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The circadian cycle allows organisms to track external time of day and predict/respond

to changes in the external environment. In higher order organisms, circadian rhythmicity

is a central feature of innate and adaptive immunity. We focus on the role of the

molecular clock and circadian rhythmicity specifically in monocytes and macrophages

of the innate immune system. These cells display rhythmicity in their internal functions,

such as metabolism and inflammatory mediator production as well as their external

functions in pathogen sensing, phagocytosis, and migration. These inflammatory

mediators are of clinical interest as many are therapeutic targets in inflammatory

disease such as cardiovascular disease, diabetes, and rheumatoid arthritis. Moreover,

circadian rhythm disruption is closely linked with increased prevalence of these

conditions. Therefore, understanding the mechanisms by which circadian disruption

affects monocyte/macrophage function will provide insights into novel therapeutic

opportunities for these chronic inflammatory diseases.

Keywords: circadian, macrophage, monocyte, molecular clock, inflammation, cell migration, immunometabolism,

phagocytosis

INTRODUCTION

Circadian rhythms are oscillations in physiology and behavior with a 24-h periodicity. This
rhythmicity first arose at the cellular level, ∼2.5 billion years ago. Organisms evolved this strategy
as an adaptation to rhythmic changes in oxidative stress caused by the rotation of the earth on
its axis (1). A common hypothesis is that rhythmic cycles of peroxiredoxins conferred a selective
advantage on photosynthetic bacteria, allowing them to detoxify reactive oxygen species (ROS)
derived from daily oxygen consumption. Today, mammalian circadian rhythms are more complex
and molecular clocks throughout the body can synchronize physiological and behavioral activities
to appropriate times of the 24-h day, thus maximizing energy efficiency (2–4).

The term “circadian” was coined by Franz Halberg in 1959. It was Halberg who carried out
a seminal study showing that survival rates in mice were dependent on the time-of-day when
Escherichia coli (E. Coli) endotoxin was injected (5). Interestingly, the response to endotoxin
relies heavily on cells of the innate immune system, the branch of immunity which provides the
first line of defense against infection and damage. Monocytes and macrophages are central to
innate immunity (6) and their molecular clocks have been implicated in multiple inflammatory
disorders (7). Monocytes are short-lived, motile cells found in blood, bone marrow, and spleen
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(6). They quickly respond and migrate to sites of infection.
They are often considered a systemic reservoir of myeloid
precursors, important in the renewal of tissue macrophages
and dendritic cells. Macrophages, on the other hand, are
long-lived tissue-specific cells with roles ranging from tissue
homeostasis to immune response generation against pathogens
(6). In this review, we will discuss our understanding of
the molecular mechanisms governing circadian control of
monocytes/macrophages and their potential impact on chronic
inflammatory disease.

THE MOLECULAR CLOCK

Virtually all cell types have an internal molecular clock (8,
9). However, the master-clock resides in the suprachiasmatic
nucleus (SCN) of the hypothalamus. The SCN processes external
light signals, generating rhythmic signals via the hypothalamic-
pituitary-adrenal (HPA) axis and autonomic nervous system,
which synchronize peripheral clocks in tissues (10, 11). The
molecular clock is regulated by a series of interlocking
transcription-translation feedback loops (TTFLs), powered by
the heterodimeric pairing of BMAL1 and CLOCK (Figure 1A).
BMAL1 is the master clock regulator and its deletion ablates
most rhythmic activity (12). BMAL1:CLOCK heterodimers bind
E-box sites on DNA and facilitate the transcription of clock-
controlled genes (CCG). Included in CCGs are the clock’s
negative regulators, period (PER) and cryptochrome (CRY),
which translocate to the nucleus, disrupt the BMAL1:CLOCK
heterodimer and inhibit their own expression (13–15). Other
regulators within this circuitry include RAR-related orphan
receptor alpha (RORα) and the nuclear receptor REV-ERBα,
which promote and suppress Bmal1 transcription, respectively
(16, 17). Comprehensive details of the molecular circadian
circuitry have been reviewed elsewhere (18, 19).

A powerful example of the clocks influence is that 43% of
murine protein-coding genes across 12 organs display circadian
cycling, in an organ-dependent manner (8). In baboons, a closer
cousin of humans, an astonishing 80% of protein-coding genes
across 64 tissues displayed rhythmicity (9). Monocytes and
macrophages also express a robust molecular clock (20–22) and
at least 8% of transcripts in murine peritoneal macrophages are
circadian (23). Many of these cycling transcripts are involved
in key innate-immune functions, such as antigen presentation,
immune regulation, and phagocytosis (23). Given that their
primary role is to sense and respond to challenges from
pathogens, which would be driven by rhythms in feeding and
activity, it is unsurprising that significant rhythmicity has been
documented in monocyte andmacrophage function (Figure 1B).

PATTERN RECOGNITION RECEPTORS

Monocytes and macrophages use membrane-bound pattern
recognition receptors (PRRs), to sense the external environment
for infection and damage. PRRs are capable of recognizing
pathogen-associated or damage-associated molecular patterns
(PAMPs/DAMPs) facilitating responses to harmful substances

(24). PAMPs include non-self-molecules, such as bacterial
deoxyribonucleic acids and lipoproteins, which represent
infection (25). DAMPs are endogenous molecules that represent
deviation from homeostasis to the body, e.g., adenosine
triphosphate (ATP) and DNA, which are released from cells with
cell-death or damage. Perhaps the most well-studied group of
PRRs are the toll-like receptors (TLRs), which induce a series
of signaling cascades that convert monocytes and macrophages
from quiescence to immunologically active (26).

TLR4, a surface bound receptor, senses the endotoxin LPS
found on gram-negative bacteria such as E. coli and Salmonella
(27). Halberg’s observation that E. coli endotoxin-induced death
varied with time-of-day of injection suggested that TLR4 receptor
signaling was under circadian control (5). A more recent study
found that mice injected with LPS at Zeitgeber time (ZT) 0 (lights
on and beginning of rest phase) were less likely to succumb to
disease than mice injected at ZT12 [(lights off and beginning
of active phase (28)] (Figure 1B). Deletion of Bmal1 in myeloid
cells, which includes monocytes and macrophages, resulted in
loss of time-of-day protection. However, circadian oscillation
in Tlr4 expression has not been observed in macrophages
(29), but many genes downstream of TLR4 were cycling
(23) such as IkBα, which negatively regulates NF-κB, and
Adam17, a metalloproteinase involved in TNFα release (30).
Direct circadian impact on other TLRs, such as TLR9, an
intracellular receptor that senses bacterial and viral DNA, has
been observed (29). In a TLR9-dependent model of sepsis,
greater lethality was observed at the time-of-day coinciding with
highest TLR9 expression in splenic macrophages and B cells.
In splenic macrophages, rhythms have been also observed in
the mRNA expression of Tlr2 and Tlr6, peaking at ZT14 (31).
Therefore, circadian control in some TLRs and downstream
signaling pathways appears as an important mechanism directing
circadian inflammation. However, circadian TLR expression
differs amongst immune cells (31), and an explanation of this,
and the functional consequences of it, are still largely unknown.

IMMUNOMETABOLISM

Immune cell activation following PRR stimulation requires
significant amounts of energy. Immunometabolism is an
emerging field seeking to understand how cellular metabolism
impacts immunity (32, 33). Multiple relationships exist between
clock function and metabolism in liver (34–37) and muscle
(38–40). However, the specific relationships between the
molecular clock, metabolism, and immunity have yet to be fully
determined (41, 42). Many immunometabolism investigations
have been on macrophages, whose activity covers a spectrum
of phenotypes. LPS stimulation promotes a pro-inflammatory
M1-like phenotype characterized by increased glycolysis and
decreased oxidative phosphorylation (43). In contrast, M2-like
stimuli, such as IL-4, decrease glycolysis, promote oxidative
phosphorylation, and generating an anti-inflammatory state
(44). These metabolic shifts can directly impact outcomes of
certain pathologies, such as sepsis (45). Interestingly, BMAL1
suppresses sepsis through its impact upon glycolytic metabolism
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FIGURE 1 | (A) The molecular clock transcription factor feedback loop. (B) Peaks troughs in murine monocyte and macrophage inflammatory mediators across the

24 h day.

(46). BMAL1 transcriptionally targets the glycolytic enzyme
Pkm2, negatively regulating glycolysis, lactate production, and
the immune checkpoint protein PD-L1. Deletion of Bmal1
in macrophages diminished their ability to control glycolysis
and increased downstream PD-L1/T-cell mediated septic shock,
revealing the importance of macrophage clock function on
metabolic control of inflammation.

Mitochondria have extended their reach beyond energy
production and are now considered central hubs of immunity
(47, 48). They achieve this through production of metabolites

(47) and ROS (49), and by altering their morphology, which

can affect metabolism and signal transduction pathways (48).
Mitochondrial morphology describes the elongation (fusion) or
segmentation (fission) of mitochondria within the cell (50–53).
Rhythms in mitochondrial morphology and membrane potential
have been observed in synchronized peritoneal macrophages
in vitro (54). However, whether mitochondrial morphology is

under circadian control in innate immunity is still unknown.
Thus, determining circadian immunometabolism of the innate
immune system will provide new insights into a range of diseases
and pathologies.

Inflammatory Mediators
While classifying macrophages into M1 vs. M2 is convenient, the
reality is that macrophages in vivo are highly plastic cells existing
across a spectrum of activation states (55, 56). Nonetheless,
macrophages isolated from mice lacking the clock genes Per1
and Per2 preferentially display an M1-like pro-inflammatory
phenotype. However, this phenotype is attenuated following
overexpression of PPARγ (57), a critical regulator of M2-
like macrophage polarization (58). The circadian hormone
melatonin promotes an M2-like phenotype, acting through
the clock component RORα and through metabolite-signaling
dependent mechanisms (59, 60). When mice were exposed to
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a shifted light-dark cycle and fed a high-fat diet, more M1-like
macrophage polarization was observed compared to normal
light-dark cycles controls (61). IL-6 expression in peritoneal
macrophages isolated from chronically clock-disrupted mice
was increased following exposure to LPS (62). The response of
individual macrophages to LPS has been shown to be dependent
on the circadian genes Nfil3 and Dbp (63). These two genes are
in antiphase to each other and have opposite effects on LPS
induced inflammation. NFIL3 and DBP competitively bind to
the promoter of Il12b repressing and enhancing its expression,
respectively. The oscillations of these circadian proteins provide
variation in the response to LPS across the circadian day. This
study highlights the molecular clock as a potential mechanism by
which genetically identical cells of the same lineage may respond
differently to the same stimuli. Taken together, data from these
studies illustrate the importance of circadian rhythmicity and the
molecular clock on macrophage polarization.

Our current understanding of clock control of
macrophage/monocyte expression of chemokines and cytokines
is summarized in Figures 2A,B, respectively. Serum levels
of IL-6, IL-12, CCL5, CXCL1, and CCL2 were shown to be
higher in WT mice injected with LPS at the time of transition
to dark phase. Similarly, serum levels of CCL2, IL-1β, IL-6,
and IFN-γ were higher in mice infected with Listeria at ZT8
vs. ZT0 (22) and deletion of Bmal1 in the myeloid lineage
of mice also increased these cytokines (22). BMAL1 directly
induces the master antioxidant transcription factor NRF2,
which diurnally regulates ROS in myeloid cells, limiting HIF-1α
induced IL-1β (64). Others have demonstrated increased Hif1a
and Il1b expression in macrophages with deletion of Bmal1
(65). This was due to a loss of BMAL1’s epigenetic role in down
regulating TLR4 responsive enhancer RNA (eRNA) expression
(65). CLOCK enhances gene expression of Il-6, Il1b, Tnfa,
Cxcl1, Ifnb, and Ccl2 (66). CLOCK also boosts NF-kB activity in
mouse endothelial fibroblasts (MEFs), while BMAL1 works to
sequester CLOCK from the NF-κB subunit p65 in MEFs (67).
Whether this mechanism exists in macrophages is unknown but
warrants investigation. However, Bmal1 deletion in myeloid cells
is known to increase expression of p65, mediated by miR-155,
with a subsequent increase in TNFα. TLR4 activation by LPS
also results in increased levels of miR-155, which targets Bmal1
for degradation, potentiating inflammation (28). This evidence
suggests that BMAL1 suppresses, while CLOCK potentiates,
the inflammatory response in macrophages. Further work is
needed to clarify the direct and indirect regulatory mechanisms
impacted by these circadian transcription factors.

REV-ERBα also has a role in regulating inflammation in
macrophages. Global Rev-Erbα deletion ablates time-of-day
gating of peritoneal macrophage IL-6 production. Alveolar
macrophages isolated from these mice have heightened
inflammation in terms of Il6, Ccl2, and Ccl5 expression (68).
Conversely, a REV-ERBα agonist suppresses expression of
Il6, Il19, Cxcl6, Cxcl11, and Ccl2 in LPS-stimulated human
monocyte-derived macrophages (69). REV-ERBα directly binds
to the promoter of Ccl2 (70) attenuating its expression. However,
RORα binding promotes Ccl2 expression (70). REV-ERBα

has additional anti-inflammatory function via recruitment

of the NCoR-HDAC corepressor complex, inhibiting eRNA
transcription, and subsequent downstream mRNA transcription
of the inflammatory genes Cx3cr1 and Mmp9 (71). In terms of
neuroinflammation, REV-ERBα negatively regulates microglial
expression of Il1b, Il6, and Ccl2 (72). In a murine model of
DSS-induced colitis NF-κB signaling is also increased with
Rev-Erbα deletion (72, 73), and interestingly this was shown
to promote indirect activation of the NLRP3 inflammasome. A
model of fulminant hepatitis (74) demonstrated direct negative
regulation of Nlrp3 mRNA by REV-ERBα (74). Thus, a wealth
of evidence is emerging that REV-ERBα through various
mechanisms, is a suppressor of inflammation in macrophages.

Per1/Per2 also impacts macrophage inflammatory responses.
Mice lacking these genes have increased expression of Il1b
and Tnfa basally, as well as in response to LPS (57).
The repressive effects of the PER complex are mediated
through PPARγ. PER1 and PPARγ bind the Ccr2 promoter to
inhibit its expression. Deletion of Per1 increases expression of
Ccr2 and migratory activity in macrophages (75). Peritoneal
macrophages lacking Per2 have heightened responses to TLR9
activation displaying heightened TNFα and IL-12 production
(29). CRY also suppresses the inflammatory response in
macrophages via negative regulation of the cAMP-PKA-
NF-κB pathway (76). Loss of CRY results in constitutive
upregulation of Il6, Tnfa, and inos. Thus, the PER/CRY
complex is another mechanism of clock-related suppression of
inflammatory mediators in macrophages.

Thus, the activation state and regulation of cytokines,
chemokines, ROS, miRNAs, and eRNAs in monocytes and
macrophages are directly and indirectly targeted by components
of the circadian machinery. Circadian regulation of these
mediators ensures a closely controlled and appropriately timed
macrophage/monocyte response to challenge and infection.

PHAGOCYTOSIS

A crucial function of macrophages is the ingestion of pathogens
via phagocytosis. Diurnal regulation of phagocytosis has
been demonstrated in ex vivo peritoneal macrophages (20).
Synchronized peritoneal macrophages in vitro, suggested
circadian rhythmicity in phagocytic activity (54). Another study
showed similar time-of-day variation in peritoneal macrophage
phagocytosis ex vivo, but found that this pattern was lost in
vivo (77). A recent study demonstrated deletion of Bmal1
creates a more phagocytic, motile, and ultimately antimicrobial
macrophage via a RhoA-dependent mechanism, which impacted
on Streptococcus pneumoniae lung infection. This is an extremely
interesting development, however, whether BMAL1 and other
clock components play this role in response to the full range of
pathogens and foreign bodies that macrophages can phagocytose,
is yet unknown.

CIRCADIAN MIGRATION

Appropriate cell migration of immune cells into tissues is critical
for protective immunity. Monocyte migration is highly rhythmic
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FIGURE 2 | Circadian clock proteins mediated molecular regulation of (A) chemokines and (B) cytokines.

and is tightly controlled by autocrine monocyte signaling as well
as from the destination tissue. In mice, total-blood leukocyte
numbers peak during the behavioral rest phase (ZT5), whereas
theirmigration into bone-marrow and organ tissues peaks during
the behavioral active phase (ZT13) (78). Central to regulating
monocyte trafficking into tissues is the chemokine receptor
CXCR4, whose expression on monocytes peaks at ZT13 (79).
Decreased expression of surface CXCR4 abrogates rhythmic
diurnal oscillations in monocytes, and has also been shown
to affect their homing ability to peripheral organs such as the
liver and lung (80). Myeloid deletion of Bmal1 ablates the
rhythmic trafficking of monocytes between bone-marrow, blood
and peripheral organs, highlighting the importance of intrinsic
monocyte clocks in this process (22). Inflammatory monocyte
chemotaxis is also dependent on chemokine signaling through
the CCL2:CCR2 axis (81). BMAL1 has been shown to control
circadian monocyte trafficking by inhibiting the transcription
of the chemokines Ccl2 and Ccl8 through recruitment of the
polycomb repressive complex 2 (PRC2) (22). Monocyte release
into circulation, as well as their eventual infiltration into organ
tissues, is clearly dependent on the circadian expression of
receptors and chemokines (82).

The transition of inflammatory monocyte from blood into
peripheral tissues is also dependent on the leukocyte adhesion
cascade. This process involves direct interactions between
endothelial vascular cells and infiltrating leukocytes (83). At the
start of this process, chemokines are released into the blood
from tissue-resident cells. These activate receptors on circulating
monocytes that boost the expression of adhesion molecules to
facilitate trans-endothelial migration. The molecular clock in
monocytes is crucial in this regulation. Deletion of Bmal1 in

monocytes results in increased expression of CD18 integrin
(a transmembrane receptor facilitating extracellular matrix
adhesion), decreased chemokine receptor CCR2, and loss of
rhythm in gene expression of L-selectin (a homing receptor that
aids binding to endothelial cells). The ultimate consequence of
these changes in adhesion and chemokine receptors, is disruption
of monocyte trafficking to target tissues (80). Adrenergic nerves
of the autonomic nervous system are also important in governing
leukocyte recruitment to tissues in a circadian manner through
adrenoreceptor signaling in endothelial cells, which leads to
increased expression of ICAM1 (an adhesion molecule that aids
in transmigration of immune cells) (78). Circadian expression of
endothelial ICAM1 and VCAM1 in the lungs and liver, which
peak at ZT13, coincides with maximum leukocyte recruitment,
and this peak at ZT13 in endothelial ICAM1 and VCAM1
is ablated with Bmal1 deletion (80). Deletion of Bmal1 in
endothelial cells ablates the rhythmic migration of all leukocyte
subsets, including inflammatory monocytes. Unlike adrenergic
signaling, glucocorticoid signaling by the adrenal gland is not
required for circadian trafficking of monocytes to organs such as
the spleen (23).

Diurnal monocyte trafficking corresponds to the immune
response to Listeria. Intraperitoneal infection at ZT8 results
in lower counts of colony forming units (CFU), but increased
lethality compared to infection at ZT0 (22). Myeloid deletion
of Bmal1 results in greater lethality to Listeria infection.
This indicates that BMAL1 prevents an overactive and lethal
immune response to Listeria by dampeningmonocyte trafficking.
Indeed, myeloid Bmal1 deletion also results in greater numbers
of inflammatory monocytes in circulation and in the spleen
(22). Collectively, these data demonstrate the central role of
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the molecular clock in controlling monocyte migration via
chemokines, their receptors, and adhesion molecules, which
is highly relevant to the immune response and to disease
susceptibility and progression.

CONCLUSIONS

It is evident that the molecular clock exerts significant control
over key functions of innate immunity, in particular monocytes
and macrophages. However, our modern 24/7 lifestyles are at
odds with this closely regulated endogenous 24-h system of
control. This is leading to a global increase in the prevalence of
circadian disruption in human health (84). An estimated 20%
of the work force are shift workers who, due to their schedule,
are at increased risk for obesity, diabetes, cardiovascular disease,
and cancer (85, 86). Furthermore, at least 80% of us experience
social jet lag (84), defined as misalignment between our body
clocks and social behaviors (87). Shift workers have been shown
to have altered numbers of immune cells such as monocytes (85)
and altered rhythms in cytokine output (88)—and similar effects
are likely to be present in all of us who experience significant
social jetlag. It is conceivable that these circadian disruptions are
an important link between lifestyle, behavior, and disease. Most
of the studies discussed in this review used animal models of
circadian disruption via jet lag/shift work models, or circadian
gene deletion, to study their effects on inflammatory functions of
monocytes and macrophages. These will help us to understand
and explain key mechanisms in the pathogenesis of many human
inflammatory disorders such as cardiovascular disease (89),

asthma (90), rheumatoid arthritis (91), and potentially many
others. Understanding the underlying molecular mechanisms by
which the molecular clock controls metabolism, phagocytosis,
pattern recognition, and inflammatory mediator production in
monocytes and macrophages will help us to develop new tools
and therapies for chronic disease. These will help us to manage
the conflicting pressures of modern lifestyles, that have developed
in recent decades, with the tightly controlled internal circadian
system that has evolved over a much longer timescale.
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