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Innate Immunity in the Respiratory Epithelium
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The airway epithelium represents the first point of contact for
inhaled foreign organisms. The protective arsenal of the airway
epithelium is provided in the form of physical barriers and a vast
array of receptors and antimicrobial compounds that constitute
the innate immune system. Many of the known innate immune
receptors, including the Toll-like receptors and nucleotide oligomer-
ization domain–like receptors, are expressed by the airway epithe-
lium, which leads to the production of proinflammatory cytokines
and chemokines that affect microorganisms directly and recruit
immune cells, such as neutrophils and T cells, to the site of infection.
The airway epithelium also produces a number of resident antimi-
crobial proteins, such as lysozyme, lactoferrin, and mucins, as well as
a swathe of cationic proteins. Dysregulation of the airway epithelial
innate immune system is associated with a number of medical
conditions that can result in compromised immunity and chronic
inflammation of the lung. This review focuses on the innate immune
capabilities of the airway epithelium and its role in protecting the
lung from infection as well as the outcomes when its function is
compromised.
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The airway epithelium represents the first line of defense of the
lung. Airway epithelial cells provide a mechanical barrier to
prevent infection but also produce chemokines and cytokines,
such as IL-6, CXCL8, IL-1b, GM-CSF, and G-CSF, that recruit
and activate phagocytic cells to eradicate organisms and infected
cells. Because the lung is normally sterile, interactions with
microorganisms typically cause an inflammatory response. This
response can be due to direct cytopathic effects caused by the
organism or can occur as a result of the host response to these
organisms. The airway fluid contains a number of resident
antimicrobial compounds, such as cationic defensins, or larger
proteins such as lysozyme. In additional to resident antimicrobial
proteins, the airway epithelium expresses an array of sensors to
detect pathogens. Immune signaling can be activated by intact
bacteria, viruses, fungi, or, more commonly, by the components
of these organisms that are shed and gain access to surface or
intracellular receptors. Even in the absence of direct epithelial
contact, these shed components, such as LPS and flagella,
referred to as pathogen-associated molecular patterns (PAMPs),
can permeate the respiratory mucus layer to gain access to
epithelial receptors stimulating inflammation. It is the recognition
of PAMPs that constitutes what the innate immune system
largely senses. The mucosal response, in particular the innate
response, maintains the sterility of the lower airways by effi-

ciently clearing sensed pathogens and rapidly controlling second-
ary effects associated with neutrophils and their products.

It is critical to regulate the intensity and duration of the
proinflammatory signaling initiated in the airway. Perhaps more
than at any other site, excessive inflammation (i.e., acute pneumo-
nia) is associated with respiratory compromise and must be tightly
controlled. Thus, a major component of mucosal immunity is the
activation of the regulatory components of the innate immune
system, which includes expression of NF-kB, activator protein 1,
IFN regulatory factors (IRFs), and mitogen-activated protein
kinases (MAPKs) (1, 2).

TLR SIGNALING

The Toll-like receptors (TLRs) are an important family of
proteins involved in the recognition of microorganisms (Figure
1). The Toll protein was originally identified as being involved in
dorsal-ventral patterning in Drosophila and later to be involved
in fighting fungal infections (3, 4). Subsequent studies identified
a number of homologs in humans that are involved in innate
sensing of microbial products or PAMPs. The TLRs are integral
membrane glycoproteins that, through homology, are part of a
large family that includes IL-1 receptors (IL-1Rs). The cytoplas-
mic region contains a conserved TIR (Toll/IL-1R) domain (5),
whereas the extracellular region differs between TLRs and IL-R
by possessing leucine-rich repeats (LRRs), as opposed to an Ig-
like domain. It is these LRRs that specify the target ligand for
each TLR, also known as pattern recognition receptors.

There have been 11 TLRs identified in humans. TLRs
recognize a diverse array of microbial components, such as lip-
oproteins (TLR1, -2, and -6) (6–9), LPS (TLR4) (10), flagellin
(TLR5) (11), DNA (TLR9) (12), and RNA (TLR3, -7, and -8)
(13–15). The nature of the TLR10 ligand is unknown, whereas
TLR11 has been shown to recognize uropathogenic E. coli (16)
and a profilin-like molecule from Toxoplasma (17). TLRs1, -2, -4,
-5, and -6 are located at the plasma membrane, with TLR3, -7, -8,
and -9 in the endoplasmic reticulum, and are then chaperoned to
endolysosomes (18).

Signal transduction from TLRs is typically referred to as
MyD88-dependent or -independent. MyD88-dependent signal-
ing (myeloid differentiation primary-response protein 88) (19)
occurs through the adaptor protein MyD88 and its TLR binding
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partner toll–IL-1 receptor domain containing adaptor protein
(TIRAP) (20). All TLRs, with the exception of TLR3, use
MyD88-dependent signaling. TIRAP is not used by TLR5, -7,
-8, or -9 (20). The importance of MyD88 is highlighted by the
observation that protective immunity is lost to a small group of
pyogenic organisms in humans with MyD88 mutations (21). The
MyD88-independent arm (discussed below) is initiated by
TLR3 and TLR4 through the TRIF-related adaptor molecule
(22, 23) that couples endocytosis of TLR4 to the TIR-domain–
containing adapter-inducing IFN-b (TRIF) adaptor (13, 24, 25).
Activation of a TLR and subsequent signaling through MyD88
initiates an extensive signal transduction cascade that proceeds
through a number of kinases and transcription factors, leading
to phosphorylation of IkBa, an NF-kB inhibitory protein, and
allowing NF-kB to activate expression of proinflammatory
genes such as TNF, IL-1b, IL-6, and CXCL8 (26, 27).

TLR SIGNALING IN THE AIRWAY EPITHELIUM

The airway epithelium expresses the full complement of TLRs,
but their distribution and the availability of adaptor proteins is
important in determining their participation in signaling the
presence of PAMPs. The expression of each TLR has been
investigated in a variety of primary and immortalized cell lines
from the upper and lower airways, with the strongest gene
expression present for TLRs 2 through 6; the expression of
TLRs 7 through 10 is variable depending on the cell type
studied (2, 28–32). TLRs 1 through 6 and 9 are present on the
cell surface, identified through flow cytometry (33). However,
other studies point to a more even distribution of the receptors
throughout airway epithelial cells (28). Adaptors such as
MyD88 and CD14 are not seen on the cell surface (28, 33).
Reduced surface expression of CD14 and low levels of MD2
production provides a potential mechanism for the low endog-
enous responsiveness of airway epithelial cells to LPS (34).

A number of TLRs are used by the airway to sense and
initiate innate and adaptive immunity in response to pathogens.
These organisms can induce the transcription of TLRs and their
mobilization to the cell surface. Common airway pathogens,
such as the viruses influenza, rhinovirus, and respiratory syncy-
tial virus (RSV) and the bacteria Staphylococcus aureus,
Pseudomonas aeruginosa, Streptococcus pneumoniae, and Kleb-

siella pneumoniae, are detected through the presence of PAMPs
on the epithelial cell surface. In some cases, expression of the
TLRs is induced. TLR3 is important in the detection of
a number of viruses, and its transcription is induced when a cell
is infected (35–37). As a potential by-product of continual viral
insult, TLR3 ligands (e.g., poly(I:C)) give the strongest proin-
flammatory response (2, 38). Bacterial infection with K. pneu-
moniae causes induction of genes encoding TLR2 and -4,
sensors of liporotein and LPS, two important receptors for
gram-negative bacterial pathogens (39). Expression of TLR4 on
airway epithelial cells is crucial in the allergic response LPS, as
demonstrated using bone marrow chimeric mice (40). Interac-
tion of the epithelium with P. aeruginosa involves TLR2, -4,
and -5 (41, 42). The flagella of P. aeruginosa, recognized by
TLR5, induce mobilization of the receptor to the surface of the
cell (43). P. aeruginosa flagella also interact with TLR2 and
asialoGM1. This signaling through asialoGM1 is facilitated by
a TLR2 lipid raft complex (caveolin-1) (43). The importance of
MyD88 signaling in epithelial cells in response to P. aeruginosa
was shown using bone marrow chimeras (44). During the early
phase of clearance, MyD88 null mice that received normal bone
marrow still faired worse, indicating that MyD88-dependent
signaling of non–bone marrow derived cells was important in
initial P. aeruginosa clearance.

TLR REGULATION OF MUCIN PRODUCTION

Mucin gene expression is also regulated by proinflammatory/
TLR signaling. Mucins are glycoproteins that constitute mucus,
an important barrier component of the respiratory epithelium.
Mucus not only partakes in the normal mucocilliary clearance
of the lung but also keeps the airway hydrated and traps
particulate matter and potential pathogens. There are a large
number of mucin genes, of which at least 12 are expressed in the
airway (45). The most abundant mucins expressed are MUC1,
MUC2, and MUC5AC; each is induced by a variety of gram-
positive and gram-negative pathogens as well as viruses (46–51).
Induction of mucin gene expression has been observed with
TNF (52) and CXCL8 (53). Direct stimulation of TLR2 (54)
and TLR3 (55) induces mucin expression as well as activating
MAPK (56) and inducing epidermal growth factor receptor
(EGFR) signaling (55, 57). It is also likely that mucins feedback

Figure 1. Innate immunity in the respiratory epithelium.

Shown is an airway epithelial cell with the innate mole-
cules discussed in this review and their ligands and surface

receptors (Toll-like receptor (TLR)1, -2, -4, -5, -6; TNF

receptor [TNFR]; and epidermal growth factor receptor

(EGFR), endosomal receptors (TLR3, -4, -7, -8, and -9),
cytosolic receptors (retinoic acid inducible gene [RIG]-I,

melanoma differentiation–associated protein [MDA]5, nu-

cleotide oligomerization domain [NOD]1, NOD2, IL1-

b–converting enzyme protease activating factor [IPAF],
and NOD-like receptor pyrin domain [NLRP3]) and anti-

microbial proteins.
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into the TLR signaling pathways. Ueno and colleagues (58)
showed that MUC1 plays an antiinflammatory role by nega-
tively regulating signaling as a result of TLR2, -3, -4, -5, -7, and
-9 signaling. A comprehensive review of mucins in the airway
has recently been published (59). There is a need to maintain
balance of production and clearance of mucins and mucus in the
airway, as can be seen in chronic diseases such as cystic fibrosis
(CF), chronic obstructive pulmonary disease (COPD), and
asthma, which typically result in increased levels of mucus that
reduce airway function (60–62). As an indication that excessive
mucus is deleterious, mice lacking MUC1 were able to better
clear P. aeruginosa with enhanced neutrophil recruitment and
higher proinflammatory cytokine production (63).

MODIFICATION OF TLR SIGNALING IN DISEASE STATES

An altered ability to sense pathogens by TLRs can have a
significant impact on health. Although viruses are not sensed by
TLR4, infection with RSV induces expression of TLR4, result-
ing in a sensitized state to LPS and enhancing inflammatory
signaling (64). Secondary bacterial pneumonia after influenza
infection is associated with significant morbidity and mortality.
Desensitization of TLRs by viral PAMPs may contribute to
enhanced susceptibility to bacterial infection. The desensitiza-
tion leads to reduced chemokine production and NF-kB acti-
vation (65). A tolerance state after repeated exposure is also the
basis of the hygiene hypothesis in asthma, whereby exposure
early in life to PAMPs reduces the likelihood of hyperinflam-
mation later in life (66–68).

Increased TLR signaling is associated with several pulmo-
nary diseases. Exposure to cigarette smoke has been shown to
increase TLR4 expression, leading to heightened CXCL8 pro-
duction and additional recruitment of polymorphonuclear cells
to the airways (69). In patients with CF, there is typically
a hyperinflammatory state in the lungs, which is also seen in CF
cell lines with increased CXCL8 and NF-kB signaling (28, 70).
This increased signaling is not a consequence of TLR4, which is
reported to be reduced in CF (71). Although CF inflammation is
enhanced by the sensing of flagellin by TLR5, P. aeruginosa
typically becomes nonmotile in chronic infections of patients
with CF over time (72), and loss of motility is not necessarily
coupled with a loss of inflammatory activity (73). Changes in
P. aeruginosa LPS also occur in the CF lung (74). Modification
of the lipid A portion of P. aeruginosa in vivo was associated
with resistance to antimicrobial peptides and increased proin-
flammatory signaling (75). A reduced ability to activate TLR
signaling is also problematic. Mutations in TLR4 are asso-
ciated with increased risk of infection after surgery and display
reduced cytokine production in the context of ventilator-
associated pneumonia (76).

TYPE I IFNS

Type I IFN signaling often involves the activation of an endo-
somally located sensor and, via the TRIF adaptor (TLR3 and
-4), initiates the production of IFN-b via TANK binding kinase
(TBK)1 and phosphorylated IRF3, -5, and -7 (Figure 1) (77–80).
Interaction of IFN-b with its heterodimeric receptor (IFN-a/b
receptor [IFNAR]) results in dimerization and phosphorylation
of STAT1/2 via Jak1 and Tyk2, leading to the downstream
transcription of many genes, including CXCL10 (81–85). It has
been shown in the airway epithelium that IFNAR is located
basolaterally in differentiated cells (86). Signaling through
IFNAR also results in the activation of the MAPK and PI3K
pathways (87, 88) and leads to NF-kB activation that can in turn
activate type I IFN signaling (89).

Many bacterial pathogens, both intracellular and extracel-
lular, induce the type I IFN response via recognition of PAMPs
such as proteins, LPS, and DNA (90–92). TLRs3, -4, -7, -8, and
-9 (93–96), nucleotide oligomerization domain (NOD) (97, 98),
and RNA polymerase III, which was identified as a sensor for
cytosolic DNA (99, 100), as well as DAI/Zbp1 (DNA-dependent
activator of IFN genes) (101), can activate type I IFN signaling.

Viruses are potent activators of type I IFN signaling through
endosomal TLRs as well as the retinoic acid inducible gene
[RIG]-like receptors. The proteins that are able to recognize
RNA viruses are RIG-I (102) and melanoma differentiation–
associated protein 5 (MDA5) (103, 104), which converge to the
mitochondrial-bound IPS-1 (also called mitochondrial antiviral
signaling protein) (105, 106) before the signal goes to TBK1 and
IRF3 and IRF7. RIG-I and MDA5 are produced in the airway
epithelium and respond to a number of pathogens such as in-
fluenza, rhinovirus, and RSV (35–37, 107).

How nonphagocytic cells such as airway mucosal cells pro-
duce type I IFNs in response to extracellular pathogens is ill
defined. Most of the pathogens studied to date that activate type
I IFN signaling are intracellular in nature, and their signaling
pathways have been studied in the context of DCs or macro-
phages. Recently, the importance of epithelial type I IFN
signaling was shown (108) using a mouse lacking STAT1 in
epithelial cells. In that study, STAT1 null mice were irradiated
and reconstituted with healthy bone marrow. These epithelial-
specific STAT1 null mice were still highly susceptible to viral
infection, indicating that epithelial STAT1 signaling was impor-
tant in mediating viral clearance. S. aureus induces type I IFN in
the airway epithelium, a process dependent on the virulence
factor, protein A (91).

The outcome of this type I IFN response is variable and
dependent upon the organism and the nature of the infection.
The ability to induce production of type I IFNs is a critical
component of the host response to influenza infection (109)
but has much more variable consequences in response to
bacterial infection. Infection of Ifnar2/2 mice by the intracel-
lular organisms Listeria and Legionella have opposite conse-
quences, with the Ifnar2/2 mice being significantly protected
from Listeriosis (110) but with enhanced susceptibility to
Legionella (111). Many extracellular bacteria shed PAMPs in
the airway that can be internalized by airway cells and gain
access to receptors linked to type I IFN signaling, thereby
functioning more like viruses in stimulating innate immune
responses. The clinical outcome of these type I IFN signaling
responses differs according to the specific organism. For example,
type I IFN contributes to S. aureus virulence in the setting of
pneumonia (91), possibly due to TNF-induced death (112, 113),
but contributes to the clearance of S. pneumoniae (114).
Consistent with type I IFN activation via LPS (115), mice
lacking TRIF (116) or IRF3 (117) have reduced capacity to
clear P. aeruginosa infection, indicating a role for type I IFNs in
protection. A similar observation was observed with E. coli in
a pneumonia model with TRIF-null mice (118). Type I IFN
signaling also contributes to the development of secondary
bacterial pneumonia after influenza infection (119). In inflam-
matory diseases such as COPD, higher levels of type I IFN
production are observed (120), whereas nasal epithelial cells
from smokers have reduced expression of type I IFN receptors,
kinases, and reduced type I IFN–dependent cytokines after
influenza infection (121).

CXCR3

One group of cytokines that is regulated by type I IFNs provides
a link between innate and adaptive immunity. The CXCR3
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ligands CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC)
provide a mechanism for epithelial and other resident cells to
recruit T cells (122–128). The production of CXCR3 chemokines
such as CXCL10 preferentially attracts Th1 T cells (Figure 1)
(127, 129) while antagonizing the recruitment of Th2 T cells (126).

The CXCR3 receptor and the CXCR3 cytokines are ex-
pressed in airway epithelial cells and are induced upon bacterial
and viral stimulation in the airway (130–134). This results in
CD41 T-cell chemotaxis (135) and contributes to inflammation
(136, 137). The CXCR3 cytokines can exert direct antibacterial
effects against gram-positive and gram-negative organisms (136,
138). CXCL9 has a bactericidal effect on S. pneumonia; how-
ever, CXCL9 knockout mice were not attenuated in pneumo-
coccal clearance from the lung (130).

A correlation exists between respiratory infections and levels
of CXCR3 cytokines, particularly CXCL10. Levels of CXCL10
correlated to disease severity, viral titer, and number of lympho-
cytes in patients infected with rhinovirus (134). Elevated levels of
CXCR3-positive cells and cytokines have also been observed in
smokers and patients with COPD and bronchitis (139–141).

NOD-LIKE RECEPTORS

The NOD-like receptor (NLR) family encompasses a family of
proteins that sense PAMPs in the cytosol. The best character-
ized members of this family are the NOD proteins NOD1 and
NOD2. The NODs contain a caspase recruitment domain
(CARD), NOD, and LRR domains. The NOD proteins were ini-
tially observed for their role in NF-kB induction and Crohn’s
disease (NOD2) (142–146). NOD1 primarily senses gram-negative
peptidoglycan, which contains g-D-glutamyl-meso-diaminopimelic
acid (147, 148), whereas NOD2 is considered a general sensor of
peptidolgycan through recognition of muramyl dipeptide (Figure
1) (149). Signal transduction from either NOD converges on the
RIP2 kinase that leads to NF-kB activation (150).

Because NLRs are relatively new, the knowledge of NLRs in
the airway is still developing. Both NOD proteins are expressed
in the airway epithelium and are induced with bacterial stimuli
(30, 151–154). In the context of polymicrobial colonization in
the airway, the pore-forming toxin pneumolysin from S. pneu-
moniae facilitates entry of peptidoglycan from Haemophilus
influenzae to activate NOD1 (155). In vivo studies have shown
that the NODs are involved in pulmonary clearance of a number
of bacterial pathogens (156–159); in some cases they appear to
have redundant roles, with attenuated clearance only observed
in RIP2 knockout mice (157). Genetic polymorphisms in nod1
have been linked to asthma (160).

BACTERIAL ACTIVATION OF THE INFLAMMASOME

The inflammasome is the term applied to the assembly of
a number of proteins, including an NLR, pro–caspase-1, and
the adapter apoptosis-associated speck-like protein (ASC)
(161). An outcome of inflammasome activation is the pro-
duction of caspase-1, which cleaves pro-proteins of IL-1b and
IL-18 to their biologically active forms (162). Pro–IL-1b pro-
duction is mediated by induction of the IL-1b gene through
TLR and NOD stimulation, which is then processed by caspase-
1 produced by recognition by the NLRs (163). The consequence
of inflammasome activation is a form of cell death termed
‘‘pyroptosis.’’ Pyroptosis results in membrane disruption and
the release of IL-1b and other inflammatory cytokines (164).
Two other NLR proteins are involved in inflammasome activa-
tion, an area that has not been studied in detail in the airway but
is important in pulmonary defenses (165, 166).

IL1-b–converting enzyme protease activating factor (IPAF),
also known as NLRC4 (NLR CARD domain), recognizes

cytosolic flagellin (Figure 1) (167, 168), including that of P.
aeruginosa (169, 170). Extracellular flagellin is not recognized
by IPAF. Activation of IPAF via flagellin is complex because it
involves the delivery of the ligand via a functional type III
secretion system. In the case of P. aeruginosa, two different
type III secreted toxins have been shown to inhibit caspase-
1–dependent cytokine production (169–172). In human epi-
thelial cells, it has been shown that IPAF controls replication
of Legionella pneumophila (173).

A second inflammasome NLR is NLR pyrin domain
(NLRP3). NLRP3 senses multiple PAMPS, such as peptido-
glycan (174) and RNA (175), and results in an inflammasome
if ATP is sensed or bacterial toxins facilitate entry of stimu-
lating ligands (Figure 1) (176–179). NLRP3 has been shown to
sense asbestos and uric acid as a result of lung injury (180–
182). NLRP3 is present in the nasal epithelium, and in vivo
NLRP3 null mice show reduced inflammation to bacterial and
viral challenge but poor survival, showcasing the requirement
for inflammation in clearing infections (151, 165, 166, 183).

NON-TLR SIGNALING

There are a number of receptors present on the cell surface that
signal through a number of pathways that are not related to the
TLRs or NLRs. These receptors, three of which are TNF re-
ceptor (TNFR)1, EGFR, and C-type lectins, respond to host
components but are also used by pathogens and can be im-
portant in defense.

TNFR1

TNF is a major proinflammatory cytokine whose expression
is briskly activated in response to many types of infection; thus,
it is not surprising that many different cell types in the lung
express receptors to TNF (TNFRs) (184). In the airway
epithelium, TNFR1 is abundant on the cell surface (Figure 1)
(185) and is linked to many signaling cascades involved in host
defense. One of the most striking examples for the involvement
of TNFR1 in host defense is its interaction with protein A from
S. aureus. The IgG binding domain of protein A, which
recognizes the Fc region of IgG and Fab of VH3 (185–187),
activates the TNF cascade, inducing CXCL8 expression via
TRAF2/p38 MAPK and NF-kB. This interaction is critical in
the pathogenesis of S. aureus pneumonia because spa null
mutants do not cause infection and TNFR1 null mice are highly
resistant to infection (185, 187).TNFR1 signaling appears to be
the primary sensing mechanism for S. aureus in the airway be-
cause MyD88 is not important in S. aureus pneumonia models
in vivo (188). A similar requirement for TNFR1 in causing
pneumonia was observed with Stenotrophomonas maltophilia,
an opportunistic pathogen for patients with CF. TNFR1 mice
faired significantly better for pneumonia and bacteremia when
intranasally infected with S. maltophilia (189).

Elevated levels of TNFR1 expression have been observed
in CF epithelial cells, and Burkholderia cenocepacia, also a CF
pathogen, activates TNFR1 as well (190). TNFR1 is also im-
portant for the clearance of P. aeruginosa (191). TNFR1 also
regulates expression of MUC1, which is an important anti-
inflammatory component and binding site for P. aeruginosa on
airway epithelial cells (47, 52, 63, 192).

EGFR

EGFR plays a number of roles in epithelial signaling in re-
sponse to airway infection. EGFR is located apically on airway
epithelial cells (Figure 1) and induces production of CXCL8 in
response to a variety of stimuli (193, 194). S. aureus interacts
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with EGFR through the IgG binding domain of protein A to
activate TNF converting enzyme (TACE) (also called ADAM17).
TACE participates in the regulation of inflammatory signaling
by cleaving TNFR1 from the epithelial surface and inducing IL-
6R shedding (195) and trans-signaling. The protein A-EGFR
interaction induces TACE through a c-Src-erk1/2–mediated
cascade (194). This signaling is not due to TGF-a because in-
hibition of protein A-EGFR binding prevented EGFR phos-
phorylation and TNFR1 cleavage.

EGFR signaling is central to the induction of mucin pro-
duction in the airway. Activation of EGFR results in increased
production of MUC5AC in the airway epithelium (196), and
P. aeruginosa induces MUC5AC via activation of MAPK and
EGFR (57, 197, 198). Increased mucin is a response to tobacco
smoke (197), and EGFR serves as a gateway for cigarette smoke
to mediate its damaging effects on adherens junctions and Wnt/
b-catenin signaling (199). TACE is an integral component of this
response because inhibiting TACE prevents the increased mucin
expression as a result of reduce TGF-a shedding (198)

An interplay exists between EGFR signaling and the TLRs.
TLR2, -3, -5, and -6 have been shown to activate EGFR. The
mechanism leading to induction of CXCL8 occurs via a Duox1–
TACE–TGF-a–EGFR pathway, with TGF-a acting as the
ligand for EGFR signaling induced by the TLRs (200–202).

C-TYPE LECTINS

The C-type lectin family of proteins has an important physical
role in mediating cell–cell adhesion but also recognizes carbo-
hydrates, an important mechanism to sense fungal, yeast, and
mycobacterial infections (203). C-type lectins possess a distinct
protein fold, termed the carbohydrate recognition domain,
which is generated by two conserved disulfide bonds between
cysteine residues at the base of a double loop structure (204).
Members of this family include dectin-1, dectin-2, and mincle.
The C-type lectins can recognize the b-glycans present on fungi,
yeast, and mycobacterial cell walls (205, 206)

Dectin-1 has been shown to be important in Pneumocystis
carinii respiratory infection (207), whereas its role in Candida
albicans depends on the infection model (206, 207). Dectin-1
also plays a significant role in inflammatory signaling in re-
sponse to Aspergillus fumigatus (208). Dectin-2 is another C-
type lectin involved in sensing yeast that is expressed in the lung
(209). Dectin-2 shows a preference for hyphae of C. albicans
(210) and is important in host defense (211). A third C-type
lectin is Mincle, which is been shown to be required for
proinflammatory signaling in response to C. albicans (212).
The CARD9 adaptor mediates dectin-1 and dectin-2 signaling
in CARD9 (213, 214), and mice lacking CARD9 were unable
to control respiratory infection of Mycobacterium tuberculosis
(215).

The biology of the C-type lectins has been mainly charac-
terized in myeloid cells. Their role, if any, in airway epithelial
cells is not fully understood. One study has identified pro-
duction of dectin-1 in airway epithelial cells (216), contrasting
earlier work (217). Production of dectin-1 in A549 cells was
induced upon stimulation with M. tuberculosis, and internaliza-
tion of the organism was partially blocked by silencing dectin-1
(216).

ANTIMICROBIAL PRODUCTS

In response to the recognition of PAMPs via TLRs and NLRs,
the airway itself participates in microbial killing. The airway
secretes a number of antimicrobial products that act directly on
invading pathogens (Figure 1). These products are resident in

the airway fluid and inducible upon recognition of pathogen.
The antimicrobial molecules produced by the airway can be small
cationic molecules, such as the b-defensins, LL-37, and CCL20,
or larger proteins, such lysozyme, lactoferrin, and mucin.

b-DEFENSINS

b-Defensins are small cationic peptides that play an important
role in host defense against microbial pathogens in the airway
epithelium. There are six b-defensins identified in humans
(hBD1–6). Although hBD5 and hBD6 have shown antimicro-
bial activity, they are not expressed in the respiratory epithelium
(218–220). hBD1 is constitutively expressed in the epithelium,
whereas hBD2, -3, and -4 can be induced by a variety of bac-
terial, fungal, and viral pathogens (221–227).

Significant evidence exists for the regulation of b-defensin
expression by TLRs. Initial evidence observed that proinflam-
matory cytokines such as TNF and IL-1b could induce
expression of hBD2 (228, 229). Subsequently it was found
that hBD2 could be induced through TLR2 signaling (230,
231). Interfering with NF-kB signaling abolishes this response
(232), as does blocking MyD88 or Mal/TIRAP (233). The
TLR4 signaling complex and its MyD88 portion of signaling
are involved in b-defensin expression (229, 233, 234). Micro-
bial DNA through TLR9 (31), bacterial flagellin through
TLR5 (235), and viral dsRNA through TLR3 (235) induce
b-defensin expression in the respiratory epithelium. b-Defensins
can also induce signaling of T cells and dendritic cells by binding
to the chemokine receptor CCR6 (236).

Levels of b-defensin expression correlate to lung disease.
Elevated levels of hBD2 are associated with inflammation in
patients with CF, inflammatory lung disease, and deterioration
of lung function. b-Defensins are not usually detected in healthy
bronchoalveolar lavage samples (221, 237, 238). Mucoid strains
of P. aeruginosa, as selected in chronic infections in the CF lung,
were capable of inducing hBD2, whereas nonmucoid strains
were not (239). The ability to express b-defensins has also been
shown to be reduced with long-term smoking (240) and may
contribute to lung disease.

LL37

Another cationic host peptide peptide is LL-37, the only human
member of the cathelicidin family of antimicrobial peptides
(241). LL-37 is generated by the respiratory epithelium and
possesses broad spectrum antimicrobial activity (242) that,
when overexpressed in murine models, enhances bacterial
clearance (243). Elevated levels of LL-37 have been observed
in CF samples, correlating with severity of disease (237). This
inflammatory correlate may be related to cell death because
apoptosis of respiratory epithelial cells has been observed with
physiologically relevant levels of LL-37 (244).

LL-37 is induced by bacterial and mycobacterial infections,
and this is dependent on MAPK (245–247). LL-37 is also
capable of activating MAPK to induce CXCL8 secretion via
activation of EGFR and IL-6 via NF-kB (248, 249). Although
not investigated in epithelial cells, LL-37 can be induced by
a variety of TLRs in macrophages (250).

CCL20

CCL20 (also known as LARC and MIP-3a) is another protein
similar to the defensins. CCL20 is expressed in the respiratory
epithelium and is stimulated by a variety of microorganisms,
including bacteria and the dust mite (251, 252). CCL20 has
also been shown to be regulated by TLR2, -3, and -5 as well as
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TNF (253–256). By interacting with CCR6, CCL20 is able to
attract immature DC and T cells. Clinically, elevated levels are
observed in patients with CF (253), and cigarette smoke retards
its induction (254).

LACTOFERRIN AND LYSOZYME

The large and abundant antimicrobial proteins in the airway are
lysozyme and lactoferrin. Both proteins have proven antibacte-
rial properties but act with differing mechanisms (257). Lysozyme
targets the b, 1/4 glycosidic bond between N-acetylglucosamine
and N-acetylmuraminic acid in peptidoglycan (258) and sub-
sequently is effective against gram–positive pathogens (257).
Levels of lysozyme produced by epithelial cells correlate well
to clearance of invading pathogens, and transgenic mice express-
ing elevated levels of lysozyme have significantly improved
clearance of bacteria (259–261). Lactoferrin chelates iron away
from bacteria but also has direct antimicrobial properties (257,
262, 263). Lactoferrin works with lysozyme to kill gram–negative
pathogens by disrupting their membrane to expose susceptible
peptidoglycan (264). A number of studies have investigated the
correlation between elevated levels of lysozyme and lactoferrin
in patients with CF (265) as well as individuals with chronic
bronchitis and asymptomatic smokers, indicating a potential con-
tribution to inflammation (266).

CONCLUSION

The airway epithelium is an important part of the innate im-
mune system. Its collection of surface, endosomal, and cytosolic
sensors that activate numerous proinflammatory signaling path-
ways and resident antimicrobial peptides offers significant
mechanisms to deal with invading pathogens. It is a tremen-
dously complex system, with many coregulated components.
There is likely even greater complexity than we now appreciate;
additional receptors are being identified continuously as is an
appreciation for their role in epithelial cells. Despite the large
amount of experimental data accrued, many questions remain.
It remains unclear how the airway epithelium discriminates
between commensal flora and pathogens that often colonize
(S. pneumoniae or S. aureus) from the bacteria which initiate
invasive infection. Not only does the host actively respond to
the perceived threat of infection, but the organisms readily
adapt to immune pressure, activating and repressing specific
genes to facilitate proliferation despite the many effectors of
immune clearance. A great deal has been learned by exploiting
murine models of infection, which, despite their limitations,
have facilitated a basic understanding of the major components
of the innate immune system and their role in host defense of
the respiratory tract. The importance of the innate immune
system is highlighted by susceptibility to pathogens in specific
transgenic mice studies and the correlations that exist with
diseased states such as COPD, CF, and cigarette smoking. More
complex models, such as the newly developed CF pig (267–269),
as well as detailed genetic studies of polymorphisms in TLRs,
NODs, and other receptors, should provide even more insights
into the mechanisms through which the respiratory mucosa
initiates host defenses against such a variety of pathogens.

FUTURE DIRECTION: THE ROLE OF EPITHELIAL SIGNALING IN

MUCOSAL IMMUNITY

The participation of the airway epithelium in mucosal defenses
has been well established; there is no question that airway
epithelial cells provide much more than just a mechanical
barrier to infection. However, many unanswered questions
remain. The presence of the full complement of innate immune

receptors, TLRs, NLRs, and the diverse intracellular receptors
linked to the type I IFN cascade indicate that many airway
epithelial cells have the potential to respond to a wide range of
pathogens. What may be limiting is whether specific PAMPs can
gain access to the corresponding receptors and whether they are
superficially exposed or intracellular. Thus, the ability of the
mucosal epithelium to distinguish commensal flora, which does
not activate immune responses, from pathogens that do may lie
in the ability of the pathogen to stimulate intracellular signaling.
For many bacteria and viruses, this may include activating
receptors linked to the type I IFN cascade, which are intra-
cellular. The relative amounts and distribution of these re-
ceptors could account for major differences in the activation of
epithelial cells at specific sites to respond to specific pathogens
(e.g., the lack of TLR4 on the surface of polarized epithelial
cells). A better understanding of how the mucosal epithelium
responds to airway PAMPs and how signals from commensals
are processed to prevent excessive damaging inflammatory
responses and how the presence of a real pathogen is rapidly am-
plified to protect the lung are questions that are being actively
investigated.
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