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Innate immunity in tuberculosis: host defense vs
pathogen evasion

Cui Hua Liu1,2, Haiying Liu3 and Baoxue Ge4

The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs),
neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium
tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like
receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host
orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such
as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite
strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate
immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the
host’s innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms
underlying host–pathogen interactions could provide a rational basis for the development of effective anti-TB
therapeutics.
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INTRODUCTION

Infection with Mycobacterium tuberculosis (Mtb) was respon-

sible for ~ 10.4 million new tuberculosis (TB) cases and 1.4

million TB deaths worldwide in 2015, according to a report

from the World Health Organization.1 The successful establish-

ment of Mtb infection largely depends on its early interactions

with host innate immune cells, such as macrophages, dendritic

cells (DCs), neutrophils and natural killer (NK) cells.2 These

immune cells express a variety of pattern recognition receptors

(PRRs), such as Toll-like receptors (TLRs), Nod-like receptors

(NLRs) and C-type lectin receptors (CLRs), all of which have

been implicated in the recognition and uptake of Mtb.3 These

receptors are also involved in the initiation of various innate

immune defense-associated cellular functions, such as

phagocytosis, autophagy, apoptosis and inflammasome

activation.4,5

Mtb is an extremely successful intracellular pathogen that

has co-evolved with its host for eons. The host immune cells

are triggered into a non-sterilizing control of Mtb, which

causes a latent Mtb infection that maintains equilibrium

between the host and the pathogen via granuloma formation.

The reactivation rates of latent TB range from 5 to 10% per

lifespan in patients. The failure of the host cells to restrain Mtb

growth results in granulomatous lesions with more necrotic

macrophage death and increased inflammatory cell recruit-

ment. This evasion of the host immunity reflects the highly

evolved and multifactorial ability of pathogenic mycobacteria

to survive and persist within host cells. The intricate
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mechanisms that Mtb has developed to evade host innate

immunity include cytosolic escape, the restricted production of

antimicrobial peptides, blockade of phagosome maturation,

apoptosis, inflammasome activation and modulation of autop-

hagy. These strategies and measures also limit the development

of adaptive immune responses during Mtb infection.6–8 In this

review, we highlight recent research regarding major innate

immune cells, PRR signaling pathways and the cellular func-

tions involved in the innate immune defense against Mtb. We

also describe evidence demonstrating that Mtb modulates the

host innate immune defense functions to its own benefit. A

better understanding of the molecular mechanisms underlying

the intricate and dynamic interactions between the host and

Mtb is crucial to the development of better drugs and vaccines

for the prevention and treatment of TB.

INNATE IMMUNE CELLS IN TB

The major innate immune cell types involved in Mtb infection

include macrophages, DCs, neutrophils and NK cells. Several

innate-like cells are also involved in the host defense against

Mtb, including non-conventional T cells such as mucosal-

associated invariant T (MAIT) cells, CD1-restricted lympho-

cytes and NKT cells.9–11 Furthermore, other cell types (such as

airway epithelial cells and mast cells) that are not classically

defined as immune cells have also been shown to contribute to

early immune responses against Mtb. During Mtb infection,

different cell types play distinct but overlapping roles and are

readily manipulated by Mtb. Here we focus only on the

regulatory roles of the classically defined major innate immune

cells (including macrophages, DCs, neutrophils and NK cells)

during Mtb infection.

Macrophages

Macrophages play a central role in mycobacterial pathogenesis

since they are the primary cellular niche for Mtb during both

early and chronic infection.12 Macrophages can eliminate Mtb

via multiple mechanisms, including the production of oxygen

and nitrogen components and cytokines, phagosome acidifica-

tion and the autophagy of intracellular Mtb, among other

processes. Mtb is phagocytosed by alveolar macrophages, which

are the first cells to encounter the pathogen and recruit

different types of macrophages, such as monocyte-derived

macrophages, during early infection.13 The recognition of

pathogen-associated molecular patterns (PAMPs) from Mtb

(such as glycolipids, lipoproteins and carbohydrates) by macro-

phage PRRs (such as TLRs, NLRs and CLRs) induces a network

of coordinated signaling pathways that leads to distinct gene

expression profiles in macrophages at different stages of

infection.3 Gene profiling studies have provided evidence for

the importance of inflammatory cytokines, including IFN-γ,

IL-12, IL-1β and macrophage inflammatory protein-1α (MIP-

-1α/CCL3) in the defense against Mtb infection.14 Multiple

macrophage functions (including phagocytosis, autophagy and

antimicrobial peptide production) can be enhanced by vitamin

D treatment.15–17 The development and function of macro-

phages are shaped by micro-environmental signals, which drive

macrophage differentiation, with the M1 and M2 populations

being the two extreme phenotypes of the macrophage polar-

ization spectrum.18,19 Normally, classically activated M1

macrophages, which are key effectors of the host response

against intracellular bacteria and produce immune-stimulatory

cytokines, are induced by microbial stimuli (for example, LPS)

or cytokines (for example, IFNγ, TNFα and GM-CSF). In

contrast, the alternatively activated M2 macrophages, which are

poor antigen-presenting cells and suppressors of Th1

responses, are induced by IL-4 and IL-13 as well as IL-10

and TGFβ.20 These additional macrophage populations have

been shown to play important roles in maintaining the tight

balance between exacerbated pathology and control of myco-

bacterial growth. For example, mice deficient in Arg1, a

hallmark enzyme of M2 macrophages, demonstrate better

protection against Mtb infection.21 In the context of active

TB, human monocytes are predisposed to differentiate toward

M2-like macrophages characterized by the CD16+CD163+

MerTK+pSTAT3+ phenotype and increased protease-

dependent motility, pathogen permissivity and

immunomodulation.22 M2 macrophages can be induced by

mycobacterial DnaK (heat shock protein 70, Hsp70) in an

IL-10-dependent manner.23 Myeloid-derived suppressor cells

(MDSCs), which represent an innate immune cell population

consisting of granulocytic CD15+ G-MDSCs and monocytic

CD14+ M-MDSCs, have been described as lung-residing

myeloid-derived suppressors induced during TB that can

provide a niche for mycobacteria survival. Therefore, MDSCs

can be considered novel targets for host-directed therapy in

TB.24 More recently, another population of macrophages

termed myeloid suppressor cells (MSCs), which suppress T-cell

responses via the secretion of IL-10 and TGF-β, has emerged as

a novel class of immune cells that exhibits suppressive function

and regulates the infection and inflammation associated with

TB.25 Histopathologically, TB has long been characterized by

granulomas that contain a broad spectrum of transformed

macrophages, such as multinucleated giant cells, epithelioid

cells and foam cells.26,27 Foamy macrophages, which exhibit an

attenuated ability to mediate phagocytosis accompanied by

reduced antigen processing capacity and increased secretion of

TGF-β, can be induced by multiple Mtb triggers, including

mycolic acids, lipopeptides and early secretory antigen-6

(ESAT-6).27,28 More recently, it was reported that TLR2

signaling promotes macrophage polyploidy and suppresses

genomic instability by regulating Myc and ATR expression,

indicating that in the presence of persistent inflammatory

stimuli, pathways involved in developing cancer cells surpris-

ingly instruct a polyploid macrophage fate and regulate

granulomatous tissue remodeling.28,29 Interestingly, emerging

evidence suggests that Mtb pathogenicity is intimately asso-

ciated with its capacity to regulate host cell metabolism.30

Upon Mtb infection, mononuclear phagocytes accumulate a

stearic acid derivative, which promotes phagocyte differentia-

tion into macrophages and enhances the effector function of

phagocytes against Mtb.31 Furthermore, Mtb ESAT-6 was

found to induce metabolic flux perturbations to drive foamy
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macrophage differentiation.28 More in-depth studies are

needed to identify additional Mtb effectors and signaling

pathways that regulate macrophage functions and metabolism.

This understanding may allow the development of novel

approaches to control TB via modulation of macrophage

phenotype, form, metabolism and function.

Dendritic cells

DCs play a central role in Mtb antigen presentation and are

thus critical in bridging innate and adaptive immunity.32

Monocyte-derived human DCs express mannose receptors

(MRs) and DC-specific ICAM-grabbing nonintegrin (DC-

SIGN), which are capable of recognizing Mtb ligands, such

as Mtb lipoprotein lprG and hexamannosylated phosphatidy-

linositol mannosides (PIMs).33–35 Freshly isolated human lung

dendritic cells express DC-SIGN, and Mtb-derived material

was detected in CD14 (− ) HLA-DR (+) DC-SIGN (+) cells in

lymph nodes (LNs) from TB patients, suggesting that the DC-

SIGN-mediated entry of Mtb in DCs could influence pathogen

persistence and host immunity.33

Roberts and colleagues36 found that Mtb-infected DCs

exhibit reduced surface expression of the β (2) (CD18) integrin

and have a reduced ability to reach the lymph nodes and

initiate an adaptive immune response. In later studies, a

population of DCs that contribute to the priming of CD4+

T cells during Mycobacterium bovis Bacille Calmette-Guérin

(BCG) infection was discovered. Basically, these DCs transport

bacilli into the draining lymph node in an IL-1R-MyD88-

dependent manner.37 During Mtb infection, ligation of DC-

SIGN by Mtb mannose-capped lipoarabinomannan

(ManLAM) induces the production of the anti-inflammatory

cytokine IL-10, which impairs DC maturation and the expres-

sion of co-stimulatory molecules. ManLAMs are also capable of

inducing a negative signal that inhibits IL-12 production,

suggesting that Mtb modulates DC functions to prevent the

optimal induction of adaptive immunity.38 Another study

showed that PE27 from Mtb elicits Th1-polarized immune

responses via DC activation during Mtb infection, suggesting

that PE27 could be an effective Mtb vaccine candidate.39 This

induction of DC maturation by PE27 is mediated by TLR4

binding and the subsequent activation of extracellular-regulated

protein kinases (ERKs), p38 mitogen-activated protein kinase

(MAPK) and nuclear factor-κB (NF-κB) signaling. In addition,

RpfE, a latency-associated member of the Rpf family from Mtb,

is also a potential effective Mtb vaccine because of its ability to

activate DC maturation by promoting the expression of surface

molecules and the production of IL-6, IL-1β, IL-23p19,

IL-12p70 and TNF-α but not of IL-10.40 Furthermore, Mtb

Rv2463 and Rv3416 can downregulate the expression of neural

precursor cell expressed developmentally downregulated 8

(NEDD8) with a concomitant upregulation of SUMO/sen-

trin-specific peptidase family member 8 (SENP8). RNAi-

mediated knockdown of NEDD8 and SENP8 differentially

regulated oxidative burst, apoptosis and autophagy in DCs,

suggesting that Mtb exploits neddylation to its advantage to

delay the induction of protective responses, thereby

contributing to its long-term survival in the host.41 Another

recent study reported increased expression of CD13 on DCs

during Mtb infection and enhanced T-cell activation after anti-

CD13 antibody treatment, suggesting that CD13 is positively

involved in Mtb pathogenesis. Therefore, targeting the CD13

receptor may help reduce the ability of Mtb to inhibit T-cell

activation, but the specific Mtb effectors modulating CD13

expression are currently unknown.42 More questions remain

regarding the mechanisms by which Mtb manipulates DCs and

the consequences of that manipulation on the nature and

kinetics of the adaptive immune responses toward Mtb.

Neutrophils

Neutrophils are the first cells to infiltrate the lungs after Mtb

infection and are the most abundant cell type appearing in the

bronchoalveolar lavage and the sputum of the active pulmon-

ary TB patients. These cells play a very complex role in the

pathology of TB. Their recruitment to the lung and their

pathologic roles are regulated by various cytokines and

chemokines,43,44 alarmins (such as S100A8/A9 proteins)45

and intrinsically expressed miRNAs (such as miR-223).46 The

factors released by neutrophils during respiratory bursts, such

as elastase, collagenase and myeloperoxidase, indiscriminately

damage bacterial and host cells. Thus, neutrophils constitute a

potent population of effector cells that can mediate both anti-

mycobacterial activity and immunopathology during Mtb

infection.47 The potential of neutrophils to release enzymes

that lead to the destruction of pulmonary parenchyma, such as

arginase and matrix metalloproteinase-9 (MMP-9 and gelati-

nase B), is shared by other innate immune cells and epithelial

cells affected by Mtb.48,49 Previous studies have demonstrated

an inverse correlation between the development of pulmonary

TB and the number of neutrophils in the peripheral blood of

the close contacts of active TB patients. In addition, in vitro

neutrophil depletion from whole blood led to a failure to

control Mtb growth.50 Apoptotic neutrophils and purified

neutrophil granules, both of which contain active antimicrobial

peptides, can be taken up by macrophages and lead to the

inhibition of bacterial replication.51 Interestingly, transcrip-

tional profiling studies have shown that cell surface expression

of programmed death ligand 1 (PD-L1) by neutrophils was

primarily responsible for high levels of PD-L1 expression in the

whole blood of active TB patients, suggesting that neutrophils

are implicated in a more immune-regulatory role during Mtb

infection.52 Furthermore, although autophagy-related gene 5

(Atg5) is dispensable in alveolar macrophages during Mtb

infection, a loss of Atg5 in neutrophils can sensitize mice to

Mtb. These findings argue for a shift in the focus onto the

macroautophagy-independent roles of Atg5 in controlling

resistance to Mtb infection in vivo.53 Another study found that

CD73 (also called ecto-5′-nucleotidase) limits the early influx

of neutrophils into the lungs without affecting bacterial growth

and dissemination, supporting the view that CD73 fine-tunes

anti-mycobacterial immune responses.54 Neutrophils can also

be actively manipulated by Mtb. For example, Mtb induces

neutrophil necrosis and prevents apoptosis dependent on
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region of difference 1 (RD-1)-encoded virulence factors.55

More recently, ESAT-6 protein, which is secreted by a type

VII secretion system (ESX) encoded by RD1 in Mtb, was

demonstrated to induce an intracellular Ca2+ overload followed

by necrosis and the formation of neutrophil extracellular traps

(NET) characterized by extruded DNA and myeloperoxidase.56

Furthermore, neutrophils are involved in the induction of

adaptive immunity and are critical for granuloma cavitation

during Mtb infection.57,58 Future work is warranted to identify

additional mycobacterial effectors of neutrophil necrosis and

determine whether pharmacologic intervention targeting neu-

trophil necrosis could alter uncontrolled inflammation and

immunopathology during Mtb infection.

Natural killer cells

NK cells are granular innate lymphocytes that possess potent

cytolytic capacity. NK cells act early during infection and are

not MHC-restricted.59 Various Mtb cell wall components, such

as mycolic acids, are direct ligands for the natural cytotoxicity

receptor (NCR) NKp44 on NK cells. NK cells isolated from

healthy donors can lyse infected monocytes and reduce Mtb

intracellular growth.60 NK cells are required for mycobacterial

resistance in T-cell-deficient mice, suggesting an important role

for NK cells in combating Mtb infection in immune-

compromised individuals.61 NK cells can control mycobacterial

growth indirectly via immune stimulation through macrophage

activation and directly via cytotoxic mechanisms, including the

production of cytoplasmic granules containing perforin, gran-

ulysin and granzyme. Additionally, NK cells can produce IFN-γ

and IL-22, which can inhibit Mtb intracellular growth by

enhancing phagolysosomal fusion. NK cells can also promote

γδ T-cell proliferation by producing CD54, TNFα, GM-CSF

and IL-12.59 In addition to early innate immune functions, NK

cells are found in mature granulomatous lesions in the lungs of

Mtb-infected patients. There are indications that NK cells may

be functionally impaired during TB.62 Patients newly diagnosed

with pulmonary TB display decreased frequencies of NK cell

subsets, concurrent with decreased expression of NKp30 and

NKp46, which are capable of increasing the expression of

granulysin and perforin through the MAP kinase signaling

pathway.63,64 Anti-TB treatment regimens leading to reductions

in mycobacterial load partially restore NK cell cytolytic

capabilities. It was demonstrated that glutathione (GSH) could

partially inhibit intracellular Mtb growth through bacteriostatic

mechanisms.65 Interestingly, both NK cell function and intra-

cellular GSH levels are compromised in HIV-infected indivi-

duals, suggesting that GSH could be a potential immune

adjuvant for TB treatment, particularly in individuals suffering

from HIV.66 A better understanding of the exact roles and

molecular mechanisms of NK cells in anti-mycobacterial

immunity is needed, and this knowledge may open new

possibilities for NK cell-based therapeutic strategies for TB

treatment.

INNATE IMMUNE SIGNALING PATHWAYS IN TB

The first step in the activation of innate immune responses

during Mtb infection begins with pathogen recognition. During

phagocytosis, conserved PAMPs on the surface of Mtb are

recognized by PRRs on the host cells. A variety of PRRs have

been shown to recognize mycobacterial PAMPs, such as TLRs,

NLRs, CLRs, scavenger receptors (for example, MSR1,

MARCO and CD36), CD14 receptors, AIM2 and AhR.67–71

Different innate immune cells use distinct receptors or

combinations of receptors to identify and phagocytose Mtb,

although the pathogen may preferentially target specific recep-

tors to manipulate the host immune responses and promote

their own intracellular survival.3,6 In addition, accumulating

data suggest that protein modification systems, such as the

ubiquitin system, play a pivotal role in the regulation of PRR

signaling networks.72 Here we focus primarily on the recent

progress in understanding the major PRR signaling pathways

(including the TLR, NLR and CLR pathways) and their

regulatory roles during Mtb infection.

TLR signaling

TLRs are a family of type I transmembrane proteins that

contain leucine-rich repeats and recognize PAMPs from

pathogens and Toll-interleukin 1 receptor (TIR) domains.

TLRs are responsible for recruitment of the downstream

adapters, including MYD88 (myeloid differentiation primary

response protein 88), TRIF (TIR domain-containing adapter

protein inducing IFN-β), TIRAP (TIR domain-containing

adapter protein) and TRAM (TRIF-related adapter molecule).

Depending on their cellular localization and agonists, the TLRs

fall into two groups: plasma membrane-anchored TLRs (TLR1,

2, 4, 5 and 6), which mainly recognize microbial membrane

components such as the gram-negative bacterial endotoxin

lipopolysaccharides (LPS) and endosomal TLRs (TLR3, 7, 8

and 9), which predominantly detect microbial nucleic acids.73

Upon pathogen infection, different TLRs recruit distinct

adapter molecules to relay signals to downstream molecules,

which results in the activation of multiple signaling pathways

such as the NF-κB, MAPK and PI3K/Akt pathways. These

events culminate with the induction of pro-inflammatory

cytokines and/or type I IFNs. Changes in the expression and/

or activation status of TLRs can serve as useful markers of the

immunological status in TB patients.74 Mice deficient in the

TLR adapter molecule MYD88 are highly susceptible to Mtb

infection, suggesting a major role for this pathway in the innate

defense against Mtb.75 TLR2− /− mice exhibit defective granu-

loma formation following Mtb infection and have a greatly

enhanced susceptibility to infection compared with WT mice.

Consistently, TLR2 polymorphisms in humans are associated

with enhanced susceptibility to pulmonary TB.76 Genetic

polymorphisms in TLR4 are linked to an increased suscept-

ibility to and severity of pulmonary TB in an Asian population

in India.77 TLR7 and TLR8 genetic polymorphisms are also

associated with susceptibility to Mtb infection. Individuals with

the TLR7 IVS2-151A/TLR8-129C genotype show increased

phagocytosis and lower levels of immune activation due to a
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blockade of phagosome–lysosome fusion.78 Mice lacking TLR9

succumb to Mtb infection earlier than do WT mice.79

However, there is conflicting evidence concerning the protec-

tive effects of TLR signaling during Mtb infection. For example,

the results from a previous study demonstrated that MyD88,

but not TLR2, TLR4 or TLR9, is critical for triggering

macrophage effector mechanisms upon Mtb infection.80

Another study indicated that during Mtb infection, cytokines

can be generated via a TLR- and caspase-1-independent

mechanism.81 Mtb expresses many diverse lipoproteins and

lipoglycans that can be recognized by different TLRs. For

example, TLR2 recognizes products encoded by lpqH (19-kDa

lipoprotein).82 TLR3 regulates mycobacterial RNA-induced

IL-10 production through the PI3K/AKT signaling pathway.83

The Mtb recombinant leucine-responsive regulatory protein

(rLrp) inhibits pro-inflammatory cytokine production and

downregulates macrophage antigen presentation via TLR2-

mediated activation of the PI3K/AKT pathway.84 Previous

research from our lab revealed that Mtb-secreted proteins such

as PtpA and Mce3E modulate TLR signaling by targeting the

downstream molecules involved in the NF-κB and MAPK

pathways.85,86 Interestingly, a recent study demonstrated that G

protein-coupled receptor 160 (GPR160) regulates mycobacteria

entry into macrophages by activating MAPK/ERK signaling,

which suggests a crosstalk between the GPCR and TLR

signaling pathways during mycobacterial infection.87 Further

in-depth studies of the underlying mechanisms of the interac-

tions between TLR signaling pathways and Mtb components

are warranted.

NLR signaling

The NLR family members, which include NOD1, NOD2,

NLRP3 and NLRC4, are intracellular proteins involved in the

recognition of microbial components and the activation of

inflammatory pathways that protect against invading

pathogens.88 Mtb is able to escape from phagosomes into

macrophage cytosol via a pathway that is dependent on the

ESAT-6 secretion system-1 (ESX-1).89 Thus, it is not surprising

that cytosolic PRRs, such as NOD1/2, are involved in the innate

detection of Mtb. An important role for NOD2 in the

recognition of and defense against Mtb has been demonstrated

using NOD2− /− mice.90 In addition, activation of NOD2 by

muramyl dipeptide in human alveolar macrophages infected

with Mtb was shown to increase intracellular control of

bacterial growth and recruitment of autophagy-associated

proteins to the bacteria-containing autophagosome, highlight-

ing the possibility of a PRR-dependent mechanism for autop-

hagy activation.91 Furthermore, three common non-

synonymous polymorphisms in the NOD2 gene were asso-

ciated with a genetic susceptibly to TB in a study of an African–

American population from the United States.92 An association

was also found between TB susceptibility and the NOD2

synonymous Arg5878Arg SNP in the Chinese Han

population.93 More recently, many studies have examined the

role of other NLRs (particularly NLRP3) and effectors of the

inflammasome during Mtb infection. For example, Mtb

ESAT-6 was found to potently activate the NLRP3/ASC

inflammasome in macrophages, leading to IL-1β release and

pyroptosis.94 Another study demonstrated that mice that were

genetically deficient in the production of or response to IL-1β

have increased susceptibility to acute disease following Mtb

infection; this phenotype appears to be independent of TLRs,

NLRP3, caspase-1 or ASC.95 Thus, inflammasome activation

may be triggered by Mtb in some situations to promote

persistent infection rather than as a virulence mechanism.

Despite the rapid progress made in the discovery of new NLRs

and their roles in host defense against Mtb infection, on a

mechanistic level, there is still much to be learned about the

signaling pathways induced by each NLR. In addition, it

remains to be investigated whether any Mtb effector proteins

interact with the effector domains (such as PYD domain) of

NLRs to potentially regulate NLR signaling. Unraveling the

regulatory functions and mechanisms that control NLR signal-

ing during Mtb infection will undoubtedly be an exciting field

of research in the coming years.

CLR signaling

CLR receptors are a class of PRRs that also include collectins,

selectins, phagocytic receptors and proteoglycans and have

been classified into at least 17 groups. Many CLRs have been

associated with responses to mycobacteria, such as MR, DC-

SIGN, Mincle, Dectin-1, Dectin-2, Dectin-3 (also called

macrophage C-type lectin, MCL), CL-LK (the heteromeric

complex of CL-L1 and CL-K1) and dendritic cell immunor-

eceptor (DCIR). CLRs are characterized by the presence of one

or more carbohydrate recognition domains that can bind to

carbohydrate molecules, lipids, proteins and inorganic com-

pounds in a Ca2+-dependent or Ca2+-independent manner.

CLRs have been increasingly recognized to play an important

role in modulating Mtb-mediated immune responses, and Mtb

surface ligands, including ManLAM and cord factor, are

important immune modulators that can be directly recognized

by several CLRs.96 MR binds to ManLAM mannose caps and

mediates phagocytosis of mycobacteria by human

macrophages.97 ManLAM also binds to DC-SIGN to stimulate

the production of immunosuppressive IL-10 by LPS-activated

monocyte-derived dendritic cells.98 Mincle, a macrophage-

inducible CLR, was identified as the mammalian receptor for

trehalose 6, 6′-dimycolate (TDM, also known as cord factor)

from Mtb.99 Dectin-1, in cooperation with TLR2, can activate

pro-inflammatory macrophage responses upon mycobacterial

infection,100 but there is also evidence suggesting that Dectin-1

makes a minor contribution to Mtb susceptibility in mice.101

Dectin-2 contributes to host immunity against mycobacterial

infection by functioning as a direct receptor for Mtb

ManLAM.102 Interestingly, both Mincle and Dectin-3 are

required for immune responses against TDM from Mtb, and

Dectin-3 was found to positively regulate Mincle expression,

thereby amplifying Mincle-mediated signaling.103,104 Collectin

CL-LK was identified as a novel soluble C-type lectin able to

bind to ManLAM.105 More recently, the C-type lectin receptor

DCIR, which belongs to the Dectin-2 family, was demonstrated
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to modulate immunity to TB by sustaining type I interferon

signaling in dendritic cells. However, the Mtb ligand of DCIR

remains to be identified.106 Further elucidation of Mtb

recognition by CLRs and their crosstalk with other PRRs on

immune cells is important for a better understanding of the

Mtb-induced host innate immune responses.

CELLULAR FUNCTIONS ASSOCIATED WITH INNATE

IMMUNE DEFENSE IN TB

In addition to eliciting inflammatory cytokine and chemokine

production, pathogen recognition by innate immune cells

triggers a cascade of cellular events, such as phagocytosis,

autophagy, apoptosis and inflammasome activation, to control

or eliminate invading pathogens and to augment antigen

presentation, thereby contributing to the induction of adaptive

immunity.5,107 In contrast, sly intracellular pathogens such as

Mtb also endeavor to manipulate host cellular functions

through diverse effectors that target key signaling pathways and

nodes.7,8 Here we focus on the regulatory roles of cellular

functions, including phagocytosis, autophagy, apoptosis and

inflammasome activation, during Mtb infection. Other cellular

mechanisms, such as the production of reactive oxygen and

nitrogen species, antigen presentation and major histocompat-

ibility complex class II expression and trafficking, are also

considered to play important roles in Mtb infection and are

covered extensively elsewhere,108,109 but they are not

discussed here.

Phagocytosis

Upon invading host cells through phagocytosis, Mtb can

replicate within infected cells by arresting phagosome matura-

tion. This mechanism allows the pathogen to avoid exposure to

lysosomal hydrolases, low pH conditions and other bactericidal

lysosomal components.110 Numerous mycobacterial factors

have been identified as inhibitors of phagosome maturation.

Mtb PIMs were found to inhibit phagosome acidification by

promoting fusion between phagosome and early endosomes.111

How PIMs trigger early endosome fusion remains to be fully

elucidated, but the process may involve Rab14, a small GTPase

that is specifically recruited by mycobacteria to favor

phagosome-early endosome fusion and block phagosome

acidification.112 Mtb ManLAM has also been demonstrated to

limit phagosome maturation by binding to MR.97 Mycobacter-

ial phagosomes were found to retain coronin-1 (also called

TACO) on the cytoplasmic faces of their limiting membranes,

whereas phagosomes that undergo fusion with lysosomes tend

to rapidly lose association with this protein.113 More recently,

the serine/threonine kinase PknG from Mtb was identified as a

potential effector that inhibits phagosome–lysosome fusion.114

Subsequent studies identified a small secreted protein tyrosine

phosphatase PtpA that inhibits vacuolar acidification by bind-

ing to the H-subunit of the macrophage vacuolar-H+-

ATPase.115 In addition, an acid- and phagosome-regulated

(aprABC) locus was discovered to respond to acidic stress

within the phagosome in virulent mycobacteria. The genes

mediating this process require acid sensing by the phoPR

operon, which leads to aprABC expression and the modulation

of cell wall lipid synthesis and sequestration, thus enabling Mtb

survival under low pH conditions.116 Another study provided

evidence demonstrating that the antiviral interferon-induced

transmembrane (IFITM) proteins participate in the restriction

of mycobacterial growth by mediating endosomal maturation.

IFITM3 interacts with v-ATPase and potentially stabilizes its

association with endosomal membranes.117,118 Interestingly, it

was demonstrated that PPE57, which plays a role in macro-

phage phagocytosis, is able to recognize TLR2 and induce

macrophage activation by augmenting the expression of several

cell surface molecules (CD40, CD80, CD86 and MHC class II)

and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40)

in macrophages, suggesting that the PPE57 protein could be a

potential antigen for the development of an efficient vaccine

against Mtb.119 However, the mechanisms by which Mtb

inhibits phagosome maturation remain incompletely under-

stood and have been an area of ongoing active investigation.

Autophagy

Autophagy is a homeostatic and inducible intracellular process

by which cells eliminate damaged organelles, protein aggregates

and intracellular pathogens. Autophagy is initiated by the

formation of a double-membrane-enclosed structure that

forms an autophagic vacuole.120 Nutrient starvation or treat-

ment with IFN-γ or rapamycin can induce autophagy in Mtb-

infected cells, and phagosomes containing the bacilli acquire

lysosomal markers and become acidified during this process.121

Mtb localization to autophagosomes in infected macrophages is

markedly increased by treating the cells with LPS, which

indicated a TLR4-mediated pathway for the induction of

autophagy.122 Animals lacking autophagic functionality in

myeloid cells only (Atg5flox/flox LysMCre) are acutely suscep-

tible to Mtb infection and have unrestrained bacterial replica-

tion, increased inflammatory cytokine production and large

focal pulmonary abscesses.123 The immunity-related GTPase

family M (IRGM) gene encodes a GTP-binding protein that

induces autophagy,124 and variations in the promoter region of

the IRGM gene have been associated with an increased risk of

TB.125,126 Another study further suggested that IRGM genetic

variants differ between active TB and latent TB infection

(LTBI), revealing that the IRGM genotype probably determines

whether TB progresses from LTBI into active TB.127 In

addition, ESAT-6 was found to insert into membranes and

damage the phagosomal membrane, which provides a signal

for autophagy induction. Adapter proteins, such as NDP52 and

p62, recognize the damage and stimulate LC3 binding to the

phagosome membrane to capture Mtb within an

autophagosome.128 Interestingly, cyclic-di-adenosine mono-

phosphate (C-di-AMP), which is a bacterial secondary mes-

senger, is also a key mycobacterial PAMP that drives host type I

IFN responses and autophagy.129 When autophagy is not

activated by starvation or other stimuli, Mtb takes advantage

of both Rab GTPases and autophagy to establish an ideal

replicative niche, thus promoting its intracellular survival. In

Mtb-containing phagosomes, Rab5 is recruited at early stages,
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and Mtb inhibits the fusion of lysosomes with phagosomes by

selectively excluding the GTPase Rab7 (which is a late

endosomal marker) and lysosome-associated membrane

protein-1 (LAMP1) while retaining the GTPase Rab5 on the

phagosome.130 Rab22a prevents the acquisition of Rab7 and

inhibits maturation into the late endosomal/lysosomal

compartment.131 EEA1 is also crucial for phagosomal matura-

tion and its recruitment to Mtb-containing phagosomes is

altered.132 In addition, Rab10 was found to be acquired even

before Rab5, thus acting upstream and modulating the

maturation of Mtb-containing phagosomes.133 Multiple Mtb

molecules have been shown to inhibit phagosomal maturation.

For example, enhanced intracellular survival (EIS) from Mtb

was shown to inhibit phagosome maturation, reactive oxygen

species production, and autophagy through the direct acetyla-

tion of a c-Jun N-terminal kinase (JNK)-specific

phosphatase.134 Another study demonstrated that EIS protein

upregulates IL-10 via Ac-H3 and thus activates the Akt/mTOR/

p70S6K pathway.135 The secreted acid phosphatase (SapM)

protein from Mtb was shown to be indispensable for arresting

phagosomal maturation and promoting pathogen growth in

guinea pig tissues.136 LrpG (also called P27) has been suggested

to be able to block phagosome–lysosome fusion by modulating

the traffic machinery in macrophages.137 Mtb phthiocerol

dimycocerosate (PDIM) was demonstrated to contribute to

phagosomal escape and host cell exit by Mtb.138 The

autophagy-associated protein Atg5 was found to play a unique

role in protection against Mtb by preventing

polymorphonuclear-mediated immunopathology. Loss of

Atg5 in polymorphonuclear cells can sensitize mice to Mtb

infection; thus, autophagy is both antibacterial and anti-

inflammatory by suppressing bacilli growth and protecting

against tissue necrosis and lung pathology.53 Despite our

growing understanding of the regulatory roles of autophagy

during Mtb infection, many unresolved questions remain to be

explored. For instance, what dynamic and spatio-temporal

patterns are adopted by different Mtb effector proteins during

their collaborative efforts to fine-tune host autophagy to benefit

Mtb infection? Nevertheless, many studies have demonstrated

the potential for autophagy-based therapies to target Mtb,121

and exploiting autophagy may open new avenues to boost host

immunity against Mtb.

Apoptosis

Apoptosis, a crucial host defense mechanism against pathogens,

involves many components and complex signaling pathways.

In contrast to necrosis, which is a form of traumatic cell death,

apoptosis is a highly regulated and controlled process. The two

best-understood activation mechanisms of apoptosis are the

extrinsic pathway and the intrinsic pathway (also called the

mitochondrial pathway). The extrinsic pathway is activated by
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Figure 1 Major host immune cells, pattern recognition receptors and cellular functions involved in innate immune defense against Mtb.
Mtb mainly infects innate immune cells, including macrophages, dendritic cells, neutrophils and natural killer cells. Those immune cells
recognize Mtb through various pattern recognition receptors, including Toll-like receptors (such as TLR1, TLR2, TLR4, TLR7, TLR8 and
TLR9), Nod-like receptors (such as NOD1, NOD2, NLRP3 and NLRC4) and C-type lectin receptors (such as MR, DC-SIGN, Mincle, Dectin-
1 and Dectin-2, Dectin-3, CL-LK and DCIR). During Mtb infection, the host orchestrates signaling from those PRRs and launches a variety
of cellular functions, such as phagocytosis, autophagy, apoptosis and inflammasome activation, to control or eliminate Mtb.
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extracellular ligands and initiated by cell surface death receptors

(such as TNF receptors and Fas receptors), which leads to the

formation of the death-inducing signaling complex. The

intrinsic pathway is activated by intracellular signals and

depends on the release of proteins from the intermembrane

mitochondrial space.139 In addition to restricting Mtb growth

during the early phase of infection, apoptosis also plays an

important role in the induction of the acquired cellular

immune response and leads to cell death under certain

circumstances.140 The general perception is that apoptosis

blockade and induction of necrosis may be one of the main

strategies by which Mtb evades or delays antigen

presentation.139 Mtb is a successful intracellular pathogen that

has evolved multiple effective mechanisms to manipulate host

apoptosis, and many Mtb effectors have been associated with

apoptosis pathways. The reported anti-apoptotic Mtb antigens

include PtpA, NuoG, PknE, SecA2, SodA, SigH, MPT64 and

Rv3354.141–148 The Mtb known pro-apoptotic antigens include

LpqH (19-kDa lipoprotein), PE_PGRS33, ESAT-6, OppD,

PstS1, Rv0183, Rv0901, PE9/PE10 and Mce4A.149–158 TLRs

are important for triggering apoptosis in Mtb-infected cells. For

example, Mtb LpqH induces macrophage cell death in a TLR2-

dependent manner.159 Another study demonstrated that the

PE/PPE complex PE9/PE10 induces macrophage apoptosis via

TLR4 engagement.156 Interestingly, a recent study from our lab

demonstrated that TRIM27 restricts the survival of mycobac-

teria in macrophages by promoting JNK/p38 MAPK pathway

activation and cell apoptosis, whereas Mtb PtpA antagonizes

those TRIM27-promoted innate immune responses by compe-

titively binding to the RING domain of TRIM27, indicating a

dynamic antagonism between Mtb and its host during

infection.160 Taken together, the ability to precisely modulate

the outcome of apoptosis is an important immune evasion

strategy adopted by Mtb, suggesting that the interactions

between Mtb and host cells during apoptosis could be

leveraged to develop better measures to prevent TB. Despite

the substantially increased knowledge of how the apoptosis

signaling pathways are widely used as targets for Mtb effectors

to enhance intracellular survival and pathogenesis, several

important issues remain unresolved, such as how different

Mtb effector proteins coordinate and temporally regulate

apoptosis during host defense against Mtb infection in vivo.

Inflammasome activation

During microbial infection, certain members of the NLR family

(such as NLRP3 and NLRC4) and the cytosolic DNA sensor
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Figure 2 Mtb components interfering with host cellular functions. During Mtb infection, multiple Mtb components interfere (either activate
or inhibit) with host cellular functions (such as phagocytosis, autophagy, apoptosis and inflammasome activation) to help the pathogen
evade or circumvent host innate immunity. For example, PPE57 promotes phagocytosis, whereas PIMs, ManLAM, PknG, PtpA and EIS
inhibit the complete phagocytosis of macrophages through arresting phagosome maturation; ESAT-6 and C-di-AMP activate, whereas EIS,
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AIM2 assemble into a multimeric inflammasome complex to

mediate the activation of inflammatory caspase-1. This, in turn,

leads to maturation of the pro-inflammatory cytokines IL-1β

and IL-18 and induction of pyroptosis, which is a form of

necrotic and inflammatory programmed cell death that is

induced by inflammatory caspases.161 Pyrin domain-

containing inflammasomes, including NLRP3 and AIM2, signal

through the adapter protein ASC (apoptosis-associated speck-

like protein containing a CARD) to recruit caspase-1. By

contrast, the CARD domain-containing inflammasome NLRC4

can signal directly to caspase-1, which results in pyroptosis, as

well as indirectly through ASC to augment IL-1β and IL-18

secretion.162 Macrophages from individuals that carry a com-

bined polymorphism (Q705K) in the NLRP3 gene together

with a variant in CARD8 are able to better restrict mycobacter-

ial growth.163 The mycobacterial ESX-1 secretion system was

demonstrated to be an important trigger of the IL-1β response

in macrophages, and the membrane-lytic capability of EsxA

was shown to directly promote the activation of the NLRP3

inflammasome.94 Potassium efflux is also important for

activating the NLRP3 inflammasome, and Nek7 was identified

as an essential molecule that acts upstream of the NLRP3

inflammasome.164,165 The AIM2 inflammasome was also

implicated in the intracellular recognition of Mtb, and AIM2

can be directly engaged by mycobacterial genomic DNA.70 The

inflammasome response can be modulated by the effector

proteins secreted by Mtb. For example, Mtb Rv0198c (Zmp1)

plays a critical role in preventing caspase-1-dependent activa-

tion and the secretion of IL-1β. Zmp1-deleted Mtb-triggered

activation of the inflammasome, resulting in an increased

release of IL-1β, enhanced maturation of Mtb-containing

phagosomes, improved mycobacterial clearance by macro-

phages and bacterial load reduction in the lungs of infected

mice. Thus, Zmp1 is an important virulence factor and

represents a potentially useful drug target.166 Mtb may also

prevent the activation of the AIM2 by limiting type I IFN

production in infected cells dependent on its ESX-1 secretion

system, suggesting that prophylactic strategies employing

recombinant BCG expressing innate ligands, which are efficient

in inducing inflammasome formation, can boost its protective

efficacy against Mtb.167 Deciphering the interplay between the

pathways involved in inflammasome activation during Mtb

infection represents an important challenge and great oppor-

tunity for treating TB.

CONCLUSIONS

The innate immune cells, signaling pathways and cellular

functions that are involved in the early phases of Mtb infection

are crucial in limiting disease and serve as potent regulators of

antigen-specific adaptive immunity (Figure 1). Innate immune

cells are uniquely positioned to determine the balance between

protective and pathogenic immune responses in TB. TB disease

results when the pathological responses that promote lung

damage and chronic inflammation dominate over protective

responses that limit disease and eliminate bacteria. However,

Mtb can evade antimicrobial immune responses and disrupt

the crosstalk between innate immunity and adaptive immunity,

thereby tilting the balance toward pathological consequences

rather than protective immune responses (Figure 2). It is clear

from increasing experimental evidence and clinical observa-

tions that Mtb controls host innate immunity by

dictating a sophisticated program that involves multiple host

signaling pathways and cellular functions. As Mtb

infection remains a global public health problem in an era of

increasing antibiotic resistance, a more comprehensive

understanding of the extraordinarily complex Mtb–host rela-

tionship during Mtb infection will provide new potential

targets for effective host-directed therapies or adjuvant treat-

ments for TB.
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