activated by recognizing short double-stranded (dsRNA)
and then further recruits and activates the adapter protein
Toll/IL-1 receptor (TIR) domain-containing adaptor TRIF.
Stimulation of the TLR3-TRIF signaling pathway activates
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FIGURE 1 | Structure and replication process of herpes virus. (A) Structure of alphaherpesviruses. The viral particle structure of alphaherpesviruses includes the

genome, tegument, envelope, and capsid. (B) The viral replication process of alphaherpesviruses. The viral replication process of alphaherpesviruses includes

adsorption, replication, and assembly, secondary envelopment and exocytosis. Some inspiration for this figure was obtained from previous articles (3).

FIGURE 2 | MyD88, Mal, TIRAP,TIRAP-induced IFN-β and TRAM. The formation of protein complexes of unique TBK1 and IKK inhibitors leads to activation of the

transcription factors IRF3 and IRF7 and induction of IFN-β expression. Viral proteins can degrade TLRs and interfere with TLR recognition. The ubiquitination activity of

viral proteins can inhibit MyD88, Mal, and TRAF6. A series of strategies is used for virus immune evasion. Some inspiration for this figure was obtained from previous

articles (4).

the transcription factors NF-κB and IFN regulator factor 3/7
(IRF3/7), resulting in the translocation of NF-κB and IRF3/7
into the nucleus and the production of various cytokines, such
as type I IFN (24). According to previous studies, HSV-1 can
be detected by TLR2, TLR3, TLR4, and TLR9 (25). The cellular
recognition of dsRNA or 5′-triphosphate dsRNA activates the
expression of the retinoic acid-induced gene I (RIG-I) and
melanoma differentiation-associated gene (MDA-5), resulting in
homo-oligomerization of the mitochondrial antiviral signaling
(MAVS) protein and activation of tank-binding kinase 1
(TBK1). In recent years, DNA sensors capable of detecting

cytoplasmic DNA have been identified, including cyclic GMP-
AMP (CGAMP) synthase (cGAS), IFN-γ inducible protein 16
(IFI16), DEAD-box polypeptide 41 (DDX41), DNA-dependent
activator of IRF (DAI), and several proteins involved in the DNA
damage response (DDR) (21, 26). Bacterial DNA, viral DNA,
synthetic double-stranded DNA (dsDNA) and even dsDNA
isolated from mammalian cells can be sensed in the cytosol
if their lengths exceed 40–50 bp. The key DNA sensor cGAS,
which binds to dsDNA and catalyzes the production of the
second messenger 2′3′- cGAMP. cGAMP then binds to the
binding protein stimulator of the IFN gene (STING), causing
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a conformational change in the dimerization of STING. TBK1
phosphorylates the serine at position 366 of STING and then
recruits IRF3 (27). In addition to the DNA sensor cGAS, RNA
polymerase III (POL III) also functions as a DNA sensor, and
cytosolic POL III acts as an innate PRR that recognizes abundant
foreign DNA in the cytosol. POL III transcribes the exogenous

AT-rich DNA into 5
′

-ppp RNA, which is recognized by the
cytoplasmic RNA sensor RIG-I, thereby allowing downstream
signaling via the adaptor MAVS to activate NF-κB and IRF3. The
activation of these proteins finally initiates host innate immune
responses, including IFNs and proinflammatory cytokines
(28–30). The binding of secretory IFNs to the homologous
dimer receptors type I IFN receptor (IFNAR1) and type II
IFN receptor (IFNAR2) induces the downstream Janus kinase
(JAK)-signal transducer and activator of transcription factor
(STAT) signaling pathway and antiviral IFN-stimulating gene
(ISG) transcription (24).

Human and mouse genetic studies have found that type I
IFN responses play an important role in controlling host innate
immune responses to alphaherpesvirus infection. Human with
mutations in STAT1, TLR3, or UNC-93B, whose gene products
are involved in the production or responses of type I IFNs,
are susceptible to HSV-induced encephalitis (31–34). Mouse
models have demonstrated that type I IFNs are important for
controlling acute alphaherpesvirus infection, and many gene
products encoded by HSV can antagonize host type I IFN
antiviral activity (35). Additionally, ISGs, such as ISG15 and
2′-5′-oligonucleotide synthase (OAS1), have been shown to
be important for controlling acute alphaherpesvirus infection
in mice (36, 37). Defects in TLR3 increases susceptibility
to HSV encephalitis, while impairment of POL III induces
predisposition to VZV encephalitis. This specificity may due to
the important role of TLR3 in recognizing HSV in the central
nervous system, while POL III appears to be an important
sensor for the AT-rich VZV genome (38). Carter-Timofte
et al. identified mutations in the POL III gene, located in
the subunits POLR3A and POLR3E, in two of eight patients
by whole-exome sequencing. Functional analysis demonstrated
impaired expression of antiviral and inflammatory cytokines in
response to the POL III agonist Poly (dA: dT) and increased
viral replication in patient cells compared to these features in
controls (39).

In addition to the type I IFN signaling pathway, some
other innate immune pathways are also involved (40, 41).
Chromosome breaks at specific sites caused by HSV-1 infection
interact with cellular pathways that identify and repair DNA
damage, also known as the DDR. Studies have shown that
the DDR plays an active role in antiviral activity (42, 43).
Autophagy functions in regulating the activity of specific
signals utilized by cells and can remove the threat of
intracellular pathogens and prevent the damage or accumulation
of long-lived and aggregation-prone proteins (44). Therefore,
autophagy is an important aspect of innate immunity. Moreover,
because viral infection also induces the formation of antiviral
cytoplasmic granules known as stress granules (SGs), this
process is closely associated with SG formation and type I IFN
production (45).

TABLE 2 | Tegument proteins that inhibit the TLR pathway.

Protein Virus Function References

RL2 (ICP0) HSV-1 Reduces the inflammatory

response triggered by TLR2

(48)

Decreases MyD88 and Mal (49)

US3 HSV-1 Reduces the levels of TLR3 and

type I IFNs

(50)

Inhibits TLR2 signaling by

reducing TRAF6

polyubiquitination

(51)

UL41 HSV-2 Reduces the expression of TLR2

and TLR3

(52)

IFN Induction and IFN-Dependent
Signaling Pathways
Tegument Proteins Inhibit the TLR Signaling Pathway
TLRs are type I transmembrane protein that recognize
microorganisms invading the body and activate immune
responses (46, 47) and are thus believed to play a key role in
the innate immune system. Downstream binding proteins of the
TLR signaling pathway include MyD88, Mal, TIRAP, TRIF, and
TRAM. TBK1 is ubiquitinated and autophosphorylated, leading
to activation of the transcription factors IRF3 and IRF7 and
induction of IFN-β expression (23) (Figure 2 and Table 2).

TLR2
The TLR2-dependent induction of type I IFNs occurs only
in response to viral ligands. TLR2 can directly or indirectly
promotes the synthesis and release of proinflammatory factors
and enhances antiviral activities. Studies have also shown
that infected cell protein 0 (ICP0) reduces the inflammatory
response triggered by TLR2 during HSV-1 infection (48, 53,
54). van Lint and colleagues elucidated a process in which
ICP0 promoted the degradation of TLR adapter molecules and
inhibited inflammatory responses. ICP0 reduced the TLR-2-
mediated inflammatory response to HSV-1 infection, and ICP0
expression alone is sufficient to block the expression of TLR-2
in MyD88 adapter complexes through the E3 ligase function of
ICP0 (55–57). Yao and Rosenthal found that the expression of
TLR2 in VK2 epithelial cells transfected with the HSV-2 virion
host shutoff (VHS) protein was reduced, consistent with the
findings in HEK 293 cells (52).

TLR3
TLR2 has been reported to linked to the recognition of several
DNA viruses, while dsRNA is a particularly potent nucleic
acid intermediate that activates TLR3 (58). TLR3 is capable
of inducing the expression of type I IFNs and inflammatory
cytokines after detecting the dsRNA. TLR3-deficient fibroblasts
produced much less type I IFN during HSV-1 infection than
the control group, and impaired TLR3 signaling also resulted
in high level of viral replication (59). Cellular proteasomal
activity is required for this inhibitory activity. Peri and colleagues
observed that pUS3 interferes with TLR3 recognition and MxA
induction following inhibition of type I IFN mRNA in HSV-1
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infected cells (50). Similarly, Yao and Rosenthal found that the
expression of TLR3 in VK2 epithelial cells transfected with the
VHS protein was reduced, consistent with the findings in HEK
293 cells (52).

MyD88 and mal
MyD88 is an essential adapter molecule associated with
inflammatory cytokines upon activation of all TLRs. The cascade
pathway activates the transcription factor NF-κB and promotes
the production of the proinflammatory cytokines IL-1β, IL-6, IL-
8, IL-12, and monocyte chemotactic peptide 1 (MCP-1). Another
MyD88-like protein, Mal, activates NF-kB, Jun amino-terminal
kinase (JNK) and extracellular signal-regulated kinase-1 and−2.
Mal can form homo- and heterodimers with MyD88 (60). van
Lint showed that ICP0 can also decrease the level of MyD88 and
Mal through its E3 ligase function (49).

TRAF6
The E3 ubiquitin ligase TNF receptor-associated factor 6
(TRAF6) interacts with TGF-β-activated kinase 1 (TAK1),
subsequently activatingTAK1 (61). This interaction leads to
activation of the IKK complex, which then phosphorylates the

inhibitor of κB, causing κB ubiquitination and degradation
(62). The HSV-1 kinase pUS3 can inhibit the TLR-2 signaling
pathway by reducing TRAF6 polyubiquitination, which depends
on its kinase activity before or at the stage of TRAF6
ubiquitination (51, 63).

Tegument Proteins Inhibit the RIG-I Signaling

Pathway
RIG-I and MDA-5 are members of the RIG-I-like receptor
(RLR) family (64, 65) and can identify RNA viruses in cells and
induce production of type I IFNs and immune factors (66). RIG-
I activates NF-κB and IRFs through MAVS (67). Kato’s gene
knockout experiments showed that loss of RIG-I or MAVS could
severely inhibit the innate immune response of mice, resulting in
highly increased viral replication (68) (Figure 3 and Table 3).

RIG-I and MDA-5
RIG-I and MDA-5 act as two cytoplasmic dsRNA sensors. RIG-
I primarily recognizes RNA containing 5′-triphosphate, while
MDA-5 typically recognizes dsRNAs >2,000 bp in length. RIG-
I and MDA-5 recruit MAVS to deliver signals to the kinase
TBK1 and induce IκB kinase (IKKi), which phosphorylates

FIGURE 3 | A schematic diagram of the pathogen-derived molecules used to escape intracellular RNA sensing pathways. The sensors in the pathway include RIG-I

and MDA-5, which can detect different RNA species, primarily those containing 5′ diphosphate or triphosphate or long dsRNA, respectively. Pathogen-derived

degradative or inhibitory helper proteins inhibit RIG-I activation through direct binding to block the interaction between RIG-I and MAVS and prevent RIG-I from

entering mitochondria.
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TABLE 3 | Tegument proteins that inhibit the RIG-I pathway.

Protein Virus Function References

US3 HSV-1 Interacts with and

hyperphosphorylates IRF3 to

prevent IRF3 activation

(69)

US11 HSV-1 Binds to RIG-I and MDA5 inhibits

their downstream signaling

pathway

(70)

UL36 (VP1-2) HSV-1 Deubiquitinates TRAF3 to

prevent the recruitment of TBK1

(71)

UL37 HSV-1 Blocks RNA-induced activation

by targeting RIG-I

(67)

RL1 (ICP34.5) HSV-1 Binds to and sequesters TBK1 (72)

Controls IRF3 activation by

reversing translational shutoff

and sustaining the expression of

other IFN inhibitors

(73)

UL46 HSV-1 Blocks the interaction of TBK1

and IRF3 and inhibits the

dimerization of TBK1

(74)

UL48 (VP16) HSV-1 Blocks MAVS-Pex-mediated

early ISG production

(75)

ORF61 VZV Degrades activated IRF3 (76)

ORF47 VZV Prevents IRF3 homodimerization

and subsequent induction of

IFN-β and ISG15

(77)

UL41 HSV-2 Inhibits RIG-I and MDA-5 as well

as IRF3 dimerization and

translocation

(52)

ORF62(IE62) VZV Blocks the phosphorylation of

serine residues 396, 398, and

402 in IRF3

(78)

UL54(ICP27) HSV-2 Inhibit IRF3 phosphorylation and

nuclear translocation

(79)

both IRF3 and IκB kinase beta (IKKβ) and then activates the
NF-κB signaling pathway (80). Once activated, IRF3 transfers
to the nucleus and binds to positive regulatory domains I
and III of the IFNβ promoter to induce IFNβ expression.
Through coimmunoprecipitation analyses, Xing and colleagues
demonstrated that in HSV-1 infected cells, the pUS11 C-terminus
interacts with endogenous RIG-I and MDA-5 through an RNA
binding domain. HSV-1 pUS11 can block IFN-β production
and inhibit downstream signaling pathway activation by binding
to RIG-I and MDA-5 (70). Zhao and colleagues observed that
HSV-1 pUL37 is a deaminase protein that blocks RNA-induced
activation by targeting RIG-I. Upon interacting with pUL37,
RIG-I activation was inhibited (67). Yao and his colleague found
that HSV-2 pUL41/VHS can inhibit the expression of RIG-I and
MDA-5, thereby facilitating virus to evade host innate immune
responses (52).

MAVS
Activated RIG-I and MDA-5 induce downstream signal
transduction by binding to MAVS. The N-terminus of MAVS
contains a CARD-like domain that binds to RIG-I and MDA-5,
and through a CARD-CARD interaction to activate NF-κB and

IRFs. MAVS is located in the outer mitochondrial membrane
and interacts with RIG-I and MDA-5 to self-oligomerize (81).
Peroxisome MAVS (MAVS-Pex) signaling has been reported to
trigger the rapid production of IFN-dependent ISG in response to
invasive pathogens (82). For example, pUL48/VP16, a tegument
protein encoded by HSV-1, blocks the early production of ISG
mediated by MAVS-Pex and inhibits the early innate immune
signaling of peroxisomes (75).

TRAF3
TRAF3 is an important molecule in the RLR signaling pathway.
The downstream kinases TBK1 and IκB kinase ε of RIG-I are
recruited by the K63-mediated multiubiquitination of TRAF3,
which results in IRF3 phosphorylation and the subsequent
production of type I IFNs (83). pUL36 ubiquitin-specific protease
has been shown to deubiquitinate TRAF3 and block the
recruitment of the downstream adaptor TBK1 to decrease the
production of IFN-γ during HSV-1 infection (71).

TBK1
As an IκB kinase-related kinase, TBK1 can phosphorylate a
variety of substrates that are involved in various cellular processes
(84). After DNA and RNA sensors detecting nucleic acids, TBK1
is activated. TBK1 triggers the phosphorylation of IRF3, the
activation of NF-κB and the expression of type I IFNs. HSV-
1 ICP34.5 is a neurotoxic factor with multiple functions and
plays a crucial role in viral pathogenesis (85). Previous studies
have reported that HSV-1 ICP34.5 can regulate IFN production
by binding to and isolating TBK1 (72) and suppressing the
induction of the ISG56 promoter by TBK1. Recently, study found
that HSV-1 pUL46 interacted with TBK1 and reduced TBK1
activation and its downstream signaling. The results showed
that pUL46 impaired the interaction between TBK1 and IRF3
and downregulated the activation of IRF3 by inhibiting the
dimerization of TBK1 to reduce the production of type I IFN and
immunostimulatory DNA (74).

IRF3
Activated IRF3 is essential for the effective transcription of type
I IFNs, and IRF3 plays an important role in RLR-independent
signal transduction. Activated IRF3 dimerizes and migrates to
the nucleus, wherein it identifies specific sequence-based IFN
stimulus response elements in the regulatory regions of target
genes (86). Studies have shown that US3 protein expression can
significantly inhibit the activation of IFN-γ, IFN stimulatory
response element (ISRE) promoters and transcription of IFN,
ISG54, and ISG56 via the neurovirus Sendai virus (SEV)
(87). In addition, the SEV-induced dimerization and nuclear
translocation of IRF3 have been shown to be blocked by pUS3.
pUS3 can interact with and hyperphosphorylate IRF3 at serine
175, thus blocking IRF3 activation (69). Manivanh provided
evidence that ICP34.5 controlled IRF3 activation via its ability
to regulate translational shutoff reversal and by maintaining
the expression of other IFN inhibitors encoded by viruses
(73). The VZV immediate-early protein ORF61, a protein
homologous to HSV-1 ICP0, attenuates the IRF3-mediated
innate immune response through degradation of activated
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IRF3 (76). Vandevenne observed that during VZV infection,
the VZV kinase ORF47, a protein homologous to UL13, can
atypically inhibit the phosphorylation of IRF3, which blocks the
homodimerization and induction of target genes such as IFN-β
and ISG15 (77). VZV ORF62/IE62 is a protein homologous to
HSV ICP4. Sen and colleagues found that the inhibitionmediated
by VZV IE62 may be the three serine residues (396, 398, and 402)
on IRF3 were inhibited, thus blocking the downstream signal
transduction mediated by IRF3 (78). Additional studies revealed
that HSV-2 ICP27 directly associates with IRF3 and inhibits
its phosphorylation and nuclear translocation, resulting in the
inhibition of IFN-β induction (79) (Table 2).

Tegument Proteins Inhibit the NF-κB Signaling

Pathway
The NF-κB signaling pathway is an important factor in antiviral
immunity (88, 89) that promotes the expression of proteins
contributing to viral replication and induces specific and adaptive
immune responses (90). PPRs, TLRs, and RLRs can all lead to the
induction of the NF-κB signaling pathway.

During HSV-1 infection, pUL48 can block IFN-β production
by inhibiting NF-κB activation and interfering with the IRF3
recruitment of its coactivator CBP (91). The ORF61 protein of
VZV and simian varicella virus (SVV) is involved in immune
evasion and can prevent IκB-α from ubiquitination. Travis
further demonstrated that SVV ORF61 can interact with β-TrCP,
a subunit of the SCF ubiquitin ligase complex, to mediate the
degradation of IκB-α (92). Sloan and colleagues observed that
VZV ORF61 could inhibit the activity of the NF-κB reporter
induced by tumor necrosis factor alpha (TNF-α). In addition,
ORF61 mutation experiments revealed that the E3 ubiquitin
ligase domain was necessary to inhibit the NF-κB pathway
(93). During HSV-1 infection, ICP0 can interact with p65 and
p50 and degrade the proteasomal protein p50 to block the
nuclear translocation of p65 and reduce NF-κB-dependent genes
expression (94). In contrast, another study showed that ICP0
can also ubiquitinate IκB-α and activate the transcription of
NF-κB target genes (95). In addition, the replication of HSV-
1 can be directly enhanced by stimulation of NF-κB, with
recruitment of the ICP0 promoter by NF-κB activating the
transcription and replication of ICP0 (96). The HSV-1 protein
kinase US3 hyperphosphorylated p65 at serine 75 and blocked its
nuclear translocation, significantly inhibiting NF-κB activation
and decreasing the expression of the inflammatory chemokine
IL-8 (97, 98) (Figure 2 and Table 4).

Tegument Proteins Inhibit the DNA Sensor Signaling

Pathway
In recent years, substantial advances have been made in
research on DNA sensors. Several important cytoplasmic DNA
sensors have been identified and characterized, providing
insights into the mechanisms of sensor signaling pathways (21)
(Figure 4 and Table 5).

cGAS
Among the DNA sensors, cGAS, a nucleotidyltransferase, is
responsible for identifying various DNA ligands present in

TABLE 4 | Tegument proteins that inhibit the NF-κB pathway.

Protein Virus Function References

UL48 (VP16) HSV-1 Inhibits NF-κB activation and

interferes with the

IRF-3-mediated recruitment of its

coactivator CBP

(91)

ORF61 SVV Prevents IκBα ubiquitination and

interacts with β-TrCP

(92)

VZV Inhibits TNF-α-induced NF-κB

reporter activity

(93)

RL2 (ICP0) HSV-1 Interacts with p50 and p60 and

degrades the proteasomal

protein p50

(94)

US3 HSV-1 Ubiquitinates IκBα (95)

Hyperphosphorylates p65 at

serine 75 and blocks p65

nuclear translocation

(97)

certain cell types. cGAS is activated by binding to cytosolic
dsDNA and uses ATP and GTP to produce cGAMP through
its enzymatic activity (107). Huang and colleagues showed that
VP22 encoded by the HSV-1 UL49 gene is a tegument protein.
VP22 participates in the innate immune antiviral process by
inhibiting the enzymatic activity of cGAS and thus antagonizing
the DNA-mediated innate immune signaling pathway (103).
Zhang et al. discovered the innate immune evasion mechanism
of the HSV-1 pUL37 deaminase protein and revealed that the
human and mouse cGAS proteins (but not the nonhuman
primate cGAS proteins) are targets for UL37 deamidation,
promoting the lytic replication of HSV-1 (105).

STING
When STING is activated, it recruits TBK1, activates IRF3
and induces the production of IFN-β (103). As a broad
antimicrobial factor, the DNA sensor STING antagonizes HSV
by activating type I IFNs and proinflammatory responses upon
sensing foreign DNA or non-canonical cyclic dinucleotides,
the latter of which are synthesized by cGAS (108). Previous
data suggested that ICP0 blocks the STING pathway (100).
The transcription factor IRF3, a primary component of the
STING pathway, is known to be blocked by ICP0 (101, 102),
although the associated mechanism is unclear. Deschamps
and colleagues showed that STING was degraded in cells
expressing HSV-1 pUL46, which blocked the accumulation of
STING transcripts (100). ICP27 interacted with TBK1 and
STING in a manner that was dependent on TBK1 activity
and the RGG motif in ICP27. Thus, HSV-1 inhibits the
expression of type I IFNs in human macrophages through
ICP27-dependent targeting of the TBK1-activated STING
signalsome (106).

IFI16
IFI16, a member of the PYHIN protein family, was originally
reported to be a cytosolic DNA sensor and has been implicated
in the type I IFN response to HSV-1 (109–111). IFI16 localizes
in the nuclei of many types of cells, making it a potential
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FIGURE 4 | A schematic diagram of pathogen-derived molecules used to escape intracellular DNA sensing pathways. The primary sensor of cytoplasmic DNA is

cGAS, which is responsible for activating the binding protein STING. Pathogen-mediated degradation targets cGAS to prevent it from binding to DNA or to inhibit its

catalytic activity. At the same time, pathogen invaders also degrade cGAMP and bacterial circulating dinucleotides. IFI16 positively affects the activation of the

cGAS-STING pathway. Other DNA sensors, such as DAI and AIM2, are also viral factors that block DNA binding and downstream pathway activation. Viral proteolytic

enzymes can decompose and degrade these factors; blocking their translocation and preventing their interaction from the downstream signaling protein TBK1, thus

hindering STING function.

candidate for sensing HSV-1 DNA in the nucleus (112). Studies
have shown that HSV ICP0 triggers IFI16 degradation, thereby
inhibiting additional signaling and IRF3 activation (99, 113).
Deschamps and colleagues also showed that IFI16 is degraded
in cells constitutively expressing HSV-1 pUL46, which blocks the
accumulation of IFI16 transcripts (104).

Other DNA sensors
Before the study of cGAS, proteins such as DAI, DDX41,
DNA-dependent protein kinase (DNA-pk) and AIM2 were
identified as cytosolic DNA sensor candidates (114). Although
these proteins were reported to inhibit viral replication,
further studies have shown that they are not necessarily
involved in the DNA-induced responses in many human cells,
suggesting that they may play a redundant or cell- type-
specific role. HSV-1 AIM2-dependent inflammatory activation
has been shown to be inhibited by the HSV-1 tegument
protein VP22. VP22 can interact with AIM2 and prevent AIM2
oligomerization, which is the first step in AIM2 inflammasome
activation (115).

Tegument Proteins Inhibit IFN-Stimulated Genes
Type I IFNs triggers numerous ISGs, such as viperin, zinc finger
antiviral protein (ZAP), tetherin, dsRNA-dependent protein
kinase (PKR), and OAS. Different combinations of ISGs can
enhance the signaling transduction of type I IFNs and the
antiviral activity of host to inhibit viral replication (21, 116)
(Figure 5 and Table 6).

Viperin
Viperin was first to be identified as a highly conserved protein
that can induce IFN-γ protein production and is comprised of
361 amino acids. A number of studies have shown that viperin
is directly induced by human cytomegalovirus and exhibits low
expression (124). The viperin gene (also known as CIG5 or
RASD2) can also be classified as an antiviral ISG that restricts the
replication of DNA and RNA viruses (125). However, it is unclear
whether viperin plays a role in HSV-1 infection. HSV-1 pUL41
can degrade host mRNA by cutting it at a preferential site, and
UL41 promotes the replication of HSV-1 by degrading viperin
mRNA (117).
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ZAP
In addition to viperin, ZAP is an antiretroviral factor that was
originally identified in rats. Viruses that contain ZAP response
elements (ZREs) in their RNA are sensitive to ZAP. Studies have
shown that human ZAP (hZAP) has no inhibitory effect on
the replication of HSV-1, and as an antagonist of hZAP, HSV-1
pUL41/VHS can degrade hZAP mRNA (118).

Tetherin
Tetherin (BST-2 or CD317) is a membrane glycoprotein that
can induce the production of IFNs and effectively exert antiviral
activity by inhibiting the release of many envelope viruses (126).

TABLE 5 | Tegument proteins that inhibit the DNA sensor signaling pathway.

Protein Virus Function References

RL2 (ICP0) HSV-1 Targets IFI16 degradation,

inhibiting additional signaling and

IRF-3 activation

(99)

Blocks STING and the

transcription factor IRF3

(100–102)

UL49 (VP22) HSV-1 Inhibits the enzymatic activity of

cGAS

(103)

UL46 (VP11-12) HSV-1 Blocks STING and IFI16

transcript accumulation

(104)

UL37 HSV-1 Deamidates cGAS proteins (105)

UL54 (ICP27) HSV-1 Targets the TBK1-activated

STING signalsome

(106)

Helen showed that overexpression of tetherin can inhibit the
replication of HSV-1 and that HSV-1 pUL41/VHS can deplete
tetherin mRNA via its mRNA degradation function (120).

PKR
Binding of dsRNA activates PKR, which then phosphorylates the
α subunit of eIF2α, resulting in translational inhibition (127).
HSV-1 pUS11, a late-stage gene, inhibits PKR activation by
binding to both dsRNA and PKR to prevent them from binding
to each other (123), and then inhibits PKR phosphorylation.
Other studies have shown that during early infection, the HSV-
1 pUL41 VHS RNase protein degrades RNAs that activate PKR.
The VHSRNase protein andmitogen-activated protein kinase act
cooperatively to block the activation of PKR (121).

TABLE 6 | Immune evasion of tegument proteins through ISGs.

Protein Virus Function References

UL41 HSV-1 Degrades viperin mRNA (117)

Degrades hZAP mRNA (118)

Reduces the accumulation of

IFIT3 mRNA

(119)

Depletes tetherin mRNA (120)

Block the activation of PKR (121)

US11 HSV-1 Inhibits OAS (122)

Inhibits PKR (123)

FIGURE 5 | A schematic diagram of the pathogen-derived molecules used to escape cytokine-sensing pathways in cells. In the basic transmission process of the

JAK/STAT signaling pathway, the binding of cytokines to their receptors causes dimerization of the receptor molecules. The close proximity, of JAKs to the receptors

enables their activation through interactive tyrosine phosphorylation. The immune evasion effect of the virus can be achieved through the degradation of IFNAR1 and

ISG mRNA.
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OAS
Similar to PKR, OAS recognizes dsRNA. The three primary
forms of OAS recognize dsRNA through positively charged
channels in the molecule. Conformational changes in OAS after
binding to dsRNA lead to the synthesis of 2′,5′-oligoadenylates
(2–5As), which then activate latent RNase L, leading to the
degradation of viruses and endogenous RNA and the inhibition
of viral replication. OAS is essential for host defense and can be
inhibited by pUS11 via its dsRNA binding domain, with pUS11
sequestering any available dsRNA produced during infection as
the potential underlying mechanism (122).

IFIT3
The IFN-induced protein with tetratricopeptide repeats
(IFIT) family includes IFIT1 (ISG56), IFIT2 (ISG54), IFIT3
(ISG60), and IFIT5 (ISG58), which are distributed on human
chromosome. Recent studies have shown that IFIT proteins
restrict viral replication by altering protein synthesis, binding
viral RNA or interacting with structural or non-structural viral
proteins to exert antiviral effects (128). Jiang showed for the
first time that IFIT3 has little effect on the replication of HSV-1,
because pUL41/VHS reduces the accumulation of IFIT3 mRNA
and disrupts its antiviral activity (119).

JAK/STAT Signaling Pathway
During viral infection, IFNs exert their antiviral function by
inducing antiviral proteins via the JAK/STAT pathway (129).
Four JAKs and seven STATs have been identified in mammals.
JAKs are tyrosine kinases of the Janus family, include JAK-1,
JAK-2, JAK-3, and Tyk-2. The STATs include STAT-1, STAT-2,
STAT-3, STAT-4, STAT-5a, STAT-5b, and STAT6. JAK-1, JAK-
2, Tyk-2, STAT-1, STAT-2, STAT-4, and STAT-5 are directly
involved in IFN-mediated signaling transduction pathways. The
JAK/STAT signaling pathway is a common pathway that includes
many cytokine signaling molecules and plays extensive roles in
cell proliferation, differentiation, apoptosis and inflammation.
This pathway exerts its function by interacting with negative
regulators in other signaling pathways and STAT-mediated
covalent modifications. In the basic transmission process of the
JAK/STAT signaling pathway, the binding of cytokines with
their receptors induces receptor molecule dimerization. The
proximity of JAKs to receptors then enables JAK activation
through interactive tyrosine phosphorylation. Activated JAKs
catalyze the tyrosine phosphorylation of receptors and form
corresponding STAT docking sites, which enable STATs to bind
to receptors through the SH2 domain and cooperate with
JAKs. After phosphorylation, STATs form homodimers that
divert into the nucleus, wherein they bind to the promoters
of target genes to activate their transcription and expression
(Figure 5 and Table 7).

IFNAR1
Because lacking intrinsic protein kinase domains, IFNAR1 and
IFNAR2 rely on the 74 members of the JAK family for signal
transduction (131). The results published by Zhang suggested
that pUL50 has dUTPase activity. dUTPase catalyzes the
hydrolysis of dUTP into dUMP and inorganic pyrophosphate,

providing the dUMP precursor for dTTP biosynthesis and
inhibiting IFN signaling. dUTPase also has the ability to
suppress type I IFN signaling by promoting the lysosomal
degradation of IFNAR1, thereby contributing to innate immune
evasion (130) (Table 6).

Cytokine Signaling Pathways
Cytokines are small molecular proteins with extensive biological
activity stimulated by immune cells (such as monocytes,
macrophages, T cells, B cells, and natural killer (NK) cells) and
some non-immune cells (endothelial cells, epidermal cells, and
fibroblasts). Cytokines are produced by many kinds of cells
induced by immunogens, mitogens or other stimulants and
have many functions such as regulating innate and adaptive
immunity, hematopoiesis, cell growth, and damaged tissue
repair. Aside from IFNs, other cytokines can be classified into
the following categories according to their function: ILs, TNF-
α, TNF-β, colony-stimulating factors, chemokines, and growth
factors (Table 8) (132).

SOCS1 and SOCS3
Suppressor of cytokine signaling 1 (SOCS1) and SOCS3 contain
kinase inhibitory regions (KIRs) that can inhibit JAK signal
transduction through the SH2 domain and interact with the
phosphotyrosines of JAK and GP130, respectively (138). In
addition to IFNs, PAMPs are effective inducers of SOCS1 and
SOCS3. Because SOCS proteins negatively regulate cytokine
signal transduction, many viruses induce the expression of
SOCSs to aid in their survival (139). The SOCS family has eight
members and suppresses various cytokine signaling pathways,
including the IFN signaling pathway. In one study, the expression
of eight SOCS family members during HSV-1 infection was
analyzed by q RT-PCR, revealing that the tegument protein
pUL13 could induce SOCS1 and SOCS3. However, no such
induction was observed in UL13-deficient virus-infected cells,
suggesting that the UL13 protein kinase was involved in the
induction of the two genes (136).

TNF-α
TNF-α is a cytokine with multipotent biological effects that are
triggered by two types of TNF-α receptors on the cell surface
(140). The TNF-α signaling transduction pathway primarily
involves caspase family-mediated apoptosis and activation of the
transcription factors NF-κB and JNK protein kinase mediated
by TRAF (141). The expression of TNF-α has been observed
to be increased in the spleens of mice infected with PRV UL41
mutant virus. TNF-α is considered to be an important cytokine
in innate immune responses. In addition, PRV UL41 plays an
important role in targeting host innate immune responses via
its ribonuclease activity. Studies have suggested that pUL41 may
contribute to the protection of organisms from viral damage
mediated by TNF-α via degradation TNF-α mRNA (133).

SLPI
Secretory leukocyte protease inhibitor (SLPI), an anti-
inflammatory mediator of mucosal immunity, can inhibit
both human immunodeficiency virus (HIV) and HSV in
cell culture. Epidemiological studies have shown that high
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TABLE 7 | Immune evasion of tegument proteins through the JAK/ STAT signaling

pathway.

Protein Virus Function Reference

UL50 PRV Promotes the lysosomal

degradation of IFNAR1

(130)

TABLE 8 | Immune evasion of tegument proteins through cytokine signaling.

Protein Virus Function References

UL49 (VP22) HSV-1 Interacts with AIM2 and prevents

its oligomerization

(115)

Inhibits OAS

UL41 PRV Reduces the expression of

TNF-α

(133)

UL41 HSV-1 Suppresses cytokines such as

IL-1β and IL-18

(134)

RL2 (ICP0)/RS1 (ICP4) HSV Downregulates SLPI or activates

NF-κB

(135)

UL13 HSV-1 Induces SOCS1 and SOCS3 (136)

US10 DEV Downregulates the transcript

levels of IL-4, IL-6, and IL-10

(137)

concentrations of SLPI in mucosal secretions can inhibit HIV
transmission. Whether the loss of SLPI caused by HSV allows
the virus to evade the host’s innate immune response is currently
being studied, and the loss of SLPI may lead to an increased risk
of HIV infection in the context of HSV infection (142). Reverse
transcription PCR experiments have shown that SLPI is lost
due to downregulating genes expression. The downregulation
of SLPI is related to NF-κB signaling pathway activation and
inflammatory cytokine upregulation. Fakioglu showed that the
ICP4- or ICP0-induced expression of immediate-early genes can
downregulate SLPI or activate NF-κB (135).

ILs
ILs are cytokines that are produced by and used in many
types of cells. Currently, at least 38 ILs, named IL-1 to -
IL38, have been identified. These ILs have complex functions,
forming networks and exhibiting complex overlaps, and playing
important roles in the maturation, activation, proliferation, and
immune regulation of immune cells. In addition, they also
participate in various physiological and pathological reactions
in organisms. For example, the proliferation, differentiation and
functions of immune cells are regulated by a series of cytokines.
According to their structure, cytokines can be divided into
several protein families, such as the IL-1, IL-6, IL-10, TNF,
and hematopoietic factor families (143). ILs can lead to local
inflammation and cause sterilization and cell damage. Suzutani
showed that a UL41-deleted strain of HSV-1 exhibited 20- and
5-fold higher sensitivity to IFN-α and IFN-β than the wild-type
strain, respectively. These results indicate that one important role
of HSV-1 pUL41/VHS in vivo is the evasion of non-specific host
defense mechanisms during primary infection by suppressing
cytokines such as IL-1β and IL-18 (134). A study by Ma (137)

showed that DEV pUS10, which plays an important role in viral
replication, could upregulate the transcription of IL-4, IL-6, and
IL-10 in US10-deleted DEV-infected duck embryonic fibroblasts
(DEFs) at all assayed time points (Table 7).

NK Cells
Functional NK cells are essential for limiting herpesvirus
transmission and disease symptoms. There are many types of
receptors on the NK cell surface, and their functions can be
divided into two categories: activation and inhibition of the
proliferation system. By recognizing specific ligands, NK cells
can sense changes of target cells surface properties. To prevent
clearance from cytotoxic T lymphocytes, some viruses actively
reduce the level of MHC class I (MHC-I), an important ligand
of the KIR family on the cell surface inhibiting NK cell receptors
(144). To benefit their survival, viruses can encode MHC-I-like
proteins that activate KIR receptors and proteins that inhibit the
exposure of NK cell receptor ligands.

CD300a, also known as IRP60, is a highly conserved
inhibitory NK cell receptor that does not bind to MHC-I.
CD300a is a 60 kDa protein belonging to the immunoglobulin
(Ig) superfamily that is characterized by a single V-type
Ig-like domain in its extracellular domain and several
tyrosine-based immunoreceptor inhibition motifs (ITIMs)
in its cytoplasmic domain (145). CD300a can identify
aminophospholipids exposed on the cell surface, especially
phosphatidylserine (PS) and phosphatidylethanolamine (PE),
which can inhibit the cytolysis of NK cells by binding to
ligands (146). CD300a inhibitory receptors and their lipid
ligands have been specifically reported on mammals, birds
and fish (147). To date, no descriptions of the NK cell
evasion strategy involving CD300a have been reported. A
study by Grauwet firstly indicated that the pUS3 protein
kinase of the alphaherpesvirus PRV can trigger the inhibitory
NK cell receptor CD300a binding to the surface of infected
cells, thereby increasing the CD300a-mediated protection
of the infected cells. In addition, the binding of pUS3
to CD300a is associated with the aminophospholipid
ligand of CD300a and the IP21 activating kinase (148),
thus representing a novel alphaherpesvirus strategy for
escaping NK cells.

Other Innate Immune Responses
The DDR Response
The cellular DDR pathway monitors damage to genomic
DNA. DNA-PK, ataxia telangiectasia mutated (ATM) kinase,
and ATM- and Rad3-related (ATR) kinase are the primary
signaling pathway mediators that initiate the DDR (48).
Recently, cellular DNA repair machinery was demonstrated
to recognize viral genetic material (149). The DDR plays
an important role in viral infection, participating in the
activation of many components of the ATM-dependent signaling
pathway and inhibiting the DNA PKC- and ATR-dependent
arms (150). Lilley and colleagues showed that RNF8 and
RNF168, important mediators of ATM-dependent signaling
pathways, are targeted for proteasome-mediated degradation by
ICP0 (151).
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ER Stress
The endoplasmic reticulum (ER) is a cytoplasmic eukaryotic
organelle that has numerous functions, taking part in the
transport of cellular materials, the provision of increased surface
areas for cellular reactions, and the production of proteins,
steroids and lipids (152). Mis- and unfolded proteins that
can cause stress in the ER accumulate during viral replication
and trigger the unfolded protein response (UPR) (153). The
IRE1/XBP1 pathway is the most conserved component of the
UPR branch in eukaryotic cells (154). IRE1 is a dual-activity
enzyme that contains a serine-threonine kinase domain and a
ribonuclease domain (155). Upon activation, IRE1 undergoes
dimerization and transphosphorylation, which facilitates the
removal of a 26-nucleotide (NT) intron from the XBP1 gene
to form a spliced XBP1, which translated into a transcription
factor. In the nucleus, XBP1 induces the expression of
the genes that enhance the folding ability of ER proteins
and functions in phospholipid biosynthesis and ER-associated
protein degradation (ERAD) (156). During HSV-1 infection,
the molecular mechanism by which the IRE1/XBP1 branch of
the UPR is repressed remains unclear. Zhang and colleagues
showed that the HSV-1 tegument protein pUL41, which has
endoribonuclease activity, degrades XBP1 mRNA to inhibit its
expression (157). These findings reveal a novel mechanism by
which HSV-1 modulates the IRE1/XBP1 branch of the UPR.
Interestingly, the HSV-1 ICP0 promoter can react to ER stress.
Burnett and colleagues found that ICP0 can activate itself
independently during HSV-1 infection, suggesting that HSV-1
regulates the ER stress response through ICP0 (153).

CONCLUSION

Over millions of years of coevolution between host and viruses,
host species have developed a highly complex set of physiological
immune mechanisms to block and eliminate viral infection.
However, for every host immune response step, viruses have

developed corresponding immune escape mechanisms to ensure
their own survival. Successful immune escape is a primary
factor underlying chronic herpesvirus infection. In recent years,
substantial progress has been made in understanding the
variety of cytoplasmic DNA sensors that enable resistance to
the immune response. Tegument proteins play important role
in alphaherpesvirus innate immune evasion. However, despite
the mapping of antiviral defense signaling pathways between
tegument proteins and host, a functional understanding of
how tegument proteins work together to interfere with the
innate immune system remains elusive. Further studies on
the mechanisms of tegument proteins, capsid proteins, and
glycoproteins will be helpful in the search for antiviral targets and
development of antiviral drugs.
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