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Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a major health problem, with 10 million new cases diagnosed
each year. Innate immunity plays an important role in the host defense against M. tuberculosis, and the first step in this process is
recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the
recognition of M. tuberculosis, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs).
Among the TLR family, TLR2, TLR4, and TLR9 and their adaptor molecule MyD88 play the most prominent roles in the initiation
of the immune response against tuberculosis. In addition to TLRs, other PRRs such as NOD2, Dectin-1, Mannose receptor, and
DC-SIGN are also involved in the recognition of M. tuberculosis. Human epidemiological studies revealed that genetic variation in
genes encoding for PRRs and downstream signaling products influence disease susceptibility, severity, and outcome. More insight
into PRRs and the recognition of mycobacteria, combined with immunogenetic studies in TB patients, does not only lead to a better
understanding of the pathogenesis of tuberculosis but also may contribute to the design of novel immunotherapeutic strategies.

1. Introduction

Tuberculosis (TB) is a major public health problem, with
10 million new cases diagnosed each year, causing a death
toll of 2 million victims. However, from the estimated 2
billion persons individuals that have been initially infected
with Mycobacterium tuberculosis, only 5% to 10% develop
symptomatic TB.

The reason why some infected individuals develop active
disease while others do not is not yet entirely understood.
The role of inborn variability in susceptibility to tuberculosis
has been accidentally proven by an episode that occurred
almost a century ago, when in 1926 newborn infants from
the town of Lübeck in Germany received live Mycobacterium
tuberculosis (MTB) instead of the vaccine bacillus Calmette-
Guérin (BCG). Some of the children became gravely ill, while
others were unaffected [1]. This finding indicates that at least
some individuals display an effective immune response to
MTB and that this plays an important part in determining
the outcome of the infection. In addition, this episode in
young infants known to have immature adaptive immunity

also suggests that the innate host defense is an important arm
of antimycobacterial host defense.

Much has been learned during the last decade on the
mechanisms through which the immune response to MTB
is initiated. The first step is the recognition of mycobacteria
as invading pathogens, followed by activation of innate host
defense responses, and the subsequent initiation of adaptive
immune responses. Knowledge about these processes is cru-
cial for understanding the pathophysiology of tuberculosis,
on the one hand, and for the development of novel strategies
of vaccination and treatment such as immunotherapy on
the other hand. This paper focuses on the first step of the
immune response, which is the recognition of mycobacteria
by cells of the innate immune system.

Initiation of the innate immune response starts with
pattern recognition of microbial structures called pathogen-
associated molecular patterns (PAMPs). Recognition of
PAMPs is performed by germline-encoded receptors expre-
ssed mainly on immune cells termed pattern recognition
receptors (PRRs) [2]. The first step in understanding
the mechanisms of recognition of pathogenic bacteria is
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Figure 1: The structure of the Mycobacterium tuberculosis cell
wall. This figure shows a schematic representation of the major
components of the cell wall and their distributions. The inner
layer is composted of peptidoglycan which is covalently linked to
arabinogalactan layer. The outer membrane contains mycolic acids,
glycolipids like (mannose-capped) lipomannan, and mannoglyco-
proteins.

a solid knowledge of the structure of the cell wall of the
microorganism, which is the first structure to come in
contact and to be recognized by the cells of the immune
system.

1.1. The Mycobacterial Cell Wall. MTB is a slow-growing int-
racellular pathogen that can survive inside the macrophage
of the host. MTB is an acid-fast bacterium due to the fact
that the cell wall mainly consists of hydrophobic mycolic
acids. This is a specific component of mycobacterial cell wall
and makes up 50% of its dry weight. Due to this thick layer
of mycolic acids, the entry of nutrients is impaired, which
causes slow growth of mycobacteria, but it also increases cel-
lular resistance to degradation through lysosomal enzymes
[3]. The mycolic acids are distributed as a thick layer
mostly at the external portions of the cell wall, while the
internal layers of mycobacteria consist mostly of arabino-
galactan, phosphalidyl-myo-inositol mannosides (PIMs),
and peptidoglycans (Figure 1) [4]. Next to the mycolic
acid layer, other components include mannose-containing
biomolecules including mannose-capped lipoarabinoman-
nan (Man-LAM), the related lipomannan (LM), and manno-
glycoproteins [4]. Mannan and arabinomannan are present
on the surface and form the outer capsule of this bacterium.
Man-LAM, LM, and PIMs all share a conserved mannosyl-
phosphatidyl-myo-inositol (MPI) domain that presumably
anchors the structures into the plasma membrane [5].

Man-LAM, one of the most abundant mannans present
on the cell surface, is an important virulence factor of
MTB [6]. Man-LAM is a heterogeneous lipoglycan with
a characteristic tripartite structure of a carbohydrate core,
the MPI anchor, and various mannose-capping motifs.
These mannose-capped motifs are characteristic for all
pathogenic mycobacteria, and they are not present on fast-
growing mycobacterial strains which are significantly less
pathogenic. These strains have either uncapped LM or have

phospho-myo-inositol caps (PILAM), which are known to
display more robust immunostimulatory effects. PIMs can be
divided into two groups dependent on the mannose content,
which determines its immunogenic effect [7, 8]. Also present
on the cell surface are the mannoglycoproteins, which can
also be secreted during growth.

1.2. Innate Immunity and Host Defense. After the inhala-
tion of infected aerosols into the lungs of the host, the
first encounter of mycobacteria is with alveolar resident
macrophages. Mycobacteria that escape the initial intracel-
lular destruction can multiply and disrupt the macrophage,
after which chemokines are released, attracting monocytes
and other inflammatory cells to the lung. Inflammatory
monocytes will differentiate into macrophages, which readily
ingest but do not destroy the mycobacteria [9]. In this
stage of the infection, the mycobacteria grow logarithmically
and blood-derived macrophages accumulate, but little tissue
damage occurs. Two-to-three weeks after infection, T-cell
immunity develops and antigen-specific T lymphocytes
arrive, proliferate within the early lesions or tubercles,
and release proinflammatory cytokines such as interferon-
γ (IFNγ) that will activate macrophages to kill the intra-
cellular mycobacteria. Subsequently, the early logarithmic
bacillary growth stops, and central solid necrosis in these
primary lesions or granuloma inhibits extracellular growth
of mycobacteria. Several scenarios may follow, with infection
becoming stationary or dormant in some individuals, or
progressive in the lung, or with hematogenous dissemination
in a minority of patients. In addition, reactivation can occur
months or years afterwards, under conditions of failing
immune surveillance [9]. Granuloma often contains central
caseous necrotic tissue, which gives rise to cavities and
aerogenic spread of mycobacteria.

The macrophage is a pivotal cell in these events, as it is
involved in phagocytosis and killing of mycobacteria as well
as in the initiation of adaptive T-cell immunity. Phagocytosis
of MTB involves different receptors such as the scavenger
receptors, the mannose receptor (MR), and complement
receptors [10–13]. Phagocytosis can involve both uptake
of the bacilli after opsonization with complement factors,
or it can be initiated as a nonopsonic event. In vitro
experiments have shown that complement receptor 3 (CR3)
mediates approximately 80% of complement-opsonized
MTB phagocytosis [12]. Nonopsonic phagocytosis is an
important process in the primary infection of the lung,
because complement factors are largely absent in the alveolar
space [14].

Macrophages can eliminate mycobacteria through differ-
ent mechanisms, such as production of reactive oxygen and
nitrogen species, acidification of the phagosome, and phago-
some fusion with the lysosomes [9]. The fate of intracellular
mycobacteria is also influenced by autophagy, a cellular
process though which cytoplasmic components, including
organelles and intracellular pathogens, are sequestered in a
double-membrane-bound autophagosome and delivered to
the lysosome for degradation [15]. Activation of autophagy
leads to phagosome maturation, an increased acidification in
the phagosome, and killing of mycobacteria in macrophages
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[16]. However, once inside the cell, MTB often evades
destruction by the innate microbial machinery [17], one of
the main mechanisms being the inhibition of phagosome-
lysosome fusion [18].

The interaction between MTB and cells of both the innate
and adaptive immune system results in the secretion of
chemokines and cytokines, the most important being tumor
necrosis factor-α (TNFα), cytokines of the interleukin-1
family (IL-1β, IL-18), IL-12, and IFNγ. TNFα-deficient mice
succumb rapidly after MTB infection, with significantly
higher mycobacterial outgrowth in different organs com-
pared to wild-type animals [19]. TNFα is also important
for formation of granuloma, an important mechanism for
containing and restricting the replication of the bacilli [19,
20]. The importance of IL-1β production is underlined
by the fact that intact IL-1-mediated signals are essential
components of the host defense to mycobacteria [21–23].
Infection of IL-1 receptor type 1 knockout mice with MTB
is associated with lower production of IFNγ, defective
granuloma formation, and lower survival [22].

IFNγ activates macrophages to kill and eliminate the
mycobacteria. It also enhances their expression of MHC class
II molecules, which results in improved antigen presentation
to T cells. IFNγ is secreted by NK, CD4+, and CD8+
T cells upon release of endogenous IL-12 and IL-18 by
macrophages and dendritic cells. The crucial importance of
IFNγ for human antimycobacterial defence is demonstrated
by the increased susceptibility to mycobacterial infections in
patients with IFNγ receptor or IL-12 receptor deficiencies
[24–26].

Various macrophages subsets have been identified
with different potential functions. For example, alveolar
macrophages, usually the first encounter with the mycobac-
terium, have an immune suppressive and poor antigen
presenting ability [27, 28]. Two main subtypes are described,
the classical and the nonclassical or alternative phenotypes.
The classical route of differentiation induced by microbial
products or IFNγ leads to induction of antimicrobial effects
and production of proinflammatory cytokines as TNFα, IL-
1β, IL12 (p40), and IL23 [29, 30]. This is in contrast to the
nonclassical macrophages subsets, which lack antimicrobial
activity and production of IL-12. These subsets have a poor
antigen presenting capacity and can suppress cellular immu-
nity by production of IL-10 [30]. The macrophages subset
polarization may determine the outcome of the host response
in skewing the pro- and anti-inflammatory immune
response and subsequently in elimination of mycobacteria.

The first step in the activation of innate host defense
begins with the pattern recognition of the pathogen. The
PAMPs of MTB are sensed by specific PRRs, which in
turn trigger production of proinflammatory cytokines and
chemokines, phagocytosis and killing of the mycobacteria,
and antigen presentation. This paper focuses on the role of
the PRRs and downstream signaling for the recognition of
MTB, including the intracellular mechanisms activated by
PRRs. First, we will review specific evidence from in vitro
studies and animal research. Then, we will discuss the human
genetic studies done to assess the role of variation in PRR
genes for the susceptibility to tuberculosis.

2. Recognition of Mycobacterium
tuberculosis—Experimental Studies

The interaction between MTB and host cells is complex and,
although extensively studied, not yet completely elucidated.
Here we will focus on the PRRs that recognize specific PAMPs
of mycobacteria and induce intracellular signals leading to
cytokine production and initiation of adaptive immunity.
A schematic representation is presented in Figure 2. Host
receptors which are mainly involved in bacterial phagocytosis
rather than immune recognition, such as complement
receptors and scavenger receptors, go beyond the scope of
this paper.

2.1. Toll-Like Receptors.Toll-like receptors (TLRs) are a family
of PRRs consisting of 12 members in mammals. TLRs are
expressed on the surface of the cell membrane or on the
membrane of endocytic vesicles of mainly immune cells
including macrophages and dendritic cells (DCs). Although
the interaction of MTB with TLRs leads to phagocyte
activation, the interaction itself does not lead to immediate
ingestion of the mycobacteria. After the interaction of spe-
cific mycobacterial structures with TLRs, signaling pathways
are triggered in which adaptor molecule myeloid differ-
entiation primary response protein 88 (MyD88) plays an
important role [31]. Subsequently, IL-1 receptor-associated
kinases (IRAK), TNF receptor-associated factor (TRAF) 6,
TGFβ-activated protein kinase 1 (TAK1), and mitogen-acti-
vated protein (MAP) kinase are recruited in a signaling
cascade leading to activation and nuclear translocation of
transcription factors such as the nuclear transcription factor
(NF)-κB [32]. This leads to the transcription of genes
involved in the activation of the innate host defense, mainly
the production of proinflammatory cytokines as TNF, IL1β,
and IL-12 and nitric oxide [33].

MyD88 plays a central role in the activation of the innate
immune response to M. tuberculosis; compared to wild-
type mice, MyD88 knockout mice are more susceptible to
infection [21]. In addition to MyD88, TLR4 can induce
intracellular signals through a second pathway, which is
mediated by the adaptor molecule Toll/IL-1R (TIR) domain-
containing adapter inducing interferon (IFN)-β (TRIF).
Recently, this MyD88-independent, TRIF-dependent TLR4-
signaling cascade was shown to be involved in the LPS-
induced autophagy [34]. As the TLR4-induced activation
of autophagy plays an important role in the phagosome-
lysosome fusion, a process counteracted by MTB [34], it is
tempting to speculate that the interaction between TRIF and
autophagy is an important component of the innate host
defense to mycobacteria.

The TLRs known to be involved in recognition of MTB
are TLR2, TLR4, TLR9, and possibly TLR8 [35–40]. TLR2
forms heterodimers with either TLR1 or TLR6. These het-
erodimers have been implicated in recognition of mycobac-
terial cell wall glycolipids like LAM, LM, 38-kDa, and 19-
kD mycobacterial glycoprotein, and phosphatidylinositol
mannoside (PIM), triacylated (TLR2/TLR1), or diacylated
(TLR2/TLR6) lipoproteins [39, 41, 42]. TLR2 is believed to
be important in the initiation of innate host defense through
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Figure 2: Pattern recognition receptors in the recognition of mycobacteria and downstream signaling pathways. Mycobacteria can be
recognized through different pattern recognition receptors (PRRs) of the host. Both intracellular and extracellular receptors are involved
in this process. After recognition of mycobacteria, intracellular signaling cascades are activated which eventually will lead to the activation of
transcription of NF-κB. After transcription, the production of pro- and anti-inflammatory cytokines and chemokines is induced. The type
of signaling cascade induced depends mainly on the type of PRR that recognizes (components of) MTB.

its stimulatory effects on TNFα production in macrophages
[31, 38]. In turn, an important role for TLR2 and TLR6 but
not TLR4 or TLR9, was found for the stimulation of IL-1β
production [43]. TLR2 is also important for IL-12 release
in macrophages, but not in DCs [44]. TLR2-/- mice show
defective granuloma formation, and when infected with high
doses of MTB, they have a greatly enhanced susceptibility to
infection compared to the WT mice [45, 46]. In addition,
TLR2-/- mice display defects in controlling chronic infection
with MTB [46].

TLR4 is activated by heat shock protein 60/65 [37, 47], a
protein that is secreted by a variety of MTB species. Studies
with TLR4 transfected CHO cells and murine macrophages

showed the importance of TLR4 in recognition of MTB [36,
39]. Macrophages of TLR4-deficient mice showed less, but
not completely abolished, TNFα production. In vivo murine
studies on the role of TLR4 in the recognition of MTB have
shown conflicting results, even when the same mouse strain
was used. Reiling et al. showed that TLR4-deficient mice, in
contrast to TLR2 deficient mice, showed similar susceptibil-
ity to MTB infection compared to wild-type animals [45]. In
contrast, Abel et al. reported higher mycobacterial outgrowth
in lungs, spleen, and liver and a lower survival following
infection compared to wild-type animals [48]. More studies
are necessary to elucidate the source of these discrepancies
and the role of TLR4 for MTB infection.
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TLR9 recognizes unmethylated CpG motifs in bacterial
DNA. In vitro studies showed that MTB-induced IL-12
release in dendritic cells was TLR9-dependent [38, 44]. In
vivo experiments showed that when mice were infected with a
high infectious dose of MTB, animals lacking TLR9 succumb
earlier to infection than wild-type animals [38].

TLR8 is able to recognize single-stranded RNA from
pathogens such as RNA viruses. Interestingly, Davila et al.
demonstrated upregulation of TLR8 protein expression in
macrophages after infection with BCG [40]. Until now, this
is the only study addressing a potential role of TLR8, but
the mechanism through which TLR8 recognizes MTB and
signals intracellular remains unknown.

A partially redundant role of TLRs for the host defence
against mycobacteria has been suggested, and it has been
hypothesized that defects in multiple TLRs are necessary
to unveil the role of these receptors for antimycobacterial
defense. Indeed, TLR2 and TLR9 double knockout mice
display greater defects of IL-12 and IFN-γ production in
comparison with both single TLR knockout mice, and they
succumb earlier to infection even when infected with a low
inoculum of MTB [38].

2.2. NOD Like Receptors. The NOD like receptors (NLRs)
family of proteins highly resembles the family of plant R
(resistance) proteins, which have a crucial role in the defence
against plant pathogens. The mammalian NLR family con-
sists of more than twenty members with a conserved struc-
ture. The core of the molecule is formed by the nucleotide-
binding domain, named NACHT (NAIP, CIITA, HET-E, and
TP-1 [49]) or NOD (nucleotide oligomerization domain)
domain. The C-terminal part consists of a series of leucin-
rich repeats, which are thought to recognize the PAMPs of
the pathogen and initiate activation of the molecule. The N-
terminal portion of the molecule contains an effector domain
of CARD (caspase activation and recruitment domain),
PYRIN, or BIR (baculovirus inhibitor of apoptosis repeat
domain) [50]. CARD-containing NLRs such as NOD1 and
NOD2 are thought to form oligomers and then to recruit
receptor-interacting protein 2 (RIP2) (or CARD containing
kinase—RICK) through CARD-CARD interactions, which
leads to the recruitment of NF-κB [51].

A major signalling pathway for the activation of the
antimycobacterial host defense is represented by the inflam-
masome, that through activation of caspase-1 leads to pro-
cessing of procytokines of the IL-1 family into the bioactive
IL-1β and IL-18. Several PYRIN-domain containing NLRs
(NALPs) can form different variants of the inflammasome
containing either NLRP1, NLRP3 (cryopyrin), or NLRC4
(Ipaf) [52], as well as the adaptor protein ASC [53, 54]. A
fourth type of inflammasome formed by the intracellular
protein AIM2 is activated by intracytoplasmic DNA [55]. A
recent study has shown that induction of IL-1β production
by MTB is mediated by TLR2/TLR6 and NOD2 receptors,
while caspase-1 is constitutively activated in human primary
monocytes [43]. This is in contrast with the study of
Master et al. that suggested that MTB inhibits inflammasome
activation and IL-1β production [56]. However, these studies
are not completely comparable as the latter study has used

murine macrophage cell lines, in contrast to the human
primary cells used by the former study. In addition, if MTB
would inhibit IL-1β production even in normal hosts, this
could not explain the increased susceptibility to infection of
IL-1R-deficient mice [22].

NOD2 is an intracellular receptor-mediating stimulation
of proinflammatory cytokine production by MTB. NOD2 is
a receptor for bacterial peptidoglycans [57], and recently, we
demonstrated its role in the recognition of mycobacteria [58,
59]. NOD2-deficient mice showed impaired production of
proinflammatory cytokines and nitric oxide when infected
with MTB. However, the susceptibility to MTB infection of
NOD2-deficient mice is variable [60, 61].

2.3. C-Type Lectins. C-type lectins are a family of PRRs
involved in the recognition of polysaccharide structures of
pathogens. The mannose receptor (MR, CD206) consists
of eight linked carbohydrate recognition domains and one
cysteine-rich domain. MR is highly expressed on alveolar
macrophages [62]. Mycobacterial stimulation through MR
leads to production of the anti-inflammatory cytokines IL-
4 and IL-13, inhibition of IL-12 production, and failure to
activate oxidative responses [63, 64]. Man-LAM and other
major components of the MTB cell wall like PIMs are
natural mycobacterial ligands for MR. In addition, binding of
MTB to MR induces phagocytosis, but phagosome-lysosome
fusion is limited [65–67].

Differences at the level of mannosylation between MTB
strains may also contribute to recognition by C-type lectins.
Torrelles and Schlesinger showed that differences in virulence
between MTB strains could be related to expression of Man-
LAM on the cell wall [4]. Virulent MTB strains with less
surface mannosylation do not use MR for phagocytosis but
rely primarily for recognition and phagocytosis on CR3
after opsonisation. These strains are virulent because they
display more other cell envelope components (like phenolic
glycolipids and triacylglycerols) [68, 69]. These cell compo-
nents regulate the cytokine response and demonstrate rapid
intracellular growth and marked tissue damage [70, 71].
On the contrary, heavily mannosylated MTB strains such
as the laboratory strain H37Rv use the MR receptor during
invasion of the cell and are associated with a higher survival
within the macrophage and an anti-inflammatory cytokine
response. It is speculated that this type of recognition might
lead to a latent stage of infection [4]. This might not be the
case for all mycobacterial species; a mutant Mycobacterium
bovis strain, which entirely lacked surface mannose, showed
a comparable cytokine profile as the nonmutant did [72].

2.4. DC-SIGN. Dendritic cell-specific intercellular adhesion
molecule-3 grabbing nonintegrin (DC-SIGN, CD209) plays
an important role in MTB-DC interaction. This receptor is
mainly expressed on DCs and serves as both a PRR and
an adhesion receptor, due to its functions in DC migration
and DC-T-cell interactions [73, 74]. The carbohydrate
recognition domain of DC-SIGN recognizes Man-LAM and
lipomannans and the amount of Man-LAM determines the
binding strength [64]. Recently, it was shown that α-glucan
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(a dominant capsular polysaccharide) is also a ligand for DC-
SIGN [75]. After engagement of mycobacoerial structures,
DC-SIGN promotes an anti-inflammatory immune response
by maturation of infected DCs and induction of IL-10
production [64]. Later, it was shown that DC-SIGN exerts its
immunosuppressive effects through induction of acetylation
of the NF-κB subunit p65 via Raf-1, but only in the presence
of simultaneous TLR stimulation [76].

2.5. Dectin-1. Dectin-1 is a receptor with an extracellular
carbohydrate recognition domain and an intracellular ITAM
domain. This receptor is mainly expressed on macrophages,
DCs, neutrophils, and a subset of T-cells. Dectin-1 mainly
recognizes β-glucans present in fungal pathogens, but it has
been suggested to play an important role in MTB recognition
as well. The precise PAMP that leads to the recognition
through dectin-1 is not known although some species of
MTB express α-glucan on the cell surface [77] as a ligand
for dectin-1. Murine bone marrow-derived macrophages
infected with either virulent or avirulent mycobacteria
produce TNF-α and IL-6 in a dectin-1-independent or
dectin-1-dependent manner, respectively [78]. A study with
DCs isolated from spleens showed that dectin-1 triggers
the production of IL-12 [79]. Several studies have shown
synergistic effects between TLR2 and dectin-1 for the recog-
nition of fungal pathogens [80, 81], but this remains to be
demonstrated in case of mycobacteria. Finally, a recent report
showed that dectin-1, independent of TLR2 recognition, is
important for the innate immunity recognition of MTB and
for inducing Th1 and Th17 responses [82].

3. Recognition of Mycobacterium
tuberculosis—Human Genetic Studies

In order to have a complete picture of the role of PRRs for
the host defense to MTB, the results of in vitro and animal
studies need to be corroborated with studies in patients.
The association of host genetic factors with susceptibility or
resistance to TB has been studied extensively with candi-
date gene approaches and genome-wide association studies.
These analyses have revealed several important candidate
genes for susceptibility to TB [83, 84]. For the scope of this
paper this section is limited to PRRs and their signaling
pathways only. Table 1 shows an overview of investigated
SNPs with or without association with TB.

The TLR2 gene is located on chromosome 4q32 and is
composed of two noncoding exons and one coding exon
[85]. More than 175 SNPs for the human TLR2 have
been reported. In a Turkish cohort, an association between
Arg753Gln and susceptibility to TB [86] was reported,
while this was not confirmed in two Asian cohorts due
to the absence of this particular polymorphism in these
populations [87, 88]. Arg753Gln seems to be present only in
Caucasian populations, with percentages ranging from 0 to
0,49% in East Asian populations [87, 89–91]. In a Tunisian
cohort, Arg677Trp showed an association with susceptibility
to TB [92], but these results were put in doubt by the
discovery of a pseudogene on which this SNP seems to be
located [93].

The TLR2 genotype 597CC has been correlated with
susceptibility to TB, especially with disseminated forms of
the infection (miliairy and meningitis) caused by a particular
MTB genotype family (“the Beijing genotype”), in a cohort
of patients from Vietnam [107, 108]. A highly polymorphic
guanine-thymine repeat, located 100 base pairs upstream of
the TLR2 translation start site in intron 2, was correlated
with promoter activity and the expression of TLR2 on
CD14+ PBMCs (the shorter the repeat, the weaker the
promoter activity and the lower the expression of TLR2) for
both tuberculosis and nontuberculosis mycobacterial lung
infections in a Korean cohort [109, 110]. However, these
data could not be reproduced in a Taiwanese population
[111]. Another variation in genotype that seems to influence
TLR2 expression is −196 to −174 insertion/deletion, with a
recent study displaying an association with TB, while another
study showed a possible effect on development of systemic
symptoms [96, 111]. Many other polymorphisms in human
TLR2 are examined for their association with enhanced sus-
ceptibility to TB, but this requires further confirmation [96].

Since TLR1 and 6 form heterodimers with TLR2, SNPs in
these receptors might influence TLR2 signalling as well. One
example is Ile602Ser SNP in TLR1, which leads to aberrant
TLR1 cell trafficking, no functional TLR1 on the cell surface,
and which might influence the mycobacterial recognition
[112]. The 602I variant is overexpressed in African-
Americans infected with TB [94]. In addition, an association
between the TLR6 SNPs Ser249Pro and Thr361Thr and
MTB-induced cytokine production has been shown [100].

Immunogenetic studies have reported in two other TLR
genes: TLR4 and TLR8. In these genes, the genetic variation
associated with susceptibility to TB seems to be less pro-
nounced.

TLR4 Asp299Gly SNP showed an association with TB
in HIV positive Caucasians and Tanzanians, but not in a
Gambian population [97–99]. TLR8 has always been linked
with recognition of viral PAMPs, but in an immunogenetic
study in Indonesia, the TLR8 gene, which is located on the
X chromosome, was the only gene showing an association
with TB. This finding was confirmed in a second much larger
cohort from Russia and supported by functional data, as
discussed above [40]. Further studies are needed to confirm
these findings.

Besides the PRR receptor polymorphisms, SNPs in the
TLR signaling pathways may also influence susceptibility
to MTB. Khor et al. proposed that the Ser180Leu SNP in
the gene coding for TIR domain-containing adaptor protein
(TIRAP) was associated with a higher susceptibility to TB in a
cohort from West Africa [101] although the frequency of the
mutant allele was very rare. However, this association could
not be confirmed in a study involving 9000 individuals from
Ghana, Russia and Indonesia [102].

Regarding the other PRRs important for MTB recogni-
tion, the 871G and 336A variants located in the promoter
region of DC-SIGN were associated with protection against
tuberculosis in a South African cohort of patients [103].
This finding was, however, not confirmed in a Tunisian
cohort [105], while a later study even showed an associ-
ation in opposite direction (a protective effect of 336G)
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Table 1: SNPs associated with susceptibility to tuberculosis.

Receptor/signalling pathway Gene Amino acid Association No association

TLR1 1805T>G Lle602Ser [94] [95]

TLR2

816T>C Asn199Asn

2258G>A Arg753Gln [86] [95]

196 to 174 I/D∗ — [96] [87, 89, 91]

TLR4
13843A>G Asp299Gly [97, 98] [95, 99]

1196C>T Thr399Ile [95, 97]

TLR6
1083G>C Thr361Thr [100]

745C>T Ser249Pro [100] [95]

TLR8

4959C>G — [40]

2921A>G — [40]

3943A>G — [40]

5088A>G Met1Val [40]

TLR9
588A>G Lys196Lys [96]

411C>T His137His [96]

TIRAP 539C>T Ser180Leu [101] [102]

DC-SIGN

336A>G — [103, 104] [105, 106]

601C>T — [103, 105]

871G>C — [103] [105]

939C>T — [103, 105]

Neck

— [103, 105, 106]region

length
∗

I/D insertion/deletion.

[104]. Furthermore, genetic variation of the neck region
of DC-SIGN (which supports the carbohydrate recognition
domain) failed to show an association with tuberculosis
susceptibility [105, 113].

4. Conclusions and Future Research

Pattern recognition of MTB is a complex process in which
a multitude of receptors recognize specific PAMPs of the
microorganism. Recognition by specific receptors is followed
by different intracellular signalling pathways, in order to
integrate and induce an efficient activation of the innate
host defense mechanisms. While activation through TLRs,
NLRs and dectin-1 initiates essentially a proinflammatory
response, signalling through the C-type lectins DC-SIGN
or MR have mainly a modulatory function. The interplay
between these pathways lead to finely tuned response of the
immune system during the encounter with MTB.

One has to acknowledge that both in vitro and in vivo
studies suffer from specific limitations, which may at least
partly explain some discrepancies between experimental
and immunogenetic studies in TB patients. In vitro studies
use various cell types, murine macrophages (bone-marrow
derived or alveolar), DCs or PBMCs. This can influence
the outcome due to the preferential expression of specific
receptors on different cell types. A second limitation is
that in most in vitro studies only a single receptor is
examined, isolated from its physiological environment, while

the interplay between different pathways is probably one
of the most relevant aspects of pathogen recognition. The
role of the innate immune receptors involved in MTB
recognition has often been studied in transfected cell lines,
while animal models deficient of specific receptors show
that these receptors can compensate for each other and
sometimes display redundant roles [114–116].

In vivo animal studies have the disadvantage that the
most commonly used murine models do not represent
human TB; granuloma are not formed in these models,
which is a crucial step in the latency of this disease. Rabbit
and monkey models which are more similar with human TB
are rarely used. Even human genetic studies have limitations
in terms that these studies often lack the translation at
the level of protein function, while in other situations, an
important gene is highly conserved and lacks functionally
relevant genetic variants that can be assessed.

While pattern recognition is an important component
of the host response to infection with MTB, other factors
are relevant as well, including the intrinsic capacity of
macrophages to kill MTB, the distribution and function of
different T-cell subsets, and regenerative and fibrotic tissue
responses. These particular aspects were beyond the scope of
this paper.

Humans and MTB have coevolved for millennia, and it
is likely that a close relationship exist at the genomic level.
Indeed, two studies have shown a direct association between
the genetic characteristics of patients with tuberculosis and
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their mycobacterial isolates [108, 117]. Polymorphisms in
either TLR2 and SLC11A1 (NRAMP1) were associated with
higher change of being infected with strains belonging to
the evolutionary successful M. tuberculosis Beijing genotype.
Globally, M. tuberculosis shows strong geographical differ-
ences [118, 119], and this might be triggered by evolutionary
pressure from the innate immune system (“coevolution”).
Besides M. tuberculosis, also, host immune gene polymor-
phisms show strong geographical differences. The studies of
Caws et al. and Van Crevel et al. [108, 117] provide support
for the hypothesis that evolutionary adaptation of particular
M. tuberculosis lineages to certain human populations. For
instance, in the case of TLR2 in the study of Caws et
al., a certain M. tuberculosis genotype family might have a
higher or lower affinity for TLR2 expressed in individuals
with a particular TLR2 genotype, leading to differences in
downstream signalling and subsequent events after recog-
nition of M. tuberculosis. Clearly, this concept needs to
be investigated in terms of innate immune recognition by
examining a number of PRR genes in TB patients in relation
to their infective M. tuberculosis genotypes. Comparing host-
mycobacterial genotype relationships of more successful
M. tuberculosis genotypes like the Beijing family and less
successful genotypes will help increase the understanding
of the concept of “coevolution”, virulence and innate host
defense to M. tuberculosis.

Other important new areas of research related to innate
immunity have been initiated recently, and their relationship
with tuberculosis remains to be answered. One of the impor-
tant cellular responses associated with antimycobacterial
defense has been suggested to be the process of autophagy.
Autophagy has been also shown to modulate the inflamma-
tion [120], especially through its interaction with the pep-
tidoglycan receptor NOD2 [121, 122]. One important ques-
tion to be answered is whether there is a role for autophagy in
the induction of an inflammatory response by MTB. What is
the explanation for the apparent redundancy in the pattern
recognition, and which PRR is most important in which
stage of the disease? Answers to these questions are needed in
order to develop rational immunotherapeutic interventions
like addition of TLR-agonists to candidate vaccines.

More can also be learned from studies in human patients.
For instance, patients with advanced HIV-infection have
virtually no T-cell immunity. However, even in settings
which are hyperendemic for TB, some HIV-infected patients
will never develop TB. Certainly, these individuals must have
a very effective innate host response against MTB. A pivotal
approach will be to combine genetic with functional studies;
what does a SNP associated with susceptibility to TB mean in
terms of the function of the immune response?

Another suggestion is to study an increased number of
SNPs in more PRRs in the same population and to assess the
cumulative effects of various combinations of SNPs to obtain
a stronger association with disease. A striking observation
is that only loss-of-function mutations are investigated.
Could it be that gain-of-function mutations of PRRs might
influence the immune response to MTB as well?

Finally, one of the most important challenges for the
coming years is to translate the knowledge gained in the basic

science of immune responses to mycobacteria into improved
or novel immune-based treatment strategies, ranging from a
better vaccine to immunotherapy.
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heat shock protein 60 is a putative endogenous ligand of
the toll-like receptor-4 complex,” Journal of Immunology, vol.
164, no. 2, pp. 558–561, 2000.

[48] B. Abel, N. Thieblemont, V. J. F. Quesniaux et al., “Toll-
like receptor 4 expression is required to control chronic
Mycobacterium tuberculosis infection in mice,” Journal of
Immunology, vol. 169, no. 6, pp. 3155–3162, 2002.

[49] S. Shi, C. Nathan, D. Schnappinger et al., “MyD88 primes
macrophages for full-scale activation by interferon-γ yet
mediates few responses to Mycobacterium tuberculosis,”
Journal of Experimental Medicine, vol. 198, no. 7, pp. 987–
997, 2003.

[50] M. Proell, S. J. Riedl, J. H. Fritz, A. M. Rojas, and R.
Schwarzenbacher, “The Nod-Like Receptor (NLR) family: a
tale of similarities and differences,” PLoS One, vol. 3, no. 4,
Article ID e2119, 2008.

[51] A. Dufner, S. Pownall, and T. W. Mak, “Caspase recruitment
domain protein 6 is a microtubule-interacting protein that
positively modulates NF-κB activation,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 103, no. 4, pp. 988–993, 2006.

[52] F. Martinon and J. Tschopp, “Inflammatory caspases: linking
an intracellular innate immune system to autoinflammatory
diseases,” Cell, vol. 117, no. 5, pp. 561–574, 2004.

[53] F. Martinon, L. Agostini, E. Meylan, and J. Tschopp, “Iden-
tification of bacterial muramyl dipeptide as activator of the
NALP3/Cryopyrin inflammasome,” Current Biology, vol. 14,
no. 21, pp. 1929–1934, 2004.

[54] F. Martinon, “Orchestration of pathogen recognition by
inflammasome diversity: variations on a common theme,”
European Journal of Immunology, vol. 37, no. 11, pp. 3003–
3006, 2007.

[55] T. Burckstummer, C. Baumann, S. Blüml et al., “An
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