INNER AND OUTER FUNCTIONS ON RIEMANN SURFACES

MICHAEL VOICHICK¹ AND LAWRENCE ZALCMAN

1. Introduction. In this paper we generalize to Riemann surfaces the factorization theory for functions in the Hardy classes, H^p , on the unit disk.

Let R be a region on a Riemann surface with boundary Γ consisting of a finite number of simple closed analytic curves such that $R \cup \Gamma$ is compact and R lies on one side of Γ . For $1 \leq p < \infty$ $H^p(R)$ is the class of functions F analytic on R such that $|F|^p$ has a harmonic majorant. $H^{\infty}(R)$ is the class of bounded analytic functions on R. The above classes are the usual generalizations of the Hardy classes on the disk (cf. [4], [5], and [6]). However, to obtain a factorization of these functions which closely parallels the factorization on the disk we are led to more general classes of functions. To this end, we say that a (multiple-valued) analytic function F on R is *multiplicative* if |F| is single-valued and define $MH^p(R)$, $1 \leq p < \infty$, to be the class of multiplicative analytic functions F on R such that $|F|^p$ has a harmonic majorant. Also, we define $MH^{\infty}(R)$ to be the class of bounded multiplicative functions on R.

Let $d\mu$ be the harmonic measure on Γ with respect to some fixed point $t_0 \in \mathbb{R}$. If $F \in MH^p$ then |F| has nontangential boundary values $|F^*|$ a.e. $[d\mu]$ on Γ . Moreover, $|F^*| \in L^p(\Gamma, d\mu)$ and $\log |F^*|$ $\in L^1(\Gamma, d\mu)$ if $F \neq 0$. These facts follow easily from the corresponding results on the disk. (Cf. [10, p. 496].)

We say $F \in MH^p(R)$ is an outer function if

$$\log |F(t_0)| = \int_{\Gamma} \log |F^*| d\mu.$$

 $\Phi \in MH^{\infty}(R)$ is an inner function if $|\Phi^*| = 1$ a.e. on Γ . A nonvanishing inner function is said to be a singular function. An inner function, B, is said to be a Blaschke product if

$$|B(t)| = \exp\left[-\sum_{k} p_{k}G(t, t_{k})\right]$$

for all $t \in R$, where G is the Green's function for R, $\{t_k\}$ is a sequence of points on R, and $\{p_k\}$ is a sequence of non-negative integers. When

1200

Received by the editors December 28, 1964.

¹ Partially supported by the Carnegie Corporation.

R is the unit disk, the definitions above are equivalent to the classical ones.

THEOREM 1. Let $F \in MH^{p}(R)$. Then $|F| = |B||S||F_{1}|$ where B is a Blaschke product, S is a singular function, and F_{1} is an outer function in $MH^{p}(R)$. These factors are unique up to multiplicative constants of modulus one.

Since $H^{p}(R) \subset MH^{p}(R)$, this theorem subsumes a factorization of functions in $H^{p}(R)$. However, the factors of a single-valued function in $H^{p}(R)$ need not be single-valued.

Theorem 1 is stated in terms of the moduli of functions since there is no natural way to define the product of multiplicative functions; that is, the product would depend on the branches chosen.

In our proof we shall make use of the factorization on the disk. A convenient reference for this is [3].

It should be remarked that results related to ours are in [7] for R an annulus and in [2] for the general case.

2. Proof of Theorem 1. Let $K = \{z \cup z \mid <1\}$ and $T: K \rightarrow R$ be a universal covering map of R. Let $Q = \{q\}$ be the group of fractional linear transformations such that $T \circ q = T$. A function f, analytic on K, is said to be *modulus invariant* if $|f \circ q| = |f|$ for all $q \in Q$. It is easy to see that f is modulus invariant on K if, and only if, $f \circ T^{-1}$ is multiplicative on R. Also, for f modulus invariant, $f \in H^p(K)$ if, and only if, $f \circ T^{-1} \in MH^p(R)$. For $F \in MH^p(R)$ and $f \circ T^{-1} = F$ let $f = bsf_1$ where b is a Blaschke product, s is a singular function, and f_1 is an outer function in $H^p(K)$. Then f is modulus invariant and by Lemma 4.6 in [10] bs and f_1 are also modulus invariant.

LEMMA. b is modulus invariant.

PROOF. First observe that if z is a zero of f then q(z) is a zero of f with the same multiplicity for each $q \in Q$. Thus $b \circ q/b \in H^{\infty}(K)$ for each $q \in Q$ since b and $b \circ q$ have the same zeros with the same multiplicities. Then for all $q \in Q$ $b/b \circ q = (b \circ q^{-1} \circ q)/(b \circ q) \in H^{\infty}(K)$. It follows that $|b| = |b \circ q|$ for all $q \in Q$.

Let Δ be the fundamental domain of Q and E the union of the free sides of Δ ; that is, $E = \overline{\Delta} \cap \{ |z| = 1 \}$. Then the harmonic measure $d\mu$ corresponds to the measure

$$dm(\theta) = \frac{1}{2\pi} \left[\sum_{q \in \mathbf{Q}} \frac{1 - |q(z_0)|^2}{|e^{i\theta} - q(z_0)|^2} \right] d\theta$$

on E where $z_0 \in \Delta$ and $T(z_0) = t_0$. (Cf. [9, pp. 526, 529].) Moreover, $dm(\theta)$ and $d\theta$ are mutually absolutely continuous.

Let $B = b \circ T^{-1}$, $S = s \circ T^{-1}$, and $F_1 = f_1 \circ T^{-1}$. Then $|F| = |B| |S| |F_1|$. Since b is an inner function and s is a singular function, it is immediate by virtue of the relation between $d\theta$ and $dm(\theta)$ that B is an inner function and S is a singular function. (Cf. [10, Lemma 4.4].) It remains to show that B is a Blaschke product and F_1 is an outer function.

We shall consider F_1 first. Since $dm(\theta)$ corresponds to $d\mu$, it follows that

$$\int_{\Gamma} \log \left| F_{1}^{*} \right| d\mu = \int_{\mathcal{B}} \log \left| f_{1}^{*} \right| dm(\theta).$$

Now since the set $\bigcup_{q \in Q} q(E)$ is of full measure on |z| = 1 (see [9, p. 525]) and $|f_1^* \circ q| = |f_1^*|$ a.e. on |z| = 1, a change of variable for the integral on the right (see [9, pp. 526-528]) yields

$$\int_{\Gamma} \log |F_{1}^{*}| d\mu = \int_{E} \log |f_{1}^{*}| dm(\theta)$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |f_{1}^{*}| \frac{1 - |z_{0}|^{2}}{|e^{i\theta} - z_{0}|} d\theta$$
$$= \log |f_{1}(z_{0})| = \log |F_{1}(t_{0})|.$$

Therefore F_1 is an outer function.

Next we show that B is a Blaschke product. Let $\{t_k\}$ be the set of zeros of F and p_k be the multiplicity of the zero at t_k . For each t_k let z_k be a point in K such that $T(z_k) = t_k$. Then for $q \in Q$, b has a zero at $q(z_k)$ of multiplicity p_k . All the zeros of b occur in this way. Thus,

$$|b(z)| = \prod_{k} \prod_{q \in Q} \left| \frac{q(z_k) - z}{1 - \overline{q}(z_k)z} \right|^{p_k}$$

Now for z, $z' \in K$

$$G(T(z), T(z')) = \sum_{q \in \mathbf{Q}} \log \left| \frac{1 - \overline{q}(z')z}{z - q(z')} \right|.$$

(See [9, p. 529].) Hence for t = T(z)

$$|B(t)| = |b(z)| = \prod_{k} \exp[-p_k G(t, t_k)] = \exp\left[-\sum_{k} p_k G(t, t_k)\right]$$

Thus B is a Blaschke product and $F = |B||S||F_1|$ is the desired factorization. Since b, s, and f_1 are unique up to multiplicative constants of modulus one, the same is true for B, S, and F_1 . This completes the proof of Theorem 1.

3. Closed invariant subspaces of $H^2(R)$. Let A(R) be the class of (single-valued) functions continuous on \overline{R} and analytic on R. A closed subspace V of $H^2(R)$ is said to be *invariant* if $FV \subset V$ for all $F \in A(R)$. For Φ an inner function on R let $V(\Phi) = \{F \in H^2(R) \mid |F|^2/|\Phi|^2$ has a harmonic majorant on $R\}$. In [10, Theorem 8.11] it is shown that $V(\Phi)$ is a closed invariant subspace of $H^2(R)$. The following theorem, which reduces to a well-known result of Beurling's [1, Theorem IV, p. 253] for the case R = K, is proved in [10, Theorem 2].

THEOREM 2. If V is a closed invariant subspace of $H^2(R)$ then there is an inner function Φ such that $V = V(\Phi)$.

By Theorem 1 we have for $F \in H^p(R)$, $|F| = |\Phi| |F_1|$ where Φ is an inner function. We call Φ an *inner factor of* F.

THEOREM 3. Let $F \in H^2(R)$ and V[F] be the smallest closed invariant subspace of $H^2(R)$ which contains F. Then $V[F] = V(\Phi)$ where Φ is an inner factor of F.

PROOF. Clearly $V(\Phi) \supset V[F]$. By Theorem 2, $V[F] = V(\Phi_0)$ for some inner function Φ_0 . Let $H \in V(\Phi)$. We must show $H \in V(\Phi_0)$. For $f = F \circ T$ and $h = H \circ T$ let $f = \phi f_1$ and $h = \psi h_1$ be the inner-outer factorizations of f and h respectively such that $\Phi = \phi \circ T^{-1}$. Then $\Psi = \psi \circ T^{-1}$ is an inner factor of H. Let ϕ_0 be a modulus invariant inner function such that $\Phi_0 = \phi_0 \circ T^{-1}$. Since $F \in V(\Phi_0)$, $|F|^2 / |\Phi_0|^2$ has a harmonic majorant; and it follows that $f/\phi_0 \in H^2(K)$. This implies ϕ/ϕ_0 is an inner function. By a similar argument ψ/ϕ is an inner function. Thus $\psi/\phi_0 = (\psi/\phi)(\phi/\phi_0)$ is an inner function. Hence $|\Psi| / |\Phi_0|$ is bounded. This implies $H \in V(\Phi_0)$.

COROLLARY 1. Let $F \in H^2(R)$. Then $V[F] = H^2(R)$ if, and only if, F is an outer function. (Cf. [7, Theorem 1, p. 128].)

The following result was proved by D. Sarason ([7, pp. 112, 128] and [8, Theorem 4, p. 596]). We offer a different proof.

COROLLARY 2. Let $R = \{z | r < |z| < 1\}$ and suppose $F \in H^2(R)$. Then $V[F] = H^2(R)$ if, and only if, for $0 \le \delta \le 1$

(*)
$$\int_{0}^{2\pi} \log |F(r^{\delta}e^{it})| dt = (1-\delta) \int_{0}^{2\pi} \log |F^{*}(e^{it})| dt + \delta \int_{0}^{2\pi} \log |F^{*}(re^{it})| dt.$$

PROOF. By virtue of Corollary 1 it is sufficient to show that F satisfies (*) if, and only if, F is an outer function. Suppose F is an outer function, then

$$\int_{0}^{2\pi} \log \left| F(r^{\delta}e^{it}) \right| dt = \int_{0}^{2\pi} \frac{1}{2\pi} \int_{\partial R} \log \left| F^{*}(w) \right| \frac{\partial G(w, r^{\delta}e^{it})}{\partial n} \left| dw \right| dt$$
$$= \int_{|w|=1} \log \left| F^{*}(w) \right| \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial G(w, r^{\delta}e^{it})}{\partial n} dt \left| dw \right|$$
$$+ \int_{|w|=r} \log \left| F^{*}(w) \right| \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial G(w, r^{\delta}e^{it})}{\partial n} dt \left| dw \right|$$
$$= I_{1}(\delta) + I_{2}(\delta).$$

Now $\partial G(e^{i\theta}, r^{\delta}e^{it})/\partial n = \partial G(e^{-it}, r^{\delta}e^{-i\theta})/\partial n$. Thus for |w| = 1 $\frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial G(w, r^{\delta}e^{it})}{\partial n} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial G(e^{it}, r^{\delta}\bar{w})}{\partial n} dt$ $= \text{harmonic measure of } \{ |z| = 1 \} \text{ at } r^{\delta}\bar{w}$ $= 1 - (\log r^{\delta}/\log r) = 1 - \delta.$

Thus $I_1(\delta) = (1-\delta) \int_0^{2\pi} \log |F^*(e^{it})| dt$. A similar argument shows $I_2(\delta) = \delta \int_0^{2\pi} \log |F^*(re^{it})| dt$. Hence F satisfies (*).

To complete the proof we show that if F is not an outer function then (*) is not satisfied. Let F_1 be an outer factor of F. Then $|F| < |F_1|$ on R and $|F| = |F_1|$ a.e. on ∂R . We have shown that F_1 satisfies (*). Thus (*) does not hold for F.

References

1. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239-255.

2. M. Hasumi, Invariant subspace theorems for finite Riemann surfaces, ditto copy, 1964.

3. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.

4. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103-197.

5. H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z. 78 (1962), 1-24.

6. W. Rudin, Analytic functions of class H_p, Trans. Amer. Math. Soc. 78 (1955), 46-66.

7. D. Sarason, The H^p spaces of annuli, Dissertation, Univ. of Michigan, Ann Arbor, Mich., 1963.

8. ——, Doubly invariant subspaces of annulus operators, Bull. Amer. Math. Soc. 69 (1963), 593-596.

9. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

10. M. Voichick, Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc. 111 (1964), 493-512.

DARTMOUTH COLLEGE,

University of Wisconsin and Massachusetts Institute of Technology

1204