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1. Introduction. In this paper we generalize to Riemann surfaces

the factorization theory for functions in the Hardy classes, Hp, on

the unit disk.

Let R be a region on a Riemann surface with boundary T consist-

ing of a finite number of simple closed analytic curves such that

RVJT is compact and R lies on one side of T. For 1 ¿p < <x> HP(R) is

the class of functions F analytic on R such that | P|p has a harmonic

majorant. HX(R) is the class of bounded analytic functions on R. The

above classes are the usual generalizations of the Hardy classes on

the disk (cf. [4], [S], and [6]). However, to obtain a factorization of

these functions which closely parallels the factorization on the disk

we are led to more general classes of functions. To this end, we say

that a (multiple-valued) analytic function F on R is multiplicative if

| P| is single-valued and define MHP(R), l¿p<<x>, to be the class

of multiplicative analytic functions Fon R such that | P|p has a har-

monic majorant. Also, we define MHX'(R) to be the class of bounded

multiplicative functions on R.

Let dp be the harmonic measure on T with respect to some fixed

point toQR. If FQMHP then | p| has nontangential boundary values

|p*| a.e. [dp] on T. Moreover, |F*|£L»(r, dp) and log|P*|

£L1(r, dp) if F^O. These facts follow easily from the corresponding

results on the disk. (Cf. [10, p. 496].)

We say FQMHP(R) is an outer function if

log | F(io) |   = j log\F*\dp.

<&QMH°°(R) is an inner function if ¡<£*| =1 a.e. on T. A nonvanishing

inner function is said to be a singular function. An inner function, B,

is said to be a Blaschke product if

| 5(0 |  = expl-T, piG(t, h)j

for all tQR, where G is the Green's function for R, {tk} is a sequence

of points on R, and {pk\ is a sequence of non-negative integers. When
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R is the unit disk, the definitions above are equivalent to the classical

ones.

Theorem 1. Let FQMHP(R). Then \F\ =|2?||S||Fi| where B is

a Blaschke product, S is a singular function, and Fi is an outer function

in MHP(R). These factors are unique up to multiplicative constants of

modulus one.

Since Hp(R)QMHp(R), this theorem subsumes a factorization of

functions in HP(R). However, the factors of a single-valued function

in HP(R) need not be single-valued.

Theorem 1 is stated in terms of the moduli of functions since

there is no natural way to define the product of multiplicative func-

tions; that is, the product would depend on the branches chosen.

In our proof we shall make use of the factorization on the disk.

A convenient reference for this is [3].

It should be remarked that results related to ours are in [7] for R

an annulus and in [2] for the general case.

2. Proof of Theorem 1. Let K= {z[}z\ <l} and T: K-+R he a

universal covering map of R. Let Q = {q} be the group of fractional

linear transformations such that T o q = T. A function /, analytic

on K, is said to be modulus invariant if |/o q\ = |/| for all qQQ. It is

easy to see that/is modulus invariant on K if, and only if,/o T~l is

multiplicative on R. Also, for / modulus invariant, fQHp(K) if, and

only if, foT-'QMH^R). For FQMHP(R) and foT^ = F let
f = bsfi where & is a Blaschke product, s is a singular function, and

/i is an outer function in HP(K). Then/is modulus invariant and by

Lemma 4.6 in [lO] bs and/i are also modulus invariant.

Lemma, b is modulus invariant.

Proof. First observe that if z is a zero of / then q(z) is a zero of /

with the same multiplicity for each qQQ. Thus b o q/bQHx(K) for

each qQQ since b and b o q have the same zeros with the same multi-

plicities. Then for all qQQ b/boq=(bo q~l o q)/(b o q)QHco(K). It

follows that | b\ = | b o q\ for all qQQ.
Let A be the fundamental domain of Q and E the union of the free

sides of A; that is, E = AT\{ \z\ =1}. Then the harmonic measure dp

corresponds to the measure

dm(9) = L[y Izii^lllji
2tL¿   \e«-q(zo)\2]

on E where z0£A and T(zo)=t0. (Cf. [9, pp. 526, 529].) Moreover,

dm(9) and dB are mutually absolutely continuous.
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Let B = b o T-\ S = so T~\ and Fi = /i o T~\ Then | F\
= \b\ \S\ \Fi\. Since b is an inner function and 5 is a singular func-

tion, it is immediate by virtue of the relation between dd and dm(d)

that B is an inner function and 5 is a singular function. (Cf. [10,

Lemma 4.4].) It remains to show that B is a Blaschke product and Fi

is an outer function.

We shall consider Fi first. Since dm(6) corresponds to dp, it follows

that

( log\Fi*\du=  f Iog|/f|d«(9).
J v Je

Now since the set \jqS(¡q(E) is of full measure on \z\ =1 (see [9,

p. 525]) and \f* og|= |/*| a.e. on \z\ =1, a change of variable for

the integral on the right (see [9, pp. 526-528]) yields

f log | Ff | * =   f log|/x*|á«(tf)
J V J B

l  r2*
- log |/f |
¿IT J 0

1-    I«, j'
fi» -2tJo I e" — Zo |

= log|/i(zo)| = log|Fi(<o)|.

dd

Therefore Fi is an outer function.

Next we show that B is a Blaschke product. Let {tk} be the set of

zeros of F and pk be the multiplicity of the zero at tk. For each tk

let z* be a point in K such that T(zk) =tk. Then for qEQ,b has a zero

at q(zk) of multiplicity />*. All the zeros of b occur in this way. Thus,

b(z) = nn
k    q€Q

q(zk)

1 — $(zk)z

Now for z, z'EK

G(F(z),r(z')) = £log
1 - q(z')z

î(0
(See [9, p. 529].) Hence for < = F(z)

1 B(t) |   = | ¿(2) |  = II exp[-pkG(t, tk)] = exp ̂- £ ^G(<, fc) J

Thus B is a Blaschke product and F= |23||s||Fi| is the desired

factorization. Since b, s, and /i are unique up to multiplicative con-

stants of modulus one, the same is true for B, S, and Fi. This com-

pletes the proof of Theorem 1.
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3. Closed invariant subspaces of H2(R). Let A(R) be the class of

(single-valued) functions continuous on R and analytic on R. A

closed subspace V of H2(R) is said to be invariant if FVQV for all

FQA(R). For $ an inner function on R let V($) = {FQH2(R)\

| p| 2/|í>| 2hasa harmonic majorant on R}. In [10, Theorem 8.11] it is

shown that F(f») is a closed invariant subspace of H2(R). The follow-

ing theorem, which reduces to a well-known result of Beurling's [l,

Theorem IV, p. 253] for the case R = K, is proved in [10, Theorem 2].

Theorem 2. If V is a closed invariant subspace of H2(R) then there

is an inner function i> such that V= F(4>).

By Theorem 1 we have for FQHP(R), | F\ = |i>| |Pi| where 3> is

an inner function. We call $ an inner factor of F.

Theorem 3. Let FQH2(R) and V[F] be the smallest closed invariant

subspace of H2(R) which contains F. Then V[F] = F($>) where 4> is an

inner factor of F.

Proof. Clearly V($)DV[F]. By Theorem 2, F[P] = F(i>0) for

some inner function <p0. Let HQ V($). We must show HQ V(®0). For

f=Fo T and h = HoT letf=<pfi and h=\[/hi be the inner-outer fac-
torizations of / and h respectively such that ^?=<po T"1. Then

^=^ o P_1 is an inner factor of H. Let <p0 be a modulus invariant

inner function such that $0=<ÊoO T~\ Since FQV($0), |p|7|$o[2

has a harmonic majorant; and it follows that//^>o£222(2C). This im-

plies <p/<po is an inner function. By a similar argument ty/<p is an inner

function. Thus 4'/<po = (1^/<p)(<p/<Po) is an inner function. Hence

| *| /|$o| is bounded. This implies HQ F(<3?0).

Corollary 1. Let FQH2(R). Then V[F] =H2(R) if, and only if, F
is an outer function. (Cf. [7, Theorem 1, p. 128].)

The following result was proved by D. Sarason ([7, pp. 112, 128]

and [8, Theorem 4, p. 596]). We offer a different proof.

Corollary 2. Let R= {z\ r < \ z\ < 1} and suppose FQH2(R). Then

V[F] =H2(R) if, and only if, for 0 ¿ 5 ¿ 1

(*) f    log I F(rV) | dt = (1 - 5) f    log | F*(e") \ dt
Jo Jo

log I F*(re") | dt.
o

Proof. By virtue of Corollary 1 it is sufficient to show that F

satisfies (*) if, and only if, F is an outer function. Suppose F is an

outer function, then
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/• 2x                                 /* 2t 1   /*                         dG(w rV)
log| F(r*ei>) \dt= \     —       log| F*(w) \ ——- \dw\dl

o                                        J o     2ir J au                                  dn

C , ,1    r2r dG(w,rseu) .
=   1        log | F*(w) | — I     ——--dt\dw\

J iu)|-i 2x J o dn

r .   1   f2* dG(w,rteit) ,
+ 1        log| F*(it») | — I      ——--dt\dw\

J \w\=r 2tc J o dn

= /i(á) + /2(5).

Now ôG(ei9, rseu)/dn = dG(e-", rse~ie)/dn. Thus for |w| =1

1   f 2T  dG(w, r'e") 1   f*2* ôGie*', r%)
— |       ■——-dt = — I      -áí
2ir J o dn 2t J o dn

= harmonie measure of { | z\  =1}  at r'iïi

= 1 - (log r'/log r) = 1 - 5.

Thus Ji(5) = (1 - S)/gT log | F*(eu) \ dt. A similar argument shows I2(o)

= &JT log | F*(reil) \ dt. Hence F satisfies (*).
To complete the proof we show that if F is not an outer function

then (*) is not satisfied. Let Fi be an outer factor of F. Then | F\

< | Fi\ on R and \F\ =\Fi\ a.e. on dR. We have shown that Fx

satisfies (*). Thus (*) does not hold for F.
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