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INNER AMENABLE LOCALLY COMPACT GROUPS

ANTHONY TO-MING LAU AND ALAN L. T. PATERSON

Abstract. In this paper we study the relationship between amenability, inner
amenability and property P of a von Neumann algebra. We give necessary
conditions on a locally compact group G to have an inner invariant mean m
suchthat m(V) = 0 for some compact neighborhood F of G invariant under
the inner automorphisms. We also give a sufficient condition on G (satisfied
by the free group on two generators or an I.C.C. discrete group with Kazhdan's
property T, e.g., SL(«, Z), n > 3) such that each linear form on L (G)
which is invariant under the inner automorphisms is continuous. A character-
ization of inner amenability in terms of a fixed point property for left Banach
G-modules is also obtained.

Introduction

Let G be a locally compact group. Then G is called inner amenable if there
exists a state m on L°°(G), such that m(n(a)f) = m(f) for all a € G and
feLco(G), where

7t(a)f(x) = f(a~xxa),       xeG.

Amenable locally compact groups and [IN]-groups are inner amenable. The
group G is [IN] if there exists a compact neighborhood V of the identity e in
G such that a~xVa = V for all a e G. Furthermore when G is connected,
then G is amenable if and only if G is inner amenable (see [17]). A recent
account of amenability is given in [21].

Let J' be a von Neumann algebra on a Hilbert space H and let Jü' be
the commutant of ./# . For T e 38(H) (the space of bounded linear opera-
tors on H), let CT be the weak*-closed convex subset of 38'(H) generated by
{U*TU ; U e Jfu}, where ^u is the group of unitary elements in Jf. (Note
that 38(H) has a unique predual [28, p. 47].) Jf is said to have property P
if CT xx Jf' # 0 for each T e 38(H).

Let VN((j) denote the von Neumann algebra on L (G) generated by {lx;x
e G} where lxh(t) = h(xt), t e G. A well-known result of Schwartz [29] asserts
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156 A. T.-M. LAU AND A. L. T. PATERSON

that if G is discrete, then G is amenable if and only if VN(G) has property
P. In §3 we study the relation between amenability, inner amenability, and
property P of a von Neumann algebra determined by G and its action on a
locally compact Hausdorff space A. In particular, we provide the missing link
in the following well-known implications for a locally compact group G :

Amenability.

/ \
Inner Amenability Property P (for VN(G))

Jn [20] Paschke proved that if G is an infinite discrete group, then there
exists an inner invariant mean on l°°(G) different from the point evaluation at
the identity if and only if the C*-algebra generated by the unitaries on I (G)
corresponding to conjugation by elements in G does not contain the projec-
tion on the space Côe, where e is the identity of G. In §4, we find necessary
conditions for there to exist an inner invariant mean m on L°°(G) such that
m(ly) = 0 (when V is a compact neighborhood of G invariant under inner
automorphisms). We also give a sufficient condition on G (Theorem 4.4) such
that each linear form / on L (G) which is invariant under inner automor-
phisms is continuous and has the form /(/) = ^ fvfdx, where a = 1(1 v).
In particular (Corollary 4.5 and 4.6) if G is the free group on two generators
or a discrete group with Kazhdan's property T and every nontrivial conjugacy
class in G is infinite (e.g., SL(«, Z), n > 3), then every inner invariant linear
form on / (G) is continuous. (See [18] for a discussion of similar problems.)

It is well known (see [6 or 26]) that amenability of a locally compact group
G may be characterized in terms of fixed points for affine maps on compact
convex sets. In §5, we characterize inner amenability of G in terms of a fixed
point property for left Banach (7-modules. Finally in §6, a few miscellaneous
results on inner amenability are stated and proved.

The, literature on inner amenability has grown substantially in recent years:
see [1, 2, 7, 14, 16, 17, 20, 31].

2. Preliminaries and some notations

Throughout this paper G denotes a locally compact group with a fixed left
Haar measure X. The spaces LP(G), 1 < p < oo, of measurable functions will
be as defined in [13]. For each a e G, 1 < p < oo, let n(a) be the operator
on LP(G) defined by

7t(a)f(t) = f(a-xta)Ax/p(a),       a,teG, felf(G),

where A is the modular function on G. The group G is called amenable if
there exists a mean m on L°°(G) (i.e., m e L°°(G), m > 0, and ||w|| = 1)
such that m(laf) = m(f) for all a e G and / e L°°(G). As is well known
[8, Theorem 2.2.1], this is equivalent to the existence of a left invariant mean
on U (G), the space of bounded right uniformly complex-valued continuous
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functions on G (as defined in [13, p. 21]). All abelian groups and all compact
groups are amenable. However, if G contains the free group on two generators
as a closed subgroup (e.g., if G = SL(2, R)), then G is not amenable (see [8,
21, 23] for details).

Let Jf be a von Neumann algebra on a Hubert space H .If Jf has property
P, then there exists a projection of norm one E from 38(H) onto Jf' with
E(l) = 1 (see [28, p. 207, or 24, p. 136]). Von Neumann algebras with this
latter property are called injective. As is well known [4], injectivity and property
P are equivalent. For a discussion of the various forms of amenability for von
Neumann algebras, see [21, 2.35].

If A is a subset of a locally convex space E with topology t , then coTA
will denote the closed convex hull of X in E.

3. Inner amenability, amenability, and injectivity

A reference for the definitions below in the discrete cases is Zimmer [32].
Let A be a locally compact Hausdorff space. Let G act invertibly on X on
the right such that the mapping X x G -+ A defined by (x, g) —y x-g, x e X,
g e G, is jointly continuous. Let p be a nonnegative quasi-invariant Radon
measure on A. We define Lp(XxG, pxX) or simply LP(XxG), 1 < p < oo,
as the usual Lp -spaces of Borel functions identified when they coincide off a
locally (p x A)-null set in X x G. For each a e G, define pa(E) = p(Ea).
Then, by quasi-invariance of p, we have pa<. p for each a e G and there is,
by the Radon-Nikodym theorem, a locally //-integrable function r(-, a) such
that

/ f(xa~x)dp(x) = / f(x)r(x,a)dp(x)

for all / e LX(X) (= LX(X, p)). It follows that r(x, ab) = r(x, a)r(xa, b)
for a, b e G, and r(x, e) = 1. For u e G and <\> e L°°(A), define the
operators Ua , Va , M^, and A^ on L2(X x G) by

Uaf(x, b) = f(xa, ba)r(x, a)X,2A(a)X/2,

VJ(x,b) = f(x,a-xb),
M4>f(x,b) = 4>(x)f(x,b),
N^f(x,b) = cp(xb-X)f(x,b),

where feL2(XxG).
Then each Ua, Va is a unitary operator on L (X x G). Let S? be the von

Neumann algebra generated by the operators Va, N, (a e G, tp e L^X)), and
3? be the von Neumann algebra generated by the operators Ua, M,   (a e G,
(j) e Lx(X)) .IfJe 38(L2(X x G)) is given by

(Jf)(x,b) = f(xb~X, b~X)r(x, b-X)X/2A(b-X)X/2,
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158 A. T.-M. LAU AND A. L. T. PATERSON

then J2f = f, JVaJ = Ua, and JN,J = M,. So J implements a spatial
isomorphism between 5? and 3ê. Therefore 3? has property P if and only
if ^ has property P.

If a e G, let Sa denote the Dirac measure on G concentrated at a. For
any / e L°°(A), the function (ôJ3f)(x) = f(xa) is defined //-locally almost
everywhere on X (see [10, Lemma 2.1]). Furthermore, ÔJJf e L°°(X). A
linear functional m on L°°(X) is called a mean if m(l) = 1 and m(f) > 0
whenever / > 0. A mean m is (7-invariant if m(S Of) = m(f) for all g e G.

Also for any <p e LX(X) and x e G, let ôx*<f>e LX(X) be defined by

Sx * </>(£) = (^f ) (ÍMx-li)    p-a.e. on A

(see [10, Lemma 2.2]), where px(E) = pix~xE).
Theorem 3.1 below, in the special case where A is a singleton, is proved in

[21, p. 85].
Theorem 3.1. Let G, X, and 5? be as above. Then the following are equivalent:

(a) G is amenable.
(b) Sf is injective, L°°(X) has a G-invariant mean, and G is inner amen-

able.
Proof, (a) =>• (b) If G is amenable, then G is inner amenable since every
invariant mean on G is inner invariant. It follows from [10, Theorem 3.1] that
L°°(A) has a G-invariant mean.

To see that J? is injective, we first note that the von Neumann algebra gener-
ated by {N, ; tj> e L°°(X)} has property P (by the Markov-Katutani fixed point
theorem). Hence 3 = {N^; <f> e L°°(A)}' is injective [28, Proposition 4.4.15].
(In fact, 3 is the von Neumann algebra generated by the N,.) It suffices to
show that there is a norm one projection from 3 onto Sf' = {Va; a e G}'xl3 .
For then £f' is injective and so -S" is also injective.

Let T e 3 and a eG. Then Va-i TVa e 3 . Indeed 3 is generated by the
N^ 's; hence we may assume T = N^. IfxeA, b e G, and / e L2(X x G),
we have

iK->NtVaf)(Xyb) = (N<t,Vaf)(X'ab)
= <p(xb-xa-x)(Vj)(x,ab) = (Na-^f)(x,b),

i.e., V-xN,Vn = N-x,eD. The result follows.y     a        <p   a a    <p

Let KT denote the Ww*{VaATVa: a e G} (w* = weak*). Then KT is a
w*-compact convex subset of 3 . Consider the action of G on KT defined by

(a,S)^Va-,SVa.
Then the action is separately continuous in the weak operator topology WOT,
which agrees with the w*-topology on KT . Indeed, if aa —> a0 and S e KT ,
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then Va —y Va and J^-i —» V -¡ in the strong operator topology (SOT). In
particular, SV„  — SV„"m the SOT, and so V„-iSV„  -* V„-iSV„ in the SOT

et a a

(since multiplication is jointly continuous on bounded sets in the SOT). Hence
V-iSVn — V-\SVn in the WOT. Now if a e G, and S -* S in the WOT,
then for any t],t\e L2(G x X),

{V.-*SaV¿, n) = (SaV¿, Vat]) - (SVaci, Vat]) = (Va-ySVat, t]),

i.e., V-\SaV -* V-\SV in the WOT. Apply now Rickert's generalization of
Day's fixed point theorem to obtain S e KT such that Va-\SVa = S for all
a e S, i.e., SVa = Va for all aeS. So S e {Va : a e S}' xx 3 . Consequently,
there exists a projection Q: 3 -> {Va: a e G}' O3 such that Q(T) e KT for
all Te3, Q(I) = I, and ||Q|| - 1 by Yeadon's Theorem [30].

(b) =*• (a) Define a left and a right action of G on L°°(X x G) by

(1) (Fa)(x,b) = F(x,ab),        (aF)(x, b) = F(xa, ba).

Using (1) and the equalities r(x, ab) = r(x, a)r(xa, b) a.e. x, and r(x, e) =
1 for all x e G, one shows that

(2) (F, Vaf) = (Fa ,f),        (F, UJ) = (a~XF, f)

(F e L°°(A x G), f e LX(X x G)). Here (with a slight abuse of notation),

VJ(x, b) =f(x, a~xb),        Uaf(x, b) = f(xa, ba)r(x, a)A(a)
(feLx(XxG), xeX, a,beG).

We now show that there exists a positive linear functional m with \\m'\\ = 1
such that

(3) m'(aFa~ ) = m'(F)

for all a e G and F e L°°(X x F).
Since L°°(A) has a (/-invariant mean, an argument similar to that of

Namioka [19] shows that there exists a net {<pj in Px (A) = {0 e Lx (A) : <p > 0
and \\tp\\x = 1} suchthat \\Sa*(pa-<t)a\\ -* 0 for each ae G. Also since G is in-
ner amenable, there exists a net {pß} in PX(G) suchthat \\Sa*pß*oa-i-pß\\x —y
0 (see [17, Proposition 1]). Let

ma,ßiF) = j Fdi4>axpß),

where F e Loc(X x G). Then {maß} is bounded in L°°(A x Q*. Further-
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more, if a e G and F e L°°(X x G), then

\(ma,ß>aFa~l) - (ma,ß> F)\

= lu F(xa, a~lba) d<pa(x) dpß(b) - jj F(x, b) d<pa(x) dpß(b)

< // F(xa, a~xba)d<j)a(x)dpß(b) - // F(x, a~xba)d4>a(x)dp

+ \jjFi* y a~lba) d<paix) dpßib) - jj F(x, b) d<pa(x) dpß(b)

< \\Sa * K - U \\P\L + \\Sa * ßß * V' - MP\\ \\F\L
which converges to zero. Hence if m is any weak*-cluster point of the
{ma ß} , then m  satisfies (3).

By (3) and an idea of Namioka [19] there exists a net {fs} in LX(X x G),
ft > 0. Il/Ji = 1 such that ||(Ka-, - Ua)bs\\x - 0. Let gs = f¡'2. Note
that gs e L2(X xG), g6 > 0, and ||^||2 = 1. Then (VJg)x/2 = Vags,
(UJS)X/2 = Uags, and hence

(4) Wa-t-Ua)gs\\2^0   for all a e G.
For each F e L°°(X x G), let LF e 38(L2(X x G)) be defined by

LFf(x,b) = F(x,b)f(x,b).
Then, as readily checked,

(5) KLFVa-> = LFa->
for each a e G. Let H denote the group of unitary elements in the von
Neumann algebra 3? with the strong operator topology. Let y,s be a function
on H defined by y/s(F)(U) = (ULFU*gs , gs) (U e H). Then y/s e Ur(H).
Also

y,ô(Fa-x)(U) = (ULFa-tU*g0,gâ)

(6) =(UVaLFVa-lU*gs,gs)

= {ULFU-(Va-lgs),Va-igs)
using (5) and the fact that each V  is in the commutant of 31. Also

Vs(F)Va-AU) = (ULFU*(Vags), Vags).
So

\[y,ô(Fa-X)-y,s(F)Ua-.](U)\

= \(ULFU'Va-¡8s, Va->gô)-(ULFU*Vagâ, Vagô)\
(7) =\{ULFV\Va-i-Va)gs,Vags)

+ {ULFU*Va-lgô,(Va-i-Va)gâ)\
<2\\F\\\\Va->-Va\\\\gs\\2.
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Since £? is injective, 5? must have property P. So 3Î also has property P.
By a result of de la Harpe [12], there exists a left invariant mean m on Ur(H),
the space of bounded right uniformly continuous functions on H. Hence using
(4) and (7), we have

\m(y,s(Fa-x))-m(y,s(F))\^0.

Let ns = mo y/¿ . Then ns is a mean on L°°(X x G). Let « be a weak*-cluster
point of {ns}. Then n(Fa~x) = n(F) for all F e L°°(X x G) and a e G.
Define

ñ(<f>) = n(l ® 4>),       <peL°°(G).
Then « is a left invariant mean on L°°(G). Hence G is amenable.   D

A well-known result of Schwartz [29] asserts that if G is discrete then G is
amenable if and only if VN(cT-) has property P. Letting G act trivially on
a set consisting of one point, we obtain from Theorem 3.1 the following [21,
2.35]:
Corollary 3.2. Let G be a locally compact group. The following are equivalent:

(a) G is amenable.
(b) VN(G) is injective and G is inner amenable.

Corollary 3.3. Let G be an [IN]-group. Then VN(G) is injective if and only if
G is amenable.

Corollary 3.4 (Losert and Rindler [17]). Let G be a connected locally compact
group. Then G is amenable if and only if G is inner amenable.
Proof. If G is inner amenable, let U be a compact neighborhood of G. Then
G0 = U^ti Un is an open (and hence closed), compactly generated subgroup of
G. Since G is connected, G = G0 . Let A be a compact normal subgroup such
that G/K is separable metrizable (see [13, p. 71]). Clearly G/K is connected
and inner amenable (Proposition 6.2). However VN(G/A) is injective [5, p.
112]. So G/K is amenable by Theorem 3.1. Hence G is also amenable.   D

4.  [IN]-GROUPS AND INNER AMENABILITY

Let G be an [IN]-group. Then there exists a compact neighborhood V of
e such that x~xVx = V for each x e G. In this section we find necessary
conditions such that there exists an inner invariant mean m on L°°(G) with
m(l v) = 0. We first establish the following general lemma.

Lemma 4.1. Let G be a locally compact group. Let {n, H} be a continuous
unitary representation of G. Let t]0 e H, t]0 ^ 0, and n(x)t]0 = n0 for
all x e G. Let H0 = {n e H; (n, ?70) = 0} and Q e 38(H) be defined by
Qin) = in. '/oK/H'U2 • The following are equivalent:

(a)   Q i C*(G) (the C*-algebra generated by {n(x); x e G}).
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162 A. T.-M. LAU AND A. L. T. PATERSON

(b) There exists a net 8a e H0 such that \\8a\\ = 1, and ||7t(x)0Q - 0J| -> 0
for each x eG.

(c) There exists a state œ on ¿8(H) such that oj(n(x)) = 1 for each x e G
and co(Q) = 0.

Proof, (a) =>• (b) We follow an idea contained in the proof of [3, Theorem 1.1].
Suppose (b) fails; then we can find yx, ... , yM e G and e > 0, such that for all
8 e HQ, \\8\\ = 1, there exists some i, 1 < i < M, such that ^(v^ö-ö)!! > e .
Let xx= e, the identity of G, and x2=yx, ... , xM+x = yM . Let N = M + 1
and A = N~x J2k=l 7i(xk). We claim that H^H^ < 1. If not, we can find a
sequence 8ne H0, \\8n\\ = 1, such that

M(0„)ll2 = (A(eH),A{6H)) = j-2EMXJlxi)en>en) - » •
t,j

Since \(n(x~xxi)8n, 8n)\ < 1 for each i, j , we conclude that

Re(n(xJxxi)8n,8n)^l.

But then
\\7t(xi)8n - xiXjWjl = 2 - Re(7i(xJxXi)8n ,&n)^0

as n-too. In particular, since xx= e and xk+x = yk, k = 1, ... , M, we
conclude that

lim\\n(yk)dn-8n\\2 = Q   for each k,  l<k<m.

This contradicts the choice of y, ... ,yM . Thus ||^||H < 1 as claimed.
Observe now that if t] e H, then
(1) Q(t]) = Am(Q(t])). Indeed, if x e G, then

n(x)Q(t]) = ——¿(n, r]Q)7t(x)(t]0)

by the invariance of t]0 .
(2) t] - Q(t]) e H0 . Indeed,

(1 - Q(n), n0) = (n, t]0) - -—¿(ri, r]0)(n0,t]0) = 0.
II'/oil

Hence we have for m fixed and t] e H,

||(^M-ß)»/||2 = MM(!7-ß>/)||    (by(l))

<MWH//oll'/-ß'/ll   (by (2))
<2\\AC\\t]\\.-   ii   ii«0n m

.-. pm-Ô||<2M||" -0,    i.e.,QeC*n(G).
•o
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(b) =*> (c) Let œa = (T8a, 8a) and co be a weak*-cluster point of {coa} in
38(H). Then clearly fû(n(x)) = 1 for each x e G, and <y(ß) = 0.

(c)=Ma) If A = E"=1A,(xi.),then

|A-ß||>|c;(A)-a)(ß)| = E*i¡=i
and

II*- oil > |<(X- ß)ö, 0)|    (where Ô = ^
= |<A0,0)-(ß0,0}|

1

E^

(EA^0'*/<)) 1
I\lli''/o

W^^*
Hence ||A - ß|| > max{|E^-l, U - E^-l) > 2 • •'• QÍ C*(G).   D

For each xeG,let n(x)f(t) = f(x~xtx)A(x)x/2, teG, fe L2(G). Then
{%, L (G)} is a continuous unitary representation of G. Let C*(G) denote
the C*-algebra generated by {n(x) ; x e G} in 38(L2(G)). A discrete version
of the following result is proved in [20].
Theorem 4.2. Let G be a locally compact group and V be a compact neigh-
borhood of e such that x~xVx = V for all x e G. Let L^(V) = {g e
L (G) ; fy g(x) dx = 0}. Consider the following conditions on G :

(a) The operator Qv(f) = jfo ¡v f(x) dx-lv is not in C*(G).
(b) There exists a net {ha} in LQ(V) suchthat \\ha\\2 = 1 and

\\n(x)ha - ha\\2 -y 0   for each x eG.
(c) There exists a state œ on 38(H) suchthat co(n(x)) = 1 for each x e G,

and co(Q) = 0.
(d) There exists an inner invariant mean m on L°°(G) such that m(lv) =

0.
Then (a) o (b) «> (c) <= (d).

Proof. That (a) -» (b) ■& (c) follows from Lemma 4.1.
(d) => (b) Indeed, as in Losert and Rindler, there exists a net va e LX(G),

v   > 0, e*M 1 1, v (V) = 0, and ||ä(x)i/„||. -» 0.  Let h   = vx'2 ; then
\n(x)ha-ha\\x^0 forallxeG, ||AJ|2

x\jhadx\ = (hjy, ly) < ^h2adxy¿X(V)X/2 = 0,

Furthermore,
1/2

i.e., haeL20(V).   D
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Open Problem. Is (d) equivalent to the other conditions in Theorem 4.2? (This
is the case when G is discrete and V = {e} as shown in [20].)
Lemma 4.3. Let G, {n, H}, t]0, HQ, and Q be as in Lemma 4.1. If Q e
C*(G), then each linear form I on H which in invariant under {n(x): x € G}
is continuous, and has the form

W = ÏTlâil > 1o) >    wherea = I(t]Q).
II »foil

Proof. As in the proof of Lemma 4.1, (a) => (b), there exists xx, ... , xN+x e
G, such that xx = e, and the operator A = (N + l)~x ¿Zk*xx n(xk) satisfies
\\A\\H < 1. In particular, for each 80 e H0, the series 8 = ¿Z7=oA"(do)
converges in H0. Also,

e0 = d-A8 = -^- - —— y 7i(X¡)d
0 N + 1     A-l- 1 *-í      '

N+X

= E(y ~ n(xi)y) with y = ytí •
i'=2

Let ne H; then 80 = t]- Q(t]) eHQ. So
n

n = n- Q{n) + Q(i) - ^(? - ^xi)y) + Qiv) ■
i=X

So if I is invariant on H, then

Iiri) = IiQit])) = --^-2(t],t]0)I(t]0).   D
ll'/oll

The following is an analogue of the main result in [27].

Theorem 4.4. Let G be a locally compact group and V be a neighborhood of
e such that x~xVx = V for all x e G, 0 < X(V) < oo. If Qv e C*(G), then
each linear form I on L (G) which is invariant under inner automorphism is
continuous and has the form

I(f) = j^z-     fdx,     wherea = I(lv).

Proof. This follows from Lemma 4.3.   D

Corollary 4.5. Let G be an I. C C discrete group with Kazhdan 's property T.
Then every inner invariant linear form on L (G) is continuous.
Proof. In this case ôe is the only inner invariant mean on L°°(G). ByPaschke's
Theorem [20], Qv e C*(G) when V = {e} . Apply Theorem 4.4.   D

Corollary 4.6. Let G be the free group on two generators. Then every inner
invariant farm on L (G) is continuous.
Proof. By the result of Effros [7], ôe is the only inner invariant mean on
L°°(G). Apply now Paschke's Theorem [20] and Theorem 4.4.   □
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Let F be a measurable subset of a locally compact group G. Let L (V) =
{/ € L2(G) :f>  = 0} . Then L2(V) is a closed subspace of L2(G) and L2(G) =
L2(V) © L2(G ~ V). Let Pv be the orthogonal projection of L2(V).
Proposition 4.7. Let G be a locally compact group. Let V be a measurable
subset of G such that xVx~x = V for all x e G. Suppose there exist in-
ner invariant means m, n such that m(V) = 0 and n(G ~ V) = 0. Then
\\T-PA\\>\ for each T e Cn(G).
Proof. Using an idea of Namioka [19], we may find nets {fö} and {ga} of
positive norm one functions in L (G) such that fs(A) = 0, ga(G ~ A) = 0,
\\x(x)fs - fsWx ̂ 0,and \\n{x)ga-gjl -> 0 (here n(x)f(t) = f(x~xtx)A(x),
f e LX(G) (x,teG)). Let fs = fx/2 and g'a = gxJ2. Then f5 and g'a
are positive norm one functions in L (G), f¡(A) = 0, g'a(G ~ A) = 0,
IW*X/^-.^ll2^0>and \\Tt(x)g'a-g'j2-+0. Letx,
e C, and T = £"=1 a ¡nix,). Then

ki> xneG, a,

\T-PA\\>limsup\\Tfs-PAfs\\2s

= lim sup
s J2artxiïfêi=i 5>/=!

Also
|r-p^||>iimsup||r^-p^j|2

= limsup Ë a,-(*(*X - ̂ «) +    E a, - ! U«
¡=i ,¡=1

E«.-1
Hence

i=i

|T-/^|| >max
i=X

E«.-1(=i
i

^2- G

5. A FIXED POINT PROPERTY

Let G be a locally compact group. A left Banach G-module A is a Banach
space A which is a left G-module such that

(i)   \\a ■ x\\ < \\x\\ for all x e X and a eG.
(ii) For all x e X, the map a —y a • x is continuous from G into A.

In this case, we define (f ■ a, x) = (f, a- x) for each f e X*, a e G, and
xeX.

If pe M(G) and / 6 A*, we define

(f-p,x)=(f,a-x)dp(a),        xeX.
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Then f ■ p e X*, f-p = f-a if p = 8a, and (f • px) • p2 = f • (px * p2) for
px, p2e M(G). Finally if a e G, pe M(G), and m e X**, we also define

(a-m, f) = (m, f • a)   and   (p-m, f) = (m, f ■ p)
for all feX*.

By the weak* operator topology (W*OT) on 38(X**), we shall mean the
weak* topology of 38(X**) when it is identified with the dual space (A**® A*)*
in the obvious way. This topology is determined by the seminorms {P, m ; / e
X*, m e X**} where p, m(T) = \(Tm,f)\. Of course, the unit ball in
&(X**) is compact in the W*OT.

For each 0 e LX(G), let T^ e 38(X**) be defined by T^m) = <p ■ m,
m e A**. Let 3PX.. denote the closure of {T.; tp > 0, \\tp\\x = 1} in the
W*OT. Then 3ax— with the W*OT is compact and convex. Also if a e G,
let Ta e 38(X**) be defined by Ta(m) = a-m, me A**. Inner amenability
can be characterized by the following "fixed point property".

Theorem 5.1. Let G be a locally compact group. The following are equivalent:
(a) G is inner amenable.
(b) Whenever X is a left Banach G-module there exists T e 3*x.. such

that TT= TT„ for all a e G.

Proof, (a) => (b) Let {<pj be a net in LX(G), (pa>0, \\(pjx = 0, such that
¥„ * <Pa - <t>a * 8 \\x -* 0 for each a e G [17, Proposition 1]. Since {T, }
is contained in the unit ball of 38 (X**) and the unit ball is compact in the
W*OT, we may assume by passing to a subnet if necessary that T, —> T in
the W*OT, T e 38(X") and ||r|| < 1. Now if a e G and m € X*% , then

II TaT4, m-T<p TamW = TS .4, im) - T* .S (W)H
< \\S„*(f)  - (j)  * SJ\A\m\\ —^ 0.

On the other hand, TJ^ -> TJ and T0 Ta -* TTa in the W*OT. In
particular TaT = TTa .

(b) => (a) Let A = LX(G) and consider LX(G) as a left G-module where
a-h = la-ih, a e G, he LX(G). Given m e L°°(G)\ f e L0C(G), define
mL(f) e L°°(G) by

(mL(f),<p) = (m,±4,*f),        4>eLx(G).

Define (Tn(m) ,/> = («, mL(f)), n e L°°(G)*, / e L°°(G). Then, as readily
checked, 7^ = 7^ for each 0 e LX(G). Furthermore, the map n —» fn from
L°°(G)* into 38(L°°(G)*) is continuous when L°°(G)* has the weak*-topology
and 38(L°°(G)*) has the W*OT. Hence

3Loo    .={Tn;neLoc(G)\  n>0, and||«|| = l}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INNER AMENABLE LOCALLY COMPACT GROUPS 167

By assumption, there exists n e L°°(G)*, n>0, \\n\\ = 1, such that

(1) TJn = TJa   for all a eG.
Next we observe that

(2) (iTam)Lif),<p) = (mL(f),<l)*ôa-l)

for each a e G, me L°°(G)*, and / e L°°(G).
Hence if {y, } is a bounded approximate identity of LX(G) and m is a

weak* cluster point of y,a , then (by (2))

(Ta(m)¿f),<p) = (mL(f),<t)*8a) = (m,±(<p*oaT*f^

= lim / y/a, -^(<p * Sa)~ *f\= lim(</> *8a*y/a,f)

= {<t>*Sa,f) = (rJ,cp)

for any / e L°°(G) and tp e LX(G), i.e.,

(3) Ta(m)L(f) = rj
Also

(TJn(m),f) = (fn(m),laf) = (nQm,lJ)
= {n,mL(lJ)) = (n,lamL(f))
= (iy,f) = (n,laf).

Combining this with (1) and (3), we obtain that (n, laf) = (n, raf) for any
/ e L°°(G) and a e G, i.e., n is an inner invariant mean.   □

6. Miscellaneous results
Proposition 6.1. Let G be a separable connected group. Then the following are
equivalent:

(a) G admits a countably additive inner invariant mean.
(b) G is an [IN]-group.
(c) G is an extension of a compact group by a vector group.

Proof, (a) => (b) Let B(G) = {x e G: the conjugacy class of x has rela-
tively compact closure}. By [9, Theorem 1.4], there exists a layering of G that
terminates with the closed subgroup B(G), i.e., a sequence

5(G) = A0cA1C---cAm = G
such that each Xk is a closed subset of G invariant under the inner automor-
phisms and every point x e Xk ~ Xk_x has a relative neighborhood in Xk with
infinitely many disjoint conjugates. Suppose that m is a countably additive in-
ner invariant mean and suppose that m(B(G)) = 0. Then m(Xk ~ Xk_x) > 0
for some k . By separability, there exists a relatively open set U in Xk ~ Xk_x
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with m(U) > 0 and a sequence {xn} with {xnUx~ } pairwise disjoint. This
contradicts m(G) = 1. So m(B(G)) > 0, and hence X(B(G)) > 0, where X is
the left Haar measure on G. Consequently B(G) is an open [FC]--subgroup
of G. In particular G in an [IN]-group [15, Corollary 2.2].

That (b) «■ (c) for connected groups is well known [11, Corollary 2.8]. Also
(b) => (a) is clear.   D

Proposition 6.2. Let G be a locally compact group and H be a closed normal
subgroup of G. If G is inner amenable, then G/H is also inner amenable.
Proof Define a map <p: L°°(G/H) t-> L°°(G) by cp(f) = fod, where 8 is the
quotient map of G onto G/H. Then, as is well known (see [25, pp. 66 and
82]), p is a linear isometry from L°°(G/H) into the subspace A of L°°(G),
where

A = {/ e L°°(G) ;rj = f for all x e G}.
Furthermore p(n(x)f) = (n(x)f) o 8 for each x e G, where x = xH. Let
m be an inner invariant mean on L°°(G). Define m'(f) = m(p(t)), / e
L°°(G/H).   Then, as is readily checked,  m   is an inner invariant mean on
L°°(G/H).   D ■
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