INNER AMENABLE LOCALLY COMPACT GROUPS

ANTHONY TO-MING LAU AND ALAN L. T. PATERSON

ABSTRACT. In this paper we study the relationship between amenability, inner amenability and property P of a von Neumann algebra. We give necessary conditions on a locally compact group G to have an inner invariant mean msuch that m(V) = 0 for some compact neighborhood V of G invariant under the inner automorphisms. We also give a sufficient condition on G (satisfied by the free group on two generators or an I.C.C. discrete group with Kazhdan's property T, e.g., $SL(n, \mathbb{Z})$, $n \ge 3$) such that each linear form on $L^2(G)$ which is invariant under the inner automorphisms is continuous. A characterization of inner amenability in terms of a fixed point property for left Banach G-modules is also obtained.

INTRODUCTION

Let G be a locally compact group. Then G is called *inner amenable* if there exists a state m on $L^{\infty}(G)$, such that $m(\pi(a)f) = m(f)$ for all $a \in G$ and $f \in L^{\infty}(G)$, where

$$\pi(a)f(x) = f(a^{-1}xa), \qquad x \in G.$$

Amenable locally compact groups and [IN]-groups are inner amenable. The group G is [IN] if there exists a compact neighborhood V of the identity e in G such that $a^{-1}Va = V$ for all $a \in G$. Furthermore when G is connected, then G is amenable if and only if G is inner amenable (see [17]). A recent account of amenability is given in [21].

Let \mathscr{M} be a von Neumann algebra on a Hilbert space H and let \mathscr{M}' be the commutant of \mathscr{M} . For $T \in \mathscr{B}(H)$ (the space of bounded linear operators on H), let C_T be the weak*-closed convex subset of $\mathscr{B}(H)$ generated by $\{U^*TU; U \in \mathscr{M}^u\}$, where \mathscr{M}^u is the group of unitary elements in \mathscr{M} . (Note that $\mathscr{B}(H)$ has a unique predual [28, p. 47].) \mathscr{M} is said to have property Pif $C_T \cap \mathscr{M}' \neq \emptyset$ for each $T \in \mathscr{B}(H)$.

Let VN(G) denote the von Neumann algebra on $L^2(G)$ generated by $\{l_x; x \in G\}$ where $l_x h(t) = h(xt)$, $t \in G$. A well-known result of Schwartz [29] asserts

©1991 American Mathematical Society 0002-9947/91 \$1.00 + \$.25 per page

Received by the editors April 12, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 43A07.

Key words and phrases. Amenable locally compact groups, inner amenable groups, [IN]-groups, property P, von Neumann algebra, free group, Kazhdan's property T, automatic continuity, fixed point property.

The first author's research was supported by an NSERC grant.

that if G is discrete, then G is amenable if and only if VN(G) has property P. In §3 we study the relation between amenability, inner amenability, and property P of a von Neumann algebra determined by G and its action on a locally compact Hausdorff space X. In particular, we provide the missing link in the following well-known implications for a locally compact group G:

•In [20] Paschke proved that if G is an infinite discrete group, then there exists an inner invariant mean on $l^{\infty}(G)$ different from the point evaluation at the identity if and only if the C*-algebra generated by the unitaries on $l^2(G)$ corresponding to conjugation by elements in G does not contain the projection on the space $\mathbb{C}\delta_e$, where e is the identity of G. In §4, we find necessary conditions for there to exist an inner invariant mean m on $L^{\infty}(G)$ such that $m(1_V) = 0$ (when V is a compact neighborhood of G invariant under inner automorphisms). We also give a sufficient condition on G (Theorem 4.4) such that each linear form I on $L^2(G)$ which is invariant under inner automorphisms is continuous and has the form $I(f) = \frac{\alpha}{\lambda(V)} \int_V f dx$, where $\alpha = I(1_V)$. In particular (Corollary 4.5 and 4.6) if G is the free group on two generators or a discrete group with Kazhdan's property T and every nontrivial conjugacy class in G is infinite (e.g., $SL(n, \mathbb{Z})$, $n \geq 3$), then every inner invariant linear form on $l^2(G)$ is continuous. (See [18] for a discussion of similar problems.)

It is well known (see [6 or 26]) that amenability of a locally compact group G may be characterized in terms of fixed points for affine maps on compact convex sets. In §5, we characterize inner amenability of G in terms of a fixed point property for left Banach G-modules. Finally in §6, a few miscellaneous results on inner amenability are stated and proved.

The literature on inner amenability has grown substantially in recent years: see [1, 2, 7, 14, 16, 17, 20, 31].

2. PRELIMINARIES AND SOME NOTATIONS

Throughout this paper G denotes a locally compact group with a fixed left Haar measure λ . The spaces $L^{p}(G)$, $1 \le p \le \infty$, of measurable functions will be as defined in [13]. For each $a \in G$, $1 \le p < \infty$, let $\pi(a)$ be the operator on $L^{p}(G)$ defined by

$$\pi(a)f(t) = f(a^{-1}ta)\Delta^{1/p}(a), \qquad a, t \in G, \ f \in L^{p}(G).$$

where Δ is the modular function on G. The group G is called *amenable* if there exists a mean m on $L^{\infty}(G)$ (i.e., $m \in L^{\infty}(G)$, $m \ge 0$, and ||m|| = 1) such that $m(l_a f) = m(f)$ for all $a \in G$ and $f \in L^{\infty}(G)$. As is well known [8, Theorem 2.2.1], this is equivalent to the existence of a left invariant mean on $U_r(G)$, the space of bounded right uniformly complex-valued continuous functions on G (as defined in [13, p. 21]). All abelian groups and all compact groups are amenable. However, if G contains the free group on two generators as a closed subgroup (e.g., if $G = SL(2, \mathbb{R})$), then G is not amenable (see [8, 21, 23] for details).

Let \mathscr{M} be a von Neumann algebra on a Hilbert space H. If \mathscr{M} has property P, then there exists a projection of norm one E from $\mathscr{B}(H)$ onto \mathscr{M}' with E(1) = 1 (see [28, p. 207, or 24, p. 136]). Von Neumann algebras with this latter property are called injective. As is well known [4], injectivity and property P are equivalent. For a discussion of the various forms of amenability for von Neumann algebras, see [21, 2.35].

If X is a subset of a locally convex space E with topology τ , then $\overline{co}^{\tau}X$ will denote the closed convex hull of X in E.

3. INNER AMENABILITY, AMENABILITY, AND INJECTIVITY

A reference for the definitions below in the discrete cases is Zimmer [32]. Let X be a locally compact Hausdorff space. Let G act invertibly on X on the right such that the mapping $X \times G \to X$ defined by $(x, g) \to x \cdot g$, $x \in X$, $g \in G$, is jointly continuous. Let μ be a nonnegative quasi-invariant Radon measure on X. We define $L^p(X \times G, \mu \times \lambda)$ or simply $L^p(X \times G)$, $1 \le p \le \infty$, as the usual L^p -spaces of Borel functions identified when they coincide off a locally $(\mu \times \lambda)$ -null set in $X \times G$. For each $a \in G$, define $\mu_a(E) = \mu(Ea)$. Then, by quasi-invariance of μ , we have $\mu_a \ll \mu$ for each $a \in G$ and there is, by the Radon-Nikodým theorem, a locally μ -integrable function $r(\cdot, a)$ such that

$$\int f(xa^{-1}) d\mu(x) = \int f(x) r(x, a) d\mu(x)$$

for all $f \in L^1(X)$ $(= L^1(X, \mu))$. It follows that r(x, ab) = r(x, a)r(xa, b)for $a, b \in G$, and r(x, e) = 1. For $u \in G$ and $\phi \in L^{\infty}(X)$, define the operators U_a , V_a , M_{ϕ} , and N_{ϕ} on $L^2(X \times G)$ by

$$\begin{split} U_a f(x, b) &= f(xa, ba) r(x, a)^{1/2} \Delta(a)^{1/2}, \\ V_a f(x, b) &= f(x, a^{-1}b), \\ M_\phi f(x, b) &= \phi(x) f(x, b), \\ N_\phi f(x, b) &= \phi(x b^{-1}) f(x, b), \end{split}$$

where $f \in L^2(X \times G)$.

Then each U_a , V_a is a unitary operator on $L^2(X \times G)$. Let \mathscr{L} be the von Neumann algebra generated by the operators V_a , N_{ϕ} $(a \in G, \phi \in L_{\infty}(X))$, and \mathscr{R} be the von Neumann algebra generated by the operators U_a , M_{ϕ} $(a \in G, \phi \in L_{\infty}(X))$. If $J \in \mathscr{B}(L^2(X \times G))$ is given by

$$(Jf)(x, b) = f(xb^{-1}, b^{-1})r(x, b^{-1})^{1/2}\Delta(b^{-1})^{1/2},$$

then $J^2 f = f$, $JV_a J = U_a$, and $JN_{\phi}J = M_{\phi}$. So J implements a spatial isomorphism between \mathscr{L} and \mathscr{R} . Therefore \mathscr{L} has property P if and only if \mathscr{R} has property P.

If $a \in G$, let δ_a denote the Dirac measure on G concentrated at a. For any $f \in L^{\infty}(X)$, the function $(\delta_a \Box f)(x) = f(xa)$ is defined μ -locally almost everywhere on X (see [10, Lemma 2.1]). Furthermore, $\delta_a \Box f \in L^{\infty}(X)$. A linear functional m on $L^{\infty}(X)$ is called a mean if m(1) = 1 and $m(f) \ge 0$ whenever $f \ge 0$. A mean m is G-invariant if $m(\delta_g \Box f) = m(f)$ for all $g \in G$.

Also for any $\phi \in L^1(X)$ and $x \in G$, let $\delta_x * \phi \in L^1(X)$ be defined by

$$\delta_x * \phi(\xi) = \left(\frac{d\mu_x}{d\mu}\right)(\xi)\phi(x^{-1}\xi)$$
 μ -a.e. on λ

(see [10, Lemma 2.2]), where $\mu_x(E) = \mu(x^{-1}E)$.

Theorem 3.1 below, in the special case where X is a singleton, is proved in [21, p. 85].

Theorem 3.1. Let G, X, and \mathcal{L} be as above. Then the following are equivalent:

- (a) G is amenable.
- (b) \mathscr{L} is injective, $L^{\infty}(X)$ has a G-invariant mean, and G is inner amenable.

Proof. (a) \Rightarrow (b) If G is amenable, then G is inner amenable since every invariant mean on G is inner invariant. It follows from [10, Theorem 3.1] that $L^{\infty}(X)$ has a G-invariant mean.

To see that \mathscr{L} is injective, we first note that the von Neumann algebra generated by $\{N_{\phi}; \phi \in L^{\infty}(X)\}$ has property P (by the Markov-Katutani fixed point theorem). Hence $\mathscr{D} = \{N_{\phi}; \phi \in L^{\infty}(X)\}'$ is injective [28, Proposition 4.4.15]. (In fact, \mathscr{D} is the von Neumann algebra generated by the N_{ϕ} .) It suffices to show that there is a norm one projection from \mathscr{D} onto $\mathscr{L}' = \{V_a; a \in G\}' \cap \mathscr{D}$. For then \mathscr{L}' is injective and so \mathscr{L} is also injective.

Let $T \in \mathscr{D}$ and $a \in G$. Then $V_{a^{-1}}TV_a \in \mathscr{D}$. Indeed \mathscr{D} is generated by the N_{ϕ} 's; hence we may assume $T = N_{\phi}$. If $x \in X$, $b \in G$, and $f \in L^2(X \times G)$, we have

$$\begin{split} (V_{a^{-1}}N_{\phi}V_{a}f)(x, b) &= (N_{\phi}V_{a}f)(x, ab) \\ &= \phi(xb^{-1}a^{-1})(V_{a}f)(x, ab) = (N_{a^{-1}\phi}f)(x, b)\,, \end{split}$$

i.e., $V_{a^{-1}}N_{\phi}V_{a} = N_{a^{-1}\phi} \in D$. The result follows.

Let K_T denote the $\overline{co}^{w^*}\{V_{a^{-1}}TV_a: a \in G\}$ $(w^* = weak^*)$. Then K_T is a w^* -compact convex subset of \mathscr{D} . Consider the action of G on K_T defined by

$$(a, S) \rightarrow V_{a^{-1}}SV_a$$
.

Then the action is separately continuous in the weak operator topology WOT, which agrees with the w^* -topology on K_T . Indeed, if $a_0 \to a_0$ and $S \in K_T$,

then $V_{a_{\alpha}} \to V_{a}$ and $V_{a_{\alpha}^{-1}} \to V_{a^{-1}}$ in the strong operator topology (SOT). In particular, $SV_{a_{\alpha}} \to SV_{a}$ in the SOT, and so $V_{a_{\alpha}^{-1}}SV_{a_{\alpha}} \to V_{a^{-1}}SV_{a}$ in the SOT (since multiplication is jointly continuous on bounded sets in the SOT). Hence $V_{a_{\alpha}^{-1}}SV_{a_{\alpha}} \to V_{a^{-1}}SV_{a}$ in the WOT. Now if $a \in G$, and $S_{\alpha} \to S$ in the WOT, then for any η , $\xi \in L_{2}(G \times X)$,

$$\langle V_{a^{-1}}S_{\alpha}V_{a}\xi\,,\,n\rangle = \langle S_{\alpha}V_{a}\xi\,,\,V_{a}\eta\rangle \rightarrow \langle SV_{a}\xi\,,\,V_{a}\eta\rangle = \langle V_{a^{-1}}SV_{a}\xi\,,\,\eta\rangle\,,$$

i.e., $V_{a^{-1}}S_{\alpha}V_{a} \rightarrow V_{a^{-1}}SV_{a}$ in the WOT. Apply now Rickert's generalization of Day's fixed point theorem to obtain $S \in K_{T}$ such that $V_{a^{-1}}SV_{a} = S$ for all $a \in S$, i.e., $SV_{a} = V_{a}$ for all $a \in S$. So $S \in \{V_{a} : a \in S\}' \cap \mathscr{D}$. Consequently, there exists a projection $Q: \mathscr{D} \rightarrow \{V_{a} : a \in G\}' \cap \mathscr{D}$ such that $Q(T) \in K_{T}$ for all $T \in \mathscr{D}$, Q(I) = I, and ||Q|| = 1 by Yeadon's Theorem [30].

(b) \Rightarrow (a) Define a left and a right action of G on $L^{\infty}(X \times G)$ by

(1)
$$(Fa)(x, b) = F(x, ab), \quad (aF)(x, b) = F(xa, ba).$$

Using (1) and the equalities r(x, ab) = r(x, a)r(xa, b) a.e. x, and r(x, e) = 1 for all $x \in G$, one shows that

(2)
$$\langle F, V_a f \rangle = \langle Fa, f \rangle, \quad \langle F, U_a f \rangle = \langle a^{-1}F, f \rangle$$

 $(F \in L^{\infty}(X \times G), f \in L^{1}(X \times G))$. Here (with a slight abuse of notation),

$$V_a f(x, b) = f(x, a^{-1}b), \qquad U_a f(x, b) = f(xa, ba)r(x, a)\Delta(a)$$
$$(f \in L^1(X \times G), \ x \in X, \ a, b \in G).$$

We now show that there exists a positive linear functional m' with ||m'|| = 1 such that

$$m'(aFa^{-1}) = m'(F)$$

for all $a \in G$ and $F \in L^{\infty}(X \times F)$.

Since $L^{\infty}(X)$ has a *G*-invariant mean, an argument similar to that of Namioka [19] shows that there exists a net $\{\phi_{\alpha}\}$ in $P_1(X) = \{\phi \in L^1(X) : \phi \ge 0 \text{ and } \|\phi\|_1 = 1\}$ such that $\|\delta_a * \phi_{\alpha} - \phi_{\alpha}\| \to 0$ for each $a \in G$. Also since *G* is inner amenable, there exists a net $\{\mu_{\beta}\}$ in $P_1(G)$ such that $\|\delta_a * \mu_{\beta} * \delta_{a^{-1}} - \mu_{\beta}\|_1 \to 0$ (see [17, Proposition 1]). Let

$$m_{\alpha,\beta}(F) = \int F d(\phi_{\alpha} \times \mu_{\beta}),$$

where $F \in L^{\infty}(X \times G)$. Then $\{m_{\alpha,\beta}\}$ is bounded in $L^{\infty}(X \times C)^*$. Further-

more, if $a \in G$ and $F \in L^{\infty}(X \times G)$, then

$$\begin{split} |\langle m_{\alpha,\beta}, aFa^{-1} \rangle - \langle m_{\alpha,\beta}, F \rangle| \\ &= \left| \iint F(xa, a^{-1}ba) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) - \iint F(x, b) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) \right| \\ &\leq \left| \iint F(xa, a^{-1}ba) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) - \iint F(x, a^{-1}ba) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) \right| \\ &+ \left| \iint F(x, a^{-1}ba) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) - \iint F(x, b) \, d\phi_{\alpha}(x) \, d\mu_{\beta}(b) \right| \\ &\leq ||\delta_{a} * \phi_{\alpha} - \phi_{\alpha}|| \, ||F||_{\infty} + ||\delta_{a} * \mu_{\beta} * \delta_{a^{-1}} - \mu_{\beta}|| \, ||F||_{\infty} \end{split}$$

which converges to zero. Hence if m' is any weak*-cluster point of the $\{m_{\alpha,\beta}\}$, then m' satisfies (3).

By (3) and an idea of Namioka [19] there exists a net $\{f_{\delta}\}$ in $L_1(X \times G)$, $f_{\delta} \ge 0$, $\|f_{\delta}\|_1 = 1$ such that $\|(V_{a^{-1}} - U_a)b_{\delta}\|_1 \to 0$. Let $g_{\delta} = f_{\delta}^{1/2}$. Note that $g_{\delta} \in L_2(X \times G)$, $g_{\delta} \ge 0$, and $\|g_{\delta}\|_2 = 1$. Then $(V_a f_{\delta})^{1/2} = V_a g_{\delta}$, $(U_a f_{\delta})^{1/2} = U_a g_{\delta}$, and hence

(4)
$$\|(V_{a^{-1}} - U_a)g_{\delta}\|_2 \to 0 \quad \text{for all } a \in G$$

For each $F \in L^{\infty}(X \times G)$, let $L_F \in \mathscr{B}(L_2(X \times G))$ be defined by

$$L_F f(x, b) = F(x, b) f(x, b).$$

Then, as readily checked,

(5)
$$V_a L_F V_{a^{-1}} = L_{Fa^{-1}}$$

for each $a \in G$. Let H denote the group of unitary elements in the von Neumann algebra \mathscr{R} with the strong operator topology. Let ψ_{δ} be a function on H defined by $\psi_{\delta}(F)(U) = \langle UL_F U^* g_{\delta}, g_{\delta} \rangle$ $(U \in H)$. Then $\psi_{\delta} \in U_r(H)$. Also

(6)
$$\psi_{\delta}(Fa^{-1})(U) = \langle UL_{Fa^{-1}}U^{*}g_{\delta}, g_{\delta} \rangle$$
$$= \langle UV_{a}L_{F}V_{a^{-1}}U^{*}g_{\delta}, g_{\delta} \rangle$$
$$= \langle UL_{F}U^{*}(V_{a^{-1}}g_{\delta}), V_{a^{-1}}g_{\delta} \rangle$$

using (5) and the fact that each V_a is in the commutant of \mathcal{R} . Also

$$\psi_{\delta}(F)V_{a^{-1}}(U) = \langle UL_F U^*(V_a g_{\delta}), V_a g_{\delta} \rangle.$$

So

(7)

$$|[\psi_{\delta}(Fa^{-1}) - \psi_{\delta}(F)U_{a^{-1}}](U)|$$

$$= |\langle UL_{F}U^{*}V_{a^{-1}}g_{\delta}, V_{a^{-1}}g_{\delta} \rangle - \langle UL_{F}U^{*}V_{a}g_{\delta}, V_{a}g_{\delta} \rangle|$$

$$= |\langle UL_{F}U^{*}(V_{a^{-1}} - V_{a})g_{\delta}, V_{a}g_{\delta} \rangle$$

$$+ \langle UL_{F}U^{*}V_{a^{-1}}g_{\delta}, (V_{a^{-1}} - V_{a})g_{\delta} \rangle|$$

$$\leq 2||F|| ||V_{a^{-1}} - V_{a}|| ||g_{\delta}||_{2}.$$

Since \mathscr{L} is injective, \mathscr{L} must have property P. So \mathscr{R} also has property P. By a result of de la Harpe [12], there exists a left invariant mean m on $U_r(H)$, the space of bounded right uniformly continuous functions on H. Hence using (4) and (7), we have

$$|m(\psi_{\delta}(Fa^{-1})) - m(\psi_{\delta}(F))| \to 0.$$

Let $n_{\delta} = m \circ \psi_{\delta}$. Then n_{δ} is a mean on $L^{\infty}(X \times G)$. Let *n* be a weak*-cluster point of $\{n_{\delta}\}$. Then $n(Fa^{-1}) = n(F)$ for all $F \in L^{\infty}(X \times G)$ and $a \in G$. Define

$$\tilde{n}(\phi) = n(1 \otimes \phi), \qquad \phi \in L^{\infty}(G).$$

Then \tilde{n} is a left invariant mean on $L^{\infty}(G)$. Hence G is amenable. \Box

A well-known result of Schwartz [29] asserts that if G is discrete then G is amenable if and only if VN(G) has property P. Letting G act trivially on a set consisting of one point, we obtain from Theorem 3.1 the following [21, 2.35]:

Corollary 3.2. Let G be a locally compact group. The following are equivalent:

- (a) G is amenable.
- (b) VN(G) is injective and G is inner amenable.

Corollary 3.3. Let G be an [IN]-group. Then VN(G) is injective if and only if G is amenable.

Corollary 3.4 (Losert and Rindler [17]). Let G be a connected locally compact group. Then G is amenable if and only if G is inner amenable.

Proof. If G is inner amenable, let U be a compact neighborhood of G. Then $G_0 = \bigcup_{n=1}^{\infty} U^n$ is an open (and hence closed), compactly generated subgroup of G. Since G is connected, $G = G_0$. Let K be a compact normal subgroup such that G/K is separable metrizable (see [13, p. 71]). Clearly G/K is connected and inner amenable (Proposition 6.2). However VN(G/K) is injective [5, p. 112]. So G/K is amenable by Theorem 3.1. Hence G is also amenable. \Box

4. [IN]-GROUPS AND INNER AMENABILITY

Let G be an [IN]-group. Then there exists a compact neighborhood V of e such that $x^{-1}Vx = V$ for each $x \in G$. In this section we find necessary conditions such that there exists an inner invariant mean m on $L^{\infty}(G)$ with $m(1_V) = 0$. We first establish the following general lemma.

Lemma 4.1. Let G be a locally compact group. Let $\{\pi, H\}$ be a continuous unitary representation of G. Let $\eta_0 \in H$, $\eta_0 \neq 0$, and $\pi(x)\eta_0 = \eta_0$ for all $x \in G$. Let $H_0 = \{\eta \in H; \langle \eta, \eta_0 \rangle = 0\}$ and $Q \in \mathscr{B}(H)$ be defined by $Q(\eta) = \langle \eta, \eta_0 \rangle \eta_0 / ||\eta_0||^2$. The following are equivalent:

(a) $Q \notin C^*_{\pi}(G)$ (the C^{*}-algebra generated by $\{\pi(x); x \in G\}$).

- (b) There exists a net $\theta_{\alpha} \in H_0$ such that $\|\theta_{\alpha}\| = 1$, and $\|\pi(x)\theta_{\alpha} \theta_{\alpha}\| \to 0$ for each $x \in G$.
- (c) There exists a state ω on $\mathscr{B}(H)$ such that $\omega(\pi(x)) = 1$ for each $x \in G$ and $\omega(Q) = 0$.

Proof. (a) \Rightarrow (b) We follow an idea contained in the proof of [3, Theorem 1.1]. Suppose (b) fails; then we can find $y_1, \ldots, y_M \in G$ and $\varepsilon > 0$, such that for all $\theta \in H_0$, $\|\theta\| = 1$, there exists some $i, 1 \le i \le M$, such that $\|\pi(y_i)\theta - \theta\| \ge \varepsilon$. Let $x_1 = e$, the identity of G, and $x_2 = y_1, \ldots, x_{M+1} = y_M$. Let N = M + 1 and $A = N^{-1} \sum_{k=1}^{N} \pi(x_k)$. We claim that $\|A\|_{H_0} < 1$. If not, we can find a sequence $\theta_n \in H_0$, $\|\theta_n\| = 1$, such that

$$\|A(\theta_n)\|_2^2 = \langle A(\theta_n), A(\theta_n) \rangle = \frac{1}{N^2} \sum_{i,j} \langle \pi(x_j^{-1} x_i) \theta_n, \theta_n \rangle \to 1.$$

Since $|\langle \pi(x_j^{-1}x_i)\theta_n, \theta_n \rangle| \le 1$ for each i, j, we conclude that

$$\operatorname{Re}\langle \pi(x_j^{-1}x_i)\theta_n, \theta_n\rangle \to 1.$$

But then

$$\|\pi(x_i)\theta_n - \pi(x_j)\theta_n\|_2^2 = 2 - \operatorname{Re}\langle \pi(x_j^{-1}x_i)\theta_n, \theta_n \rangle \to 0$$

as $n \to \infty$. In particular, since $x_1 = e$ and $x_{k+1} = y_k$, k = 1, ..., M, we conclude that

$$\lim_{n} \|\pi(y_k)\theta_n - \theta_n\|_2 = 0 \quad \text{for each } k \,, \ 1 \le k \le m \,.$$

This contradicts the choice of y, \ldots, y_M . Thus $||A||_{H_0} < 1$ as claimed.

Observe now that if $\eta \in H$, then

(1) $Q(\eta) = A^m(Q(\eta))$. Indeed, if $x \in G$, then

$$\pi(x)Q(\eta) = \frac{1}{\|\eta_0\|^2} \langle \eta, \eta_0 \rangle \pi(x)(\eta_0)$$
$$= \frac{1}{\|\eta_0\|^2} \langle \eta, \eta_0 \rangle \eta_0 = Q(\eta)$$

by the invariance of η_0 .

(2) $\eta - Q(\eta) \in H_0$. Indeed,

$$\langle \eta - Q(\eta), \eta_0 \rangle = \langle \eta, \eta_0 \rangle - \frac{1}{\|\eta_0\|^2} \langle \eta, \eta_0 \rangle \langle \eta_0, \eta_0 \rangle = 0.$$

Hence we have for m fixed and $\eta \in H$,

$$\|(A^{m} - Q)\eta\|_{2} = \|A^{m}(\eta - Q\eta)\| \quad (by (1))$$

$$\leq \|A^{m}\|_{H_{0}}\|\eta - Q\eta\| \quad (by (2))$$

$$\leq 2\|A\|_{H_{0}}^{m}\|\eta\|.$$

$$\therefore \|A^{m} - Q\| \leq 2\|A\|_{H_{0}}^{m} \to 0, \quad \text{i.e., } Q \in C_{\pi}^{*}(G).$$

(b) \Rightarrow (c) Let $\omega_{\alpha} = \langle T\theta_{\alpha}, \theta_{\alpha} \rangle$ and ω be a weak*-cluster point of $\{\omega_{\alpha}\}$ in $\mathscr{B}(H)$. Then clearly $\omega(\pi(x)) = 1$ for each $x \in G$, and $\omega(Q) = 0$. (c) \Rightarrow (a) If $X = \sum_{i=1}^{n} \lambda_i(x_i)$, then

$$||X - Q|| \ge |\omega(X) - \omega(Q)| = \left|\sum_{i=1}^{n} \lambda_i\right|$$

and

$$\begin{split} \|X - Q\| &\geq |\langle (X - Q)\theta, \theta \rangle| \quad \left(\text{where } \theta = \frac{\eta_0}{\|\eta_0\|} \right) \\ &= |\langle X\theta, \theta \rangle - \langle Q\theta, \theta \rangle| \\ &= \left| \frac{1}{\|\eta_0\|^2} \left\langle \sum \lambda_i \eta_0, \eta_0 \right\rangle - \left\langle \frac{1}{\|\eta_0\|^2} \left\langle \frac{\eta_0}{\|\eta_0\|}, \eta_0 \right\rangle \eta_0, \frac{\eta_0}{\|\eta_0\|} \right\rangle \right| \\ &= \left| \sum \lambda_i - \frac{1}{\|\eta_0\|^2} \cdot \frac{1}{\|\eta_0\|^2} \langle \eta_0, \eta_0 \rangle \langle \eta_0, \eta_0 \rangle \right| \\ &= \left| \sum \lambda_i - 1 \right|. \end{split}$$

Hence $||X - Q|| \ge \max\{|\sum x_i|, |1 - \sum \lambda_i|\} \ge \frac{1}{2}$. $\therefore Q \notin C^*_{\pi}(G)$. \Box

For each $x \in G$, let $\pi(x)f(t) = f(x^{-1}tx)\Delta(x)^{1/2}$, $t \in G$, $f \in L^2(G)$. Then $\{\pi, L^2(G)\}$ is a continuous unitary representation of G. Let $C^*_{\pi}(G)$ denote the C^* -algebra generated by $\{\pi(x); x \in G\}$ in $\mathscr{B}(L^2(G))$. A discrete version of the following result is proved in [20].

Theorem 4.2. Let G be a locally compact group and V be a compact neighborhood of e such that $x^{-1}Vx = V$ for all $x \in G$. Let $L_0^2(V) = \{g \in L^2(G); \int_V g(x) dx = 0\}$. Consider the following conditions on G:

- (a) The operator $Q_V(f) = \frac{1}{\lambda(V)} \int_V f(x) dx \cdot 1_V$ is not in $C^*_{\pi}(G)$.
- (b) There exists a net $\{h_{\alpha}\}$ in $L_0^2(V)$ such that $\|h_{\alpha}\|_2 = 1$ and $\|\pi(x)h_{\alpha} h_{\alpha}\|_2 \to 0$ for each $x \in G$.
- (c) There exists a state ω on $\mathscr{B}(H)$ such that $\omega(\pi(x)) = 1$ for each $x \in G$, and $\omega(Q) = 0$.
- (d) There exists an inner invariant mean m on $L^{\infty}(G)$ such that $m(l_V) = 0$.

Then $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftarrow (d)$.

Proof. That (a) \Leftrightarrow (b) \Leftrightarrow (c) follows from Lemma 4.1.

(d) \Rightarrow (b) Indeed, as in Losert and Rindler, there exists a net $\nu_{\alpha} \in L^{1}(G)$, $\nu_{\alpha} \geq 0$, $\|\nu_{\alpha}\|_{1} = 1$, $\nu_{\alpha}(V) = 0$, and $\|\pi(x)\nu_{\alpha}\|_{1} \rightarrow 0$. Let $h_{\alpha} = \nu_{\alpha}^{1/2}$; then $\|\pi(x)h_{\alpha} - h_{\alpha}\|_{1} \rightarrow 0$ for all $x \in G$, $\|h_{\alpha}\|_{2} = 1$. Furthermore,

$$\left| \int_{V} h_{\alpha} dx \right| = \langle h_{\alpha} 1_{V}, 1_{V} \rangle \le \left(\int_{V} h_{\alpha}^{2} dx \right)^{1/2} \lambda(V)^{1/2} = 0,$$

i.e., $h_{\alpha} \in L_{0}^{2}(V)$. \Box

Open Problem. Is (d) equivalent to the other conditions in Theorem 4.2? (This is the case when G is discrete and $V = \{e\}$ as shown in [20].)

Lemma 4.3. Let G, $\{\pi, H\}$, η_0 , H_0 , and Q be as in Lemma 4.1. If $Q \in C^*_{\pi}(G)$, then each linear form I on H which in invariant under $\{\pi(x): x \in G\}$ is continuous, and has the form

$$I(\eta) = \frac{\alpha}{\left\|\eta_{0}\right\|^{2}} \langle \eta, \eta_{0} \rangle, \quad \text{where } \alpha = I(\eta_{0}).$$

Proof. As in the proof of Lemma 4.1, (a) \Rightarrow (b), there exists $x_1, \ldots, x_{N+1} \in G$, such that $x_1 = e$, and the operator $A = (N+1)^{-1} \sum_{k=1}^{N+1} \pi(x_k)$ satisfies $\|A\|_{H_0} < 1$. In particular, for each $\theta_0 \in H_0$, the series $\theta = \sum_{n=0}^{\infty} A^n(\theta_0)$ converges in H_0 . Also,

$$\theta_0 = \theta - A\theta = \frac{N\theta}{N+1} - \frac{1}{N+1} \sum_{i=2}^{N+1} \pi(x_i)\theta$$
$$= \sum_{i=2}^{N+1} (\gamma - \pi(x_i)\gamma) \quad \text{with } \gamma = \frac{\theta}{N+1}.$$

Let $\eta \in H$; then $\theta_0 = \eta - Q(\eta) \in H_0$. So

$$\eta = \eta - Q(\eta) + Q(\eta) = \sum_{i=1}^{n} (\gamma - \pi(x_i)\gamma) + Q(\eta).$$

So if I is invariant on H, then

$$I(\eta) = I(Q(\eta)) = \frac{1}{\|\eta_0\|^2} \langle \eta, \eta_0 \rangle I(\eta_0). \quad \Box$$

The following is an analogue of the main result in [27].

Theorem 4.4. Let G be a locally compact group and V be a neighborhood of e such that $x^{-1}Vx = V$ for all $x \in G$, $0 < \lambda(V) < \infty$. If $Q_V \in C^*_{\pi}(G)$, then each linear form I on $L^2(G)$ which is invariant under inner automorphism is continuous and has the form

$$I(f) = \frac{\alpha}{\lambda(V)} \cdot \int_{V} f \, dx$$
, where $\alpha = I(1_V)$.

Proof. This follows from Lemma 4.3. \Box

Corollary 4.5. Let G be an I.C.C. discrete group with Kazhdan's property T. Then every inner invariant linear form on $L^2(G)$ is continuous.

Proof. In this case δ_e is the only inner invariant mean on $L^{\infty}(G)$. By Paschke's Theorem [20], $Q_V \in C^*_{\pi}(G)$ when $V = \{e\}$. Apply Theorem 4.4. \Box

Corollary 4.6. Let G be the free group on two generators. Then every inner invariant form on $L^2(G)$ is continuous.

Proof. By the result of Effros [7], δ_e is the only inner invariant mean on $L^{\infty}(G)$. Apply now Paschke's Theorem [20] and Theorem 4.4. \Box

Let V be a measurable subset of a locally compact group G. Let $L^2(V) = \{f \in L_2(G): f|_V = 0\}$. Then $L^2(V)$ is a closed subspace of $L_2(G)$ and $L^2(G) = L^2(V) \oplus L^2(G \sim V)$. Let P_V be the orthogonal projection of $L^2(V)$.

Proposition 4.7. Let G be a locally compact group. Let V be a measurable subset of G such that $xVx^{-1} = V$ for all $x \in G$. Suppose there exist inner invariant means m, n such that m(V) = 0 and $n(G \sim V) = 0$. Then $||T - P_A|| \ge \frac{1}{2}$ for each $T \in C^*_{\pi}(G)$.

Proof. Using an idea of Namioka [19], we may find nets $\{f_{\delta}\}$ and $\{g_{\alpha}\}$ of positive norm one functions in $L^{1}(G)$ such that $f_{\delta}(A) = 0$, $g_{\alpha}(G \sim A) = 0$, $\|\pi(x)f_{\delta} - f_{\delta}\|_{1} \to 0$, and $\|\pi(x)g_{\alpha} - g_{\alpha}\|_{1} \to 0$ (here $\pi(x)f(t) = f(x^{-1}tx)\Delta(x)$, $f \in L_{1}(G)$ $(x, t \in G)$). Let $f_{\delta}' = f_{\delta}^{1/2}$ and $g_{\alpha}' = g_{\alpha}^{1/2}$. Then f_{δ}' and g_{α}' are positive norm one functions in $L^{2}(G)$, $f_{\delta}'(A) = 0$, $g_{\alpha}'(G \sim A) = 0$, $\|\pi(x)f_{\delta}' - f_{\delta}'\|_{2} \to 0$, and $\|\pi(x)g_{\alpha}' - g_{\alpha}'\|_{2} \to 0$. Let $x_{1}, \ldots, x_{n} \in G$, $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and $T = \sum_{i=1}^{n} \alpha_{i}\pi(x_{i})$. Then

$$\|T - P_A\| \ge \limsup_{\delta} \|Tf_{\delta} - P_A f_{\delta}\|_2$$

=
$$\limsup_{\delta} \left\|\sum_{i=1}^n \alpha_i \pi(x_i) f_{\delta}\right\|_2 = \left|\sum_{i=1}^n \alpha_i\right|.$$

Also

$$\|T - P_A\| \ge \limsup_{\alpha} \|Tg_{\alpha} - P_Ag_{\alpha}\|_2$$

=
$$\lim_{\alpha} \sup_{\alpha} \left\| \sum_{i=1}^n \alpha_i(\pi(x_i)g_{\alpha} - g_{\alpha}) + \left(\sum_{i=1}^n \alpha_i - 1\right)g_{\alpha} \right\|$$

=
$$\left| \sum_{i=1}^n \alpha_i - 1 \right|.$$

Hence

$$||T - P_A|| \ge \max\left\{\left|\sum_{i=1}^n \alpha_i\right|, \left|\sum_{i=1}^n \alpha_i - 1\right|\right\} \ge \frac{1}{2}.$$

5. A FIXED POINT PROPERTY

Let G be a locally compact group. A left Banach G-module X is a Banach space X which is a left G-module such that

(i) $||a \cdot x|| \le ||x||$ for all $x \in X$ and $a \in G$.

(ii) For all $x \in X$, the map $a \to a \cdot x$ is continuous from G into X.

In this case, we define $\langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle$ for each $f \in X^*$, $a \in G$, and $x \in X$.

If $\mu \in M(G)$ and $f \in X^*$, we define

$$\langle f \cdot \mu, x \rangle = \int \langle f, a \cdot x \rangle d\mu(a), \qquad x \in X.$$

Then $f \cdot \mu \in X^*$, $f \cdot \mu = f \cdot a$ if $\mu = \delta_a$, and $(f \cdot \mu_1) \cdot \mu_2 = f \cdot (\mu_1 * \mu_2)$ for $\mu_1, \mu_2 \in M(G)$. Finally if $a \in G, \mu \in M(G)$, and $m \in X^{**}$, we also define

$$\langle a \cdot m, f \rangle = \langle m, f \cdot \alpha \rangle$$
 and $\langle \mu \cdot m, f \rangle = \langle m, f \cdot \mu \rangle$

for all $f \in X^*$.

By the weak* operator topology (W*OT) on $\mathscr{B}(X^{**})$, we shall mean the weak* topology of $\mathscr{B}(X^{**})$ when it is identified with the dual space $(X^{**} \otimes X^{*})^{*}$ in the obvious way. This topology is determined by the seminorms $\{P_{f,m}; f \in X^{*}, m \in X^{**}\}$ where $p_{f,m}(T) = |\langle Tm, f \rangle|$. Of course, the unit ball in $\mathscr{B}(X^{**})$ is compact in the W*OT.

For each $\phi \in L^1(G)$, let $T_{\phi} \in \mathscr{B}(X^{**})$ be defined by $T_{\phi}(m) = \phi \cdot m$, $m \in X^{**}$. Let $\mathscr{P}_{X^{**}}$ denote the closure of $\{T_{\phi}; \phi \ge 0, \|\phi\|_1 = 1\}$ in the W*OT. Then $\mathscr{P}_{X^{**}}$ with the W*OT is compact and convex. Also if $a \in G$, let $T_a \in \mathscr{B}(X^{**})$ be defined by $T_a(m) = a \cdot m$, $m \in X^{**}$. Inner amenability can be characterized by the following "fixed point property".

Theorem 5.1. Let G be a locally compact group. The following are equivalent:

- (a) G is inner amenable.
- (b) Whenever X is a left Banach G-module there exists $T \in \mathscr{P}_{X^{**}}$ such that $T_a T = TT_a$ for all $a \in G$.

Proof. (a) \Rightarrow (b) Let $\{\phi_{\alpha}\}$ be a net in $L^{1}(G)$, $\phi_{\alpha} \geq 0$, $\|\phi_{\alpha}\|_{1} = 0$, such that $\|\delta_{a} * \phi_{\alpha} - \phi_{\alpha} * \delta_{a}\|_{1} \to 0$ for each $a \in G$ [17, Proposition 1]. Since $\{T_{\phi_{\alpha}}\}$ is contained in the unit ball of $\mathscr{B}(X^{**})$ and the unit ball is compact in the W*OT, we may assume by passing to a subnet if necessary that $T_{\phi_{\alpha}} \to T$ in the W*OT, $T \in \mathscr{B}(X^{**})$ and $\|T\| \leq 1$. Now if $a \in G$ and $m \in X^{**}$, then

$$\begin{aligned} \|T_a T_{\phi_\alpha} m - T_{\phi_\alpha} T_a m\| &= T_{\delta_a * \phi_\alpha}(m) - T_{\phi_\alpha * \delta_a}(m) \\ &\leq \|\delta_a * \phi_\alpha - \phi_\alpha * \delta_a\|_1 \|m\| \to 0 \end{aligned}$$

On the other hand, $T_a T_{\phi_a} \to T_a T$ and $T_{\phi_a} T_a \to T T_a$ in the W*OT. In particular $T_a T = T T_a$.

(b) \Rightarrow (a) Let $X = L^{1}(G)$ and consider $L^{1}(G)$ as a left G-module where $a \cdot h = l_{a^{-1}}h$, $a \in G$, $h \in L^{1}(G)$. Given $m \in L^{\infty}(G)^{*}$, $f \in L^{\infty}(G)$, define $m_{L}(f) \in L^{\infty}(G)$ by

$$\langle m_L(f), \phi \rangle = \left\langle m, \frac{1}{\Delta} \tilde{\phi} * f \right\rangle, \qquad \phi \in L_1(G).$$

Define $\langle \tilde{T}_n(m), f \rangle = \langle n, m_L(f) \rangle$, $n \in L^{\infty}(G)^*$, $f \in L^{\infty}(G)$. Then, as readily checked, $\tilde{T}_{\phi} = T_{\phi}$ for each $\phi \in L^1(G)$. Furthermore, the map $n \to \tilde{T}_n$ from $L^{\infty}(G)^*$ into $\mathscr{B}(L^{\infty}(G)^*)$ is continuous when $L^{\infty}(G)^*$ has the weak*-topology and $\mathscr{B}(L^{\infty}(G)^*)$ has the W*OT. Hence

$$\mathscr{P}_{L^{\infty}(G)^{*}} = \{ T_{n}; n \in L^{\infty}(G)^{*}, n \ge 0, \text{ and } \|n\| = 1 \}.$$

By assumption, there exists $n \in L^{\infty}(G)^*$, $n \ge 0$, ||n|| = 1, such that (1) $T_a \widetilde{T}_n = \widetilde{T}_n T_a$ for all $a \in G$.

Next we observe that

(2)
$$\langle (T_a m)_L(f), \phi \rangle = \langle m_L(f), \phi * \delta_{a^{-1}} \rangle$$

for each $a \in G$, $m \in L^{\infty}(G)^*$, and $f \in L^{\infty}(G)$.

Hence if $\{\psi_{\alpha}\}$ is a bounded approximate identity of $L^{1}(G)$ and *m* is a weak* cluster point of ψ_{α} , then (by (2))

$$\begin{split} \langle T_a(m)_L(f), \phi \rangle &= \langle m_L(f), \phi * \delta_a \rangle = \left\langle m, \frac{1}{\Delta} (\phi * \delta_a)^{\sim} * f \right\rangle \\ &= \lim_{\alpha} \left\langle \psi_{\alpha}, \frac{1}{\Delta} (\phi * \delta_a)^{\sim} * f \right\rangle = \lim_{\alpha} \langle \phi * \delta_a * \psi_{\alpha}, f \rangle \\ &= \langle \phi * \delta_a, f \rangle = \langle r_a f, \phi \rangle \end{split}$$

for any $f \in L^{\infty}(G)$ and $\phi \in L^{1}(G)$, i.e.,

$$(3) T_a(m)_L(f) = r_a f$$

Also

$$\begin{aligned} \langle T_a \widetilde{T}_n(m), f \rangle &= \langle \widetilde{T}_n(m), l_a f \rangle = \langle n \odot m, l_a f \rangle \\ &= \langle n, m_L(l_a f) \rangle = \langle n, l_a m_L(f) \rangle \\ &= \langle l_a^* n, f \rangle = \langle n, l_a f \rangle. \end{aligned}$$

Combining this with (1) and (3), we obtain that $\langle n, l_a f \rangle = \langle n, r_a f \rangle$ for any $f \in L^{\infty}(G)$ and $a \in G$, i.e., *n* is an inner invariant mean. \Box

6. MISCELLANEOUS RESULTS

Proposition 6.1. Let G be a separable connected group. Then the following are equivalent:

- (a) G admits a countably additive inner invariant mean.
- (b) G is an [IN]-group.
- (c) G is an extension of a compact group by a vector group.

Proof. (a) \Rightarrow (b) Let $B(G) = \{x \in G: \text{ the conjugacy class of } x \text{ has relatively compact closure}\}$. By [9, Theorem 1.4], there exists a layering of G that terminates with the closed subgroup B(G), i.e., a sequence

$$B(G) = X_0 \subset X_1 \subset \cdots \subset X_m = G$$

such that each X_k is a closed subset of G invariant under the inner automorphisms and every point $x \in X_k \sim X_{k-1}$ has a relative neighborhood in X_k with infinitely many disjoint conjugates. Suppose that m is a countably additive inner invariant mean and suppose that m(B(G)) = 0. Then $m(X_k \sim X_{k-1}) > 0$ for some k. By separability, there exists a relatively open set U in $X_k \sim X_{k-1}$

with m(U) > 0 and a sequence $\{x_n\}$ with $\{x_n U x_n^{-1}\}$ pairwise disjoint. This contradicts m(G) = 1. So m(B(G)) > 0, and hence $\lambda(B(G)) > 0$, where λ is the left Haar measure on G. Consequently B(G) is an open [FC]⁻-subgroup of G. In particular G in an [IN]-group [15, Corollary 2.2].

That (b) \Leftrightarrow (c) for connected groups is well known [11, Corollary 2.8]. Also (b) \Rightarrow (a) is clear. \Box

Proposition 6.2. Let G be a locally compact group and H be a closed normal subgroup of G. If G is inner amenable, then G/H is also inner amenable.

Proof. Define a map $\phi: L^{\infty}(G/H) \to L^{\infty}(G)$ by $\phi(f) = f \circ \theta$, where θ is the quotient map of G onto G/H. Then, as is well known (see [25, pp. 66 and 82]), ρ is a linear isometry from $L^{\infty}(G/H)$ into the subspace A of $L^{\infty}(G)$, where

$$A = \{ f \in L^{\infty}(G) ; r_x f = f \text{ for all } x \in G \}.$$

Furthermore $\rho(\pi(\dot{x})f) = (\pi(x)f) \circ \theta$ for each $x \in G$, where $\dot{x} = xH$. Let m be an inner invariant mean on $L^{\infty}(G)$. Define $m'(f) = m(\rho(t)), f \in L^{\infty}(G/H)$. Then, as is readily checked, m' is an inner invariant mean on $L^{\infty}(G/H)$. \Box

References

- 1. M. Choda, The factors of inner amenable groups, Math. Japon. 24 (1979), 145-152.
- 2. ____, Effect of inner amenability on strong ergodicity, Math. Japon. 24 (1979), 235-246.
- 3. C. Chou, A. T. M. Lau, and J. Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), 340-350.
- 4. A. Connes, Von Neumann algebras, Proc. Internat. Congr. Math., Helsinki, 1978, pp. 98-109.
- 5. ____, Classification of injective factors, Ann. of Math. (2) 104 (1976), 73-115.
- 6. M. M. Day, Fixed point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590.
- 7. E. G. Effros, *Property* Γ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486.
- 8. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, 1969.
- 9. F. P. Greenleaf, M. Moskowitz, and L. P. Rothschild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974), 225-243.
- 10. F. P. Greenleaf, Amenable actions of locally compact groups, J. Funct. Anal. 4 (1969), 295-315.
- 11. S. Grosser and M. Moskowitz, *Compactness conditions on topological groups*, J. Reine Angew. Math. 246 (1971), 1-40.
- 12. P. de la Harpe, Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Lecture Notes in Math., Springer-Verlag, 1979, pp. 220-227.
- 13. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. 1, Springer-Verlag, Berlin, 1963.
- 14. A. T. M. Lau and A. L. T. Paterson, Operator theoretic characterisations of [IN]-groups and inner amenability, Proc. Amer. Math. Soc. 102 (1988), 893-897.
- J. R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108.

- 16. V. Losert and H. Rindler, Asymptotically central functions and invariant extensions of Dirac measures, in Proc. Conf. Probability Measures on Groups, Oberwolfach, 1983.
- 17. V. Losert and H. Rindler, Conjugate invariant means, Colloq. Math. 15 (1987), 221-225.
- G. H. Meisters, Some problems and results on translation-invariant linear forms, in Proc. Conf. Radical Banach Algebras and Automatic Continuity (Long Beach, 1981), Lecture Notes in Math., Springer-Verlag, Berlin and New York, 1983, pp. 423-444.
- 19. I. Namioka, Følner's condition for amenable semigroups, Math. Scand. 15 (1964), 18-28.
- 20. W. L. Paschke, Inner amenability and conjugation operators, Proc. Amer. Math. Soc. 71 (1978), 117-118.
- A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, no. 29, Amer. Math. Soc., Providence, R.I., 1988.
- 22. J. P. Pier, Quasi-invariance intérieure sur les groupes localement compacts, G.M.E.L. Actualitiés Mathématiques, Actes du 6° Congrès du Groupement des Mathematicians d'Expression Latin, Luxembourg, 1982.
- 23. ____, Amenable locally compact groups, Wiley, 1984.
- _____, Amenable Banach algebras, Pitman Res. Notes Math. Ser., no. 172, Longman Harlow, 1988.
- 25. H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Mathematical Monographs, 1968.
- 26. N. W. Rickert, Amenable groups and groups with fixed point properties, Trans. Amer. Math. Soc. 127 (1967), 221-232.
- 27. J. Rosenblatt, Translation-invariant linear forms of $L_p(G)$, Proc. Amer. Math. Soc. 94 (1985), 226–228.
- 28. S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag, 1971.
- 29. J. T. Schwartz, W*-algebras, Gordon and Breach, New York, 1967.
- 30. F. Y. Yeadon, Fixed points and amenability: a counterexample, J. Math. Anal. Appl. 45 (1974), 718-720.
- 31. C. K. Yuan, The existence of inner invariant means on $L^{\infty}(G)$, J. Math. Anal. Appl. 130 (1988), 514–524.
- 32. R. Zimmer, On the von Neumann algebra of an ergodic group action, Proc. Amer. Math. Soc. 66 (1977), 289-293.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6R 1T1

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSISSIPPI, UNIVERSITY, MISSISSIPPI 38677